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Abstract. In this work, we find an interval for a parameter λ for which a functional J − λI
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1. Introduction

Considering the applications of p−Laplacian and biharmonic equations in physics,
Medicine and engineering, many authors have studied such equations under suitable
conditions in past years. Among them, we cite the readers to Afrouzi et al [1],
Bonanno et al [4], Cammaroto [10], Li [11], Shokooh [14], Xu et al [15] and the
references therein.

Recently, in [10], Cammaroto proved the existence results for following boundary
value problem:{

∆2
pu−∆pu+ V (x)|u|p−2u = λf(x, u) + µg(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 1), p > max{1, N2 }, λ ∈ R, µ > 0,

f, g are Carathéodory functions with suitable behaviors, ∆2
pu := ∆(|∆u|p−2∆u) and

∆pu := ∇(|∇u|p−2∇u) are p-biharmonic and p-Laplacian operators, respectively, and

V ∈ C(Ω) such that inf{V (x) : x ∈ Ω} > 0.
Also, in [15], some existence results are obtained for the following fourth order

equation involving Hardy potential:{
M
(∫

Ω
|∆u|pdx

)
∆2
pu− d∗

|x|2p |u|
p−2u = λf(x, u) + µg(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 3), 1 < p < N
2 , λ, µ, d

∗ are

constants, f, g ∈ C(Ω× R).
Afrouzi with his coauthor [1] have investigated the following p(x)−biharmonic

problem {
∆2
p(x)u+ V (x)|u|p(x)−2u = λf(x, u) + µg(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
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where Ω is a smooth bounded domain in RN (N ≥ 2), p− := infx∈Ω p(x) > N
2 , λ > 0,

µ ≥ 0, f, g : Ω × R → R are Carathéodory functions and V ∈ L∞(Ω) satisfying
infΩ V > 0.

Inspired by the above papers, we are interested in studying the following p-biharmonic
elliptic equation with Hardy potential:{

∆2
pu−∆pu+ a(x)|u|p−2u = d

|x|2p |u|
p−2u+ λf(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(1)

where Ω is a smooth bounded domain in RN (N ≥ 3), 1 < p < N
2 , λ is a positive

parameter, d is a constant, f ∈ C(Ω × R) with suitable conditions and a ∈ C(Ω)
satisfying infΩ a > 0.

The equation (1) is singular and has two operators, ∆2
pu and ∆pu, as distinctive

features. The singularity arises due to the presence of the Hardy potential term 1
|x|2p ,

which can make the analysis of solutions more challenging. Singular equations like (1)
are encountered in many areas of science and engineering, and their study is important
for the development of new technologies and innovations, see [9].

Also, the control parameter λ in the equation (1) allows for the study of the be-
havior of solutions under different values of λ. This can lead to interesting insights
into the properties of the system, and can provide a more accurate and realistic rep-
resentation of the problem. Control parameters are commonly used in mathematical
models to capture the effect of external factors that influence the behavior of the
system, and their presence can help to better understand the system’s behavior.

We organize the structure of this article as follows. In the second section, the
required concepts of the variational structure and also the main tool (Lemma 2.1) are
stated. In Section 3, we give the main results and their proof along with an example.

2. Variational framework

In this section, we introduce the function space in which the problem (1) will be
studied. Also, for the convenience of the reader, we state the main tool to proof the
results.

From now on, let Ω ⊂ RN (N ≥ 3) be an open bounded set, 1 < p < N
2 , and

a ∈ C(Ω) with inf{a(x) : x ∈ Ω} > 0. The function space E = W 2,p(Ω) ∩W 1,p
0 (Ω)

with the following standard norm

‖u‖ =

(∫
Ω

|∆u|p dx
) 1
p

(2)

is a reflexive Banach space. According to the assumptions on the function a, the norm
(2) is equivalent to the following norm

‖u‖a =

(∫
Ω

(|∆u|p + |∇u|p + a(x)|u|p) dx
) 1
p

(3)

for all u ∈ E.
To prove the main results, we need a sequence of functions as test functions. For

optimal selection, we introduce a class of these functions as follows: let {ϑn} is a
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positive real sequence and {ηn}, {θn} are two real sequences such that 0 < ηn < θn
for all n ∈ N. Put

T ({ηn}, {θn}, {ϑn}) =
{
{φn} ⊂W 2,p(]ηn, θn[); ∀n ∈ N

}
where φn satisfies in following conditions
(t1) 0 ≤ φn(x) ≤ ϑn for a.e. x ∈]ηn, θn[;
(t2) limx→η+

n
φn(x) = ϑn, limx→θ−n φn(x) = 0;

(t3) limx→η+
n
φ′n(x) = limx→θ−n φ

′
n(x) = 0;

(t4) there exist z1, z2 > 0, such that

|φ′n(x)| ≤ z1ϑn
θn − ηn

, |φ′′n(x)| ≤ z2ϑn
(θn − ηn)2

. (4)

For example, the sequences

φ1
n(x) = 4ϑn(4x3 − 9x2 + 6x− 1)

and

φ2
n(x) =

ϑn
2

cos(2πx− π + 1),

where x ∈
]

1
2 , 1
[
, are in the space T

(
{ 1

2 , 1, {ϑn}
)
. Additionally,

|φ1
n
′
(x)| ≤ 3ϑn, |φ1

n
′′
(x)| ≤ 24ϑn, |φ2

n
′
(x)| ≤ πϑn

and |φ2
n
′′
(x)| ≤ 2π2ϑn for all x ∈

]
1
2 , 1
[
. So, in view of (4),

z1({φ1
n}) =

3

2
, z2({φ1

n}) = 6, z1({φ2
n}) =

π

2
, z2({φ2

n}) =
π2

2
.

Here, we state two inequalities (5) and (6) that will be used to prove theorems in

the next section. If q ∈ [1, p∗ := pN
N−2p ), by Sobolev embedding

∃cq > 0; ‖u‖Lq(Ω) ≤ cq‖u‖ ≤ cq‖u‖a (5)

for all u ∈ E. Hence, the embedding E ↪→ Lq(Ω) is compact, see [15].
Hardy inequality in the space E is as follows:∫

Ω

|u(x)|p

|x|2p
dx ≤ 1

H

∫
Ω

|∆u(x)|pdx ≤ 1

H

∫
Ω

(|∆u|p + |∇u|p + a(x)|u|p) dx, (6)

where H =
(

(p−1)N(N−2p))
p2

)p
, see [12].

A function u ∈ E is a weak solution of problem (1) if∫
Ω

|∆u|p−2∆u∆vdx+

∫
Ω

|∇u|p−2∇u∇vdx+

∫
Ω

|u|p−2uvdx

−
∫

Ω

|u|p−2

|x|2p
uvdx− λ

∫
Ω

f(x, u(x))v(x) dx = 0

for all v ∈ E.
Ricceri in [13] proved a critical point theorem that it is our main tool for proving

the results. Later, another version of this theorem was stated in [5] which we recall
here for the convenience of the reader.
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Lemma 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two Gâteaux
differentiable functionals such that Φ is sequentially weakly lower semicontinuous,
strongly continuous and coercive, and Ψ is sequentially weakly upper semicontinuous.
For every r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r) Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then the following properties hold:
(Φ1) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the functional

Iλ := Φ− λΨ

to Φ−1(−∞, r) admits a global minimum, which is a critical point (local mini-
mum) of Iλ in X.

(Φ2) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either the
functional Iλ possesses a global minimum, or there is a sequence {un} of critical
points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(Φ3) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either
there is a global minimum of Φ which is a local minimum of Iλ, or there is
a sequence {un} of pairwise distinct critical points (local minima) of Iλ that
converges weakly to a global minimum of Φ.

Lemma 2.1 and its different versions are useful tools to obtain exitance results
for various equations. Whenever researchers want to find a sequence {un} of weak
solutions of an equation in a reflexive real Banach space X such that
• {un} is unbounded in X, or
• un → 0 strongly in X,

they can benefit from the above lemma. In the last two decades, various problems
have been investigated with this method and the existence of infinitely many weak
solutions for them has been proved (see, for example, [1, 2, 3, 6, 7, 8, 15] and references
therein).

3. Main results

This section is devoted to our main results.

Theorem 3.1. Suppose that a ∈ C(Ω) satisfy infΩ a > 0, 1 < p < N
2 , 0 < d < H

(where H comes from (6)) and let f ∈ C(Ω× R) such that
(A1) F (x, t) is non-negative for all (x, t) ∈ Ω× [0,+∞[;
(A2) there exist x0 ∈ Ω and ρ > 0, p0 ≥ p such that B(x0, ρ) ⊆ Ω and

α := lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t

∫
Ω

F (x, ξ) dx

tp
< +∞,
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β := lim sup
t→+∞

∫
B(x0,ρ)

F (x, t) dx

tp0
> 0.

Then, following facts hold:

(i1) if p < p0, for all λ ∈
]
0, H−d

pHcpqα

[
, the problem (1) has an unbounded sequence of

nonzero weak solutions;

(i2) if p = p0, for all λ ∈
]

H−d
pHcpqRβ

, H−d
pHcpqα

[
where R = 1

cpqωca,%,ρ
, % > 1 and α < Rβ,

the problem (1) has an unbounded sequence of nonzero weak solutions.

Proof. We want to apply part (Φ2) of Lemma 2.1 to prove (i1) with X = E furnished

with the norm introduced in (3). For fix λ ∈
]
0, H−d

pHcpqα

[
define the functionals J, I :

E → R, for all u ∈ E, by

J(u) =
1

p
‖u‖pa −

d

p

∫
Ω

|u|p

|x|2p
dx, I(u) =

∫
Ω

F (x, u(x))dx,

where F (x, t) =
∫ t

0
f(x, ξ)dξ for every (x, t) ∈ Ω× R.

The functionals J and I are Gâteaux differentiable and whose derivative are

J ′(u)(v) =

∫
Ω

|∆u|p−2∆u∆vdx+

∫
Ω

|∇u|p−2∇u∇vdx

+

∫
Ω

|u|p−2u vdx−
∫

Ω

|u|p−2

|x|2p
u vdx

I ′(u)(v) =

∫
Ω

f(x, u(x))v(x) dx

for any u, v ∈ E.
Obviously, the functional J is sequentially weakly lower semi-continuous and strongly

continuous. In view of (6) one has J(u) ≥ 1
p

(
1− d

H

)
‖u‖pa, it follows J is coercive.

Also, since I ′ is compact, one has it is sequentially weakly upper semi-continuous.
Taking (5) and (6) into account, we observe that

{u ∈ E : J(u) < r} ⊆
{
u ∈ E :

(
1− d

H

)
‖u‖pa < pr

}
⊆
{
u ∈ E : ‖u‖Lq(Ω) < cq

(
pHr
H−d

) 1
p

}
. (7)

By J(0) = I(0) = 0 and (7), for r > 0 one has

ϕ(r) = inf
u∈J−1(−∞,r)

(
supv∈J−1(−∞,r) I(v)

)
− I(u)

r − J(u)

≤
supv∈J−1(−∞,r) I(v)

r

≤
sup‖ξ‖Lq(Ω)≤l

∫
Ω
F (x, ξ) dx

r
, (8)
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that l = cq

(
pHr
H−d

) 1
p

. Assume that {ζn} ⊂]0,+∞[ be a sequence and ζn → +∞. Set

rn = H−d
pHcpq

ζpn for all n ∈ N. From (A1), (A2) and (8), we have

γ = lim inf
r→+∞

ϕ(r) ≤ lim inf
n→+∞

ϕ(rn)

≤
pHcpq
H − d

lim inf
n→+∞

sup‖ξ‖Lq(Ω)≤ζn
∫

Ω
F (x, ξ) dx

ζpn

≤
pHcpqα

H − d
< +∞,

and consequently λ < 1
γ . Now, we prove J − λI for λ ∈]0, H−d

pHcpqα
[ is unbounded from

below. By (A2), fixed 0 < β < β we get τn ∈]0,+∞[ with τn ≥ n such that∫
B(x0,ρ)

F (x, τn)dx ≥ βτp0
n

for all n ∈ N. By choosing % > 1 such that B(x0, ρ%) ⊆ Ω and a sequence {φn} ∈
T (ρ, ρ%, {αn}), we define

wn(x) :=

 0 if x ∈ Ω \B(x0, ρ%),
τn if x ∈ B(x0, ρ),
φn(|x− x0|) if x ∈ B(x0, ρ%) \B(x0, ρ),

(9)

for each n ∈ N. With simple computations, for n ∈ N and for 1 ≤ i ≤ N, one has

∂wn(x)

∂xi
=


0 if x ∈ Ω \B(x0, ρ%),
0 if x ∈ B(x0, ρ),

φ′n(|x− x0|) xi−x
0
i

|x−x0| if x ∈ B(x0, ρ%) \B(x0, ρ)

and

∂2wn(x)

∂x2
i

=

 0 if x ∈ Ω \B(x0, ρ%),
0 if x ∈ B(x0, ρ),
T (x) if x ∈ B(x0, ρ%) \B(x0, ρ),

where T (x) = φ′′n(|x− x0|) (xi−x0
i )

2

|x−x0|2 + φ′n(|x− x0|) |x−x0|2−(xi−x0
i )

2

|x−x0|3 .

So, by (4), one has

|∇wn(x)| ≤ |φ′n(|x− x0|)| ≤ z1
τn

ρ%− ρ

and

|∆wn(x)| ≤ |φ′′n(|x− x0|)|+ |φ′n(|x− x0|)|
n− 1

|x− x0|

≤ z2τn
ρ2(%− 1)2

+
z1(n− 1)τn
ρ2(%− 1)

.
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These inequalities allow us to estimate the norm of the functions wn as follows:

‖wn‖pa =

∫
Ω

(|∆wn|p + |∇wn|p + a(x)|wn|p)dx

=

∫
B(x0,ρ%)\B(x0,ρ)

|∆wn(x)|pdx+

∫
B(x0,ρ%)\B(x0,ρ)

|∇wn(x)|pdx

+

∫
B(x0,ρ%)

a(x)|wn(x)|pdx

≤ωτpn
[

2p−1(%n − 1)

ρ2p−n(%− 1)2p
zp2 +

(2p−1(n− 1)p + ρp)(%n − 1)

ρ2p−n(%− 1)p
zp1

]
+ ωτpnρ

n%n max
x∈B(x0,ρ%)

a(x).

If we put

Ca,ρ,% =
2p−1(%n − 1)

ρ2p−n(%− 1)2p
zp2 +

(2p−1(n− 1)p + ρp)(%n − 1)

ρ2p−n(%− 1)p
zp1 + ρn%n max

x∈B(x0,ρ%)
a(x)

we have

J(wn)− λI(wn) =
1

p
‖wn‖pa −

d

p

∫
Ω

|u|p

|x|2p
dx− λ

∫
Ω

F (x,wn)dx

≤ ωCa,ρ,%
p

τpn − λ
∫
B(x0,ρ)

F (x, τn)dx

≤ ωCa,ρ,%
p

τpn − λβτp0
n .

By the assumption p < p0 in (i1) and limn→∞ τn = +∞, we get

lim
n→+∞

(J(wn)− λI(wn)) = −∞.

So, the functional J(u) − λI(u) has no global minimum. According part (Φ2) of
Lemma 2.1, the problem (1) has a sequence of weak solutions in E that it is not

bounded. This concludes the proof of (r1). Now, we check (r2). Since 1
λ <

pHcpqRβ

H−d
there exist a sequence {τn} ⊂]0,+∞[ and β > 0 such that τn → +∞,∫

B(x0,ρ)

F (x, τn)dx ≥ βτp0
n

and

1

λ
< β <

p

ωCa,ρ,%

∫
B(x0,ρ)

F (x, τn)dx

τpn
.

As (9), we define the sequence {wn}, so we obtain

J(wn)− λI(wn) =
1

p
‖wn‖pa −

d

p

∫
Ω

|u|p

|x|2p
dx− λ

∫
Ω

F (x,wn)dx

≤ ωCa,ρ,%
p

τpn − λ
∫
B(x0,ρ)

F (x, τn)dx

≤ ωCa,ρ,%
p

(1− λβ)τpn.
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Hence,
lim

n→+∞
(J(wn)− λI(wn)) = −∞.

consequently, the functional J − λI is unbounded from below, and it follows that
J − λI has no global minimum. So, by part (Φ2) of Lemma 2.1, there exists an
unbounded sequence {un} in E such that J ′(un)−λI ′(un) = 0 for all n ∈ N, and the
proof of the theorem is achieved. �

In Theorem 3.1, taking λ = 1, we have following result.

Theorem 3.2. Let (A1) in the Theorem 3.1 and following assumptions hold:

α <
H − d
pHcpq

, β >
H − d
pHcpqR

.

Then, the problem{
∆2
pu−∆pu+ a(x)|u|p−2u = d

|x|2p |u|
p−2u+ f(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,

has an unbounded sequence of weak solutions in E.

Now, we present another consequence of Theorem 3.1.

Corollary 3.3. Assume that f1 ∈ C(R) be non-negative. Set

F1(ξ) :=

∫ ξ

0

f1(t) dt

for every ξ ∈ R and let

(A3) lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t
F1(ξ)

tp < +∞;

(A4) lim sup
t→+∞

F1(t)
tp = +∞.

Suppose further that for all 1 ≤ i ≤ n, αi ∈ L1(Ω) with minx∈Ω αi(x) ≥ 0 and α1 6= 0.
Additionally, let for 2 ≤ i ≤ n, fi ∈ C(R), fi ≥ 0,

max

{
sup
ξ∈R

Fi(ξ) : 2 ≤ i ≤ n

}
≤ 0

and

min

{
lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t Fi(ξ)

tp
: 2 ≤ i ≤ n

}
> −∞,

where Fi(ξ) :=

∫ ξ

0

fi(t) dt for all ξ ∈ R. Then, for each

λ ∈

0,
H − d

pHcpq lim inft→+∞
sup‖ξ‖Lq(Ω)≤t

F1(ξ)

tp

∫
Ω

α1(x) dx

 ,
the problem{

∆2
pu−∆pu+ a(x)|u|p−2u = d

|x|2p |u|
p−2u+ λ

∑n
i=1 αi(x)fi(u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,

has infinitely many weak solutions in the space E.
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Proof. Put f(x, t) =
∑n
i=1 αi(x)fi(t) for all x ∈ Ω and t ∈ R. Take (A4) and the

condition

min

{
lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t Fi(ξ)

tp
: 2 ≤ i ≤ n

}
> −∞,

into account, we conclude

lim sup
t→+∞

sup‖ξ‖Lq(Ω)≤t

∫
Ω

F (x, ξ) dx

tp

= lim sup
t→+∞

sup‖ξ‖Lq(Ω)≤t

n∑
i=1

(
Fi(ξ)

∫
Ω

αi(x) dx

)
tp

= +∞.

In addition, In view of (A3) and the assumption

max

{
sup
ξ∈R

Fi(ξ) : 2 ≤ i ≤ n

}
≤ 0,

one has

lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t

∫
Ω

F (x, ξ) dx

tp

≤
(∫

Ω

α1(x) dx

)
lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t F1(ξ)

tp
< +∞.

In light of the Theorem 3.1, the conclusion is achieved. �

Theorem 3.4. Let b ∈ C(Ω) satisfy infΩ b > 0, 1 < p < N
2 , 0 < d < H (where H

comes from (6)) and let g ∈ C(Ω× R) such that

(A5) G(x, t) :=
∫ t

0
g(x, ξ)dξ ≥ 0 for every (x, t) ∈ Ω× [0,+∞[;

(A6) there exist x0 ∈ Ω and ρ′ > 0, p0 ≥ p such that B(x0, ρ
′) ⊆ Ω and

α′ := lim inf
t→0+

sup‖ξ‖Lq(Ω)≤t

∫
Ω

G(x, ξ) dx

tp
< +∞,

β′ := lim sup
t→0+

∫
B(x0,ρ′)

G(x, t) dx

tp0
> 0.

Then, following facts hold:

(i3) if p < p0, for all λ ∈
]
0, H−d

pHcpqα′

[
, the problem (1) possesses a sequence of weak

solutions that strongly converges to 0 in E;

(i4) if p = p0, for all λ ∈
]

H−d
pHcpqRβ′

, H−d
pHcpqα

[
where R0 = 1

cpqωca,%,ρ
, %′ > 1 and

α′ < R0β
′, the problem (1) possesses a sequence of weak solutions that strongly

converges to 0 in E.

Proof. Using part (Φ3) of Lemma 2.1 and by similar argument mentioned in the proof
of Theorem 3.1, the result is achieved. �
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Remark 3.1. In Theorem 3.4, if α′ = 0 and β′ = +∞, we can deduce for every
λ > 0, problem (1) possesses a sequence of weak solutions that strongly converges to
0 in E.

We end this article with an example which shows an evidence of our abstract
results.

Example 3.1. Suppose Ω = {x ∈ R6; |x|R6 < 3}. Consider the problem{
∆2

5
2

u−∆ 5
2
u+ u

√
|u| = 1

|x|2p |u|
p−2u+ λf(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(10)

where

f(x, t) =

 f∗(x)t6
(

7− 7 cos(ln(|t|)) + sin(ln(|t|))
)

if (x, t) ∈ Ω× (R− {0}),

0 if (x, t) ∈ Ω× {0},

where f∗ ∈ C(Ω) and f∗(x) ≥ 0 for all x ∈ Ω. By a direct calculation, one has

F (x, t) =

 f∗(x)t7
(

1− cos(ln(|t|))
)

if (x, t) ∈ Ω× (R− {0}),

0 if (x, t) ∈ Ω× {0}.
Hence,

lim inf
t→+∞

sup‖ξ‖Lq(Ω)≤t

∫
Ω

F (x, ξ) dx

t
5
2

= 0,

and

lim sup
t→+∞

∫
Ω

F (x, t) dx

t
5
2

= +∞.

Hence, using Theorem 3.1, for every λ > 0 the problem (10) admits infinitely many
weak solutions in E.
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