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Abstract. Neutrosophic logic, probability, and sets are all included in this discipline. The

generalization of conventional sets, fuzzy sets, intuitionistic fuzzy sets, and other related ideas
is the neutrosophic set theory. It is a mathematical concept that deals with situations in-

volving inconsistent, ambiguous, and imprecise data. To fully understand sequence spaces,
statistical convergence is a crucial concept. In this particular scientific work, we introduce

the notion of statistical convergence for triple sequences in the neutrosophic normed space. In

this neutrosophic normed space, we also explore the statistical properties of completeness and
triple Cauchy sequences.
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1. Introduction

To address ambiguity and imprecision in practical issues, L. Zadeh [22] introduced
the flexible mathematical framework of fuzzy set theory in 1965. As we know, fuzzy
set theory is an extension of classical set theory. Significant studies have been done on
fuzzy theory over the past 50 years. Many authors made a substantial contribution
to the discovery of the idea in addition to developing the theoretical frameworks
that are still widely used today, such as fuzzy physics [12], fuzzy programming [9],
and similarity relations[23]. In a relatively short period, authors accomplished this
feat, which was astonishing. Since the beginning, fuzzy set theory has gone through
lots of changes. In their research, Esi and Hazarika [4] investigated the lacunary
summable sequence of fuzzy numbers. In 1986, Atanassov [2] developed the notion
of intuitionistic fuzzy sets as an extension of fuzzy sets. These sets cope with each
element’s degree of membership as well as its degree of non-membership.

Park’s [18] study of the theory of intuitionistic fuzzy metric spaces utilizing contin-
uous t-norm and continuous t-conorm operations expanded the amount of knowledge
in this field. The neutrosophic set (NS), an innovative utilization of the classical set
notion built on fuzzy sets, was introduced by Smarandache [21]. Since its initial in-
troduction in 1998, neutrosophy has received a lot of written attention.
Furthermore, Kaleva and Seikkala [10] established the idea of fuzzy metric spaces
(FMS), in which the separation between two points is specified as a non-negative fuzzy
integer. The Baire Category Theorem for FMS was then convincingly established in
[6] after extensive investigation of numerous fundamental characteristics of FMS. The
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findings of the research are that FMS has a wide range of useful applications in the
applied sciences, including fixed point theory, image and signal processing, medical
imaging, decision-making, and more. FMS is a useful tool for handling complicated
issues and boosting analytical skills in various fields because of its adaptability and
versatility. In their paper, Bera and Mahapatra [3] presented the idea of neutrosophic
soft normed linear spaces (NSNLS). In their research, they described and studied
a lot of NSNLS-related concepts, such as the neutrosophic norm, Cauchy sequences
in NSNLS, the convexity of NSNLS, and metrics in NSNLS. In their latest study
published in 2020, Kirisci and Simsek [11] put up and explored the notion of statis-
tical convergence in neutrosophic normed spaces. Their research yielded significant
findings in this area. Further statistical convergence of double sequences in neutro-
sophic normed spaces is given by C. Granados and A. Dhital [8]. Triple sequences in
neutrosophic normed spaces have been included in our study’s advanced concept of
statistical convergence. We not only establish the characteristics and qualities of this
expanded idea, but we also offer a thorough organizational framework for the study.
Some authors [17, 15] recently examined the notions of different kinds of sequence
spaces in intuitionistic and neutrosophic fuzzy normed spaces and established some
key results that are useful in further study of the current findings in this work.

The following outlines the structure of the article: We begin with an overview of
well-known concepts and terminologies that are essential for the development of this
study. In Section 2, these concepts will serve as the foundation for our further analysis.
The notion of statistical convergence and the completeness of triple sequences in
neutrosophic normed spaces will be defined and thoroughly examined, aiming to gain
a deeper understanding of their behavior in the context of neutrosophic normed spaces
(NNS), as covered in Section 3. Finally, in Section 4, we present our conclusions.

2. Definitions and Preliminaries

The idea of statistical convergence was first put up by Fast and Steinhaus [5] on
their behalf, and it has subsequently been thoroughly explored by several researchers.
Assuming that set S is a subset of N, the following definition applies to the asymptotic
density of the set, represented by :

d(S) = limk
1
k |{r ≤ k : r ∈ S}|,

where the number of elements in the given set is indicated by the vertical bars. The
sequence y = (yr) is said to be statistically convergent to the number L1 if the set
A = {r ≤ k : |yr − L1| > ε1} has asymptotic density 0 for each ε1 > 0. In light of
this notion, Mursaleen and Edely [14] developed the theory of statistical convergence
of double sequences. Moricz [13] on his own define Tauberian theorems for cesaro
summable double sequence. Sahiner et al.[20] studied the statistical convergence for
triple sequence. Let R ⊂ N× N× N be a three-dimensional set of positive integers.
Let us consider the set R(m,n, r) = {(i, j, k) ∈ R : i ≤ m, j ≤ n, k ≤ r}.

The triple natural density of a given set is defined by Sahiner et al.[20] as,

δ3(R) = limm,n,r→∞
|R(m,n,r)|

mnr ( here limit taken in the Pringsheim’s sense),

where the number of elements in the given set is indicated by the vertical bars. Also,
the statistical convergence of the triple sequence is as follows:
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A real triple sequence y = (ynkl) is said to be statistically convergent to the number
L1 if for each ε1 > 0

δ3({(n, k, l) ∈ N× N× N : |ynkl − L1| ≥ ε1}) = 0.

In this case, the notation S3 − lim ynkl = L1 is used to denote the statistical conver-
gence of the triple sequence y = (ynkl) to the number L1.

On a different note, the concept of t-norm was initially introduced by Menger[12].
Menger suggested an alternate strategy that involved using probability distributions
rather than numerical distances to determine the distance between two items in space.
This concept utilizes t-norms (triangular norms) to generalize the probability distri-
bution while considering the conditions of a metric space and the triangle inequality.
t-norms and t-conorms play a crucial role in fuzzy operations, such as intersections and
unions. Additionally, t-conorms, which are the dual operations of t-norms, are also
significant in this context. Both t-norms(triangular norms) and t-conorms (triangular
conorms) contribute significantly to fuzzy operations and find practical applications
in various fields.

Definition 2.1. ([17]) Define a binary operation as, ∗ : [0, 1]2 → [0, 1] if meets the
requirements listed below, then it is considered to be a continuous t-norm,
(i) x1 ∗ 1 = x1, ∀ x1 ∈ [0, 1],

(ii) x1 ∗ x2 ≤ x3 ∗ x4 whenever x1 ≤ x3 and x2 ≤ x4 for each x1, x2, x3, x4 ∈ [0, 1],
(iii) ∗ is associative and commutative,
(iv) ∗ is continuous.

Definition 2.2. ([17] ) Define a binary operation as, � : [0, 1]2 → [0, 1] if meets the
requirements listed below, then it is considered to be a continuous t-conorm,
(i) x1 � 0 = x1, ∀ x1 ∈ [0, 1],

(ii) x1 � x2 ≤ x3 � x4 whenever x1 ≤ x3 and x2 ≤ x4 for each x1, x2, x3, x4 ∈ [0, 1],
(iii) � is associative and commutative,
(iv) � is continuous.

Remark 2.3. ([11]) If 0 < νj < 1, j = 1 to 7, ∗ and � are continuous- t-norm
continuous- t-conorm respectively. Then,
(i) If we take 0 ≤ ν1, ν2 < 1 for ν1 > ν2 then there exists 0 ≤ ν3, ν4 < 1 such that

ν1 ∗ ν3 ≥ ν2, ν1 ≥ ν4 � ν2 .
(ii) If we take 0 ≤ ν5 < 1 then there exists 0 ≤ ν6, ν7 < 1 such that ν6 ∗ ν6 ≥ ν5,

ν7 � ν7 ≤ ν5.

Definition 2.4. ([11]) Let E be any arbitrary set, and let

M = {< x1,Ω(x1),Φ(x1),Ψ(x1) >: x1 ∈ E},

be a neutrosophic set (NS) such thatM : E×E×R+ → [0, 1]. The continuous t-norm
and continuous t-conorm can be illustrated using ∗ and �, respectively. The four-
tuple (E,M, ∗,�) is referred to as neutrosophic metric space (NMS) if the following
conditions are satisfied:
(1) 0 ≤ Ω(x1, x2, κ1) ≤ 1, 0 ≤ Φ(x1, x2, κ1) ≤ 1, 0 ≤ Ψ(x1, x2, κ1) ≤ 1 ∀ κ1 ∈ R+,
(2) Ω(x1, x2, κ1) + Φ(x1, x2, κ1) + Ψ(x1, x2, κ1) ≤ 3 for κ1 ∈ R+,
(3) Ω(x1, x2, κ1) = 1, for κ1 > 0,
(4) Ω(x1, x2, κ1) = Ω(x2, x1, κ1), for κ1 > 0 iff x1 = x2,
(5) Ω(x1, x2, κ1) ∗ Ω(x2, x3, κ2) ≤ Ω(x1, x3, κ1 + κ2), ∀ κ1, κ2 > 0,
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(6) Ω(x1, x2, .) : [0,∞)→ [0, 1] is continuous,
(7) limκ1→∞Ω(x1, x2, κ1) = 1, ∀ κ1 > 0 ,
(8) Φ(x1, x2, κ1) = 0, for κ1 > 0, iff x1 = x2,
(9) Φ(x1, x2, κ1) = Φ(x2, x1, κ1), for κ1 > 0,

(10) Φ(x1, x2, κ1) � Φ(x2, x3, κ2) ≥ Φ(x1, x3, κ1 + κ2), ∀ κ1, κ2 > 0,
(11) Φ(x1, x2, .) : [0,∞)→ [0, 1] is continuous,
(12) limκ1→∞Φ(x1, x2, κ1) = 0, ∀ κ1 > 0 ,
(13) Ψ(x1, x2, κ1) = 0, for κ1 > 0 iff x1 = x2,
(14) Ψ(x1, x2, κ1) = Ψ(x2, x1, κ1) for κ1 > 0,
(15) Ψ(x1, x2, κ1) � Ψ(x2, x3, κ2) ≥ Ψ(x1, x3, κ1 + κ2), ∀ κ1, κ2 > 0,
(16) Ψ(x1, x2, .) : [0,∞)→ [0, 1] is continuous,
(17) limκ1→∞Ψ(x1, x2, κ1) = 0, ∀ κ1 > 0 ,
(18) if κ1 ≤ 0, then Ω(x1, x2, κ1) = 0, Φ(x1, x2, κ1) = 1, Ψ(x1, x2, κ1) = 1.
∀ x1, x2, x3 ∈ E. Then, M = (Ω,Φ,Ψ) is called Neutrosophic metric (NM) on E.

Both the concept of Neutrosophic normed space (NNS) and statistical convergence
in NNS was defined by [11].

Definition 2.5. ([11]) Let E be the vector space,M = {< x1,Λ(x1),Γ(x1),Π(x1) >:
x1 ∈ E} be an normed space such that M : E × R+ → [0, 1]. Let the continuous
t-norm and continuous t-conorm be represented by ∗ and �, respectively. The four-
tuple V = (E,M, ∗,�) is referred to as NNS for every x1, x2 ∈ E, κ1, κ2 > 0 and for
each τ 6= 0 if the following conditions are satisfied:
(1) 0 ≤ Λ(x1, κ1) ≤ 1, 0 ≤ Γ(x1, κ1) ≤ 1, 0 ≤ Π(x, κ1) ≤ 1 ∀ κ1 ∈ R+,
(2) Λ(x1, κ1) + Γ(x1, κ1) + Π(x1, κ1) ≤ 3 for κ1 ∈ R+,
(3) Λ(x1, κ1) = 1, for κ1 > 0 iff x1 = 0,
(4) Λ(τx1, κ1) = Λ(x1,

κ1

|τ | ),

(5) Λ(x1, κ1) ∗ Λ(x2, κ2) ≤ Λ(x1 + x2, κ1 + κ2),
(6) Λ(x1, .) is a continuous non-decreasing function,
(7) limκ1→∞ Λ(x1, κ1) = 1,
(8) Γ(x1, κ1) = 0, or κ1 > 0 iff x1 = 0,
(9) Γ(τx1, κ1) = Γ(x1,

κ1

|τ | ),

(10) Γ(x1, κ1) � Γ(x2, κ2) ≥ Γ(x1 + x2, κ1 + κ2),
(11) Γ(x1, .) is a continuous, non-increasing function,
(12) limκ1→∞ Γ(x1, κ1) = 0,
(13) Π(x1, κ1) = 0, for κ1 > 0 iff x1 = 0,
(14) Π(τx1, κ1) = Π(x1,

κ1

|τ | ),

(15) Π(x1, κ1) � Π(x2, κ2) ≥ Π(x1 + x2, κ1 + κ2),
(16) Π(x1, .) is a continuous, non-increasing function,
(17) limκ1→∞Π(x1, κ1) = 0,
(18) If κ1 ≤ 0 then Λ(x1, κ1) = 0, Γ(x1, κ1) = 1, Π(x1, κ1) = 1.

Then the neutrosophic norm (NN) is defined as M = (Λ,Γ,Π).

Example 2.1. ([11]) Let us Suppose (E, ||.||) is an NS. Assign the operation ∗ and
� as t-norm x1 ∗ x2 = x1x2, t-conorm x1 � x2 = x1 + x2 − x1x2 for κ1 > ||x1||.

Λ(x1, κ1) =
κ1

κ1 + ||x1||
, Γ(x1, κ1) =

||x1||
κ1 + ||x1||

, Π(x1, κ1) =
||x1||
κ1

,



STATISTICAL CONVERGENCE IN NEUTROSOPHIC NORMED SPACES 307

∀ x1, x2 ∈ E and κ1 > 0. If we consider κ1 ≤ ||x1||, then Λ(x1, κ1) = 0, Γ(x1, κ1) = 1
and Π(x1, κ1) = 1. Then, (E,M, ∗,�) is NNS such that M : E× R+ → [0, 1].

Definition 2.6. ([11]) Let V be a NNS and (yn) is a sequence in V such that 0 <
ε1 < 1 and κ1 > 0. Then, (yn) converges to L1 iff there exists n1 ∈ N such that
Λ(yn − L1, κ1) > 1 − ε1, Γ(yn − L1, κ1) < ε1 and Π(yn − L1, κ1) < ε1. That is
limn→∞ Λ(yn−L1, κ1) = 1, limn→∞ Γ(yn−L1, κ1) = 0, and limn→∞Π(yn−L1, κ1) =
0 as κ1 > 0. In this case, the sequence (yn) is said to be convergent sequence in V .
The convergence in NNS is denoted by M− lim yn = L1.

Definition 2.7. ([11]) Let V be a NNS and (yn) represent a sequence in V such that
0 < ε1 < 1 and κ1 > 0. Then, (yn) is Cauchy in a NNS V if there exists n1 ∈ N
such that Λ(yn − ym, κ1) > 1 − ε1, Γ(yn − ym, κ1) < ε1 and Π(yn − ym, κ1) < ε1 for
n,m ≥ n1.

Definition 2.8. ([11]) Let V be NNS. For κ1 > 0, x1 ∈ F and 0 < ε1 < 1,

O(x1, ε1, κ1) ={x2 ∈ E : Λ(x1 − x2, κ1) > 1− ε1,
Γ(x1 − x2, κ1) < ε1,Π(x1 − x2, κ1) < ε1}

is known as an open ball (OB) with centre x1 and radius ε1.

Definition 2.9. ([11]) In NNS V , the set A ⊂ E is known as neutrosophic-bounded
(NB) if there exists κ1 > 0, and ε1 ∈ (0, 1) such that Λ(x1, κ1) > 1−ε1, Γ(x1, κ1) < ε1
and Π(x1, κ1) < ε1 ∀ x1 ∈ A.

3. Main Results

In this section, we define and study the notion of statistical triple convergence and
completeness in neutrosophic normed space.

Definition 3.1. Let V be a NNS and (yijk) be a triple sequence in V such that
0 < ε1 < 1 and κ1 > 0. Then, (yijk) converges to L1 iff there exists n1 ∈ N such
that Λ(yijk −L1, κ1) > 1− ε1, Γ(yijk −L1, κ1) < ε1 and Π(yijk −L1, κ1) < ε1. That
is limn→∞ Λ(yijk − L1, κ1) = 1, limn→∞ Γ(yijk − L1, κ1) = 0 and limn→∞Π(yijk −
L1, κ1) = 0 as κ1 > 0. In this case, the triple sequence (yijk) is regarded as a
convergent sequence in the NNS space V . M3 − lim yijk = L1 indicates the triple
convergence in NNS.

Theorem 3.2. Let V be a NNS and (yijk) be the triple sequence in V . Consequently,
the following statements are true:
(i) If (yijk)) in V is convergent then the limit point is unique.
(ii) In V , if limi,j,k→∞ yijk = L1 and limi,j,k→∞ zijk = L2, then limi,j,k→∞(yijk +

zijk) = L1 + L2.
(iii) If limi,j,k→∞ yijk = L1 and a 6= 0, then limi,j,k→∞ ayijk = aL1.

Proof. Since the proof of this theorem is straightforward, we have chosen to omit
it. �

Definition 3.3. Let V be a NNS and (yijk) represents a triple sequence in V such
that 0 < ε1 < 1 and κ1 > 0. Then, the triple sequence (yijk) is Cauchy in a NNS V
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if there is a n1 ∈ N such that Λ(yijk − zpqr, κ1) > 1− ε1, Λ(yijk − zpqr, κ1) < ε1 and
Π(yijk−zpqr, κ1) < ε1 for i, j, k, p, q, r ≥ n1. A NNS V is said to be complete iff every
triple Cauchy sequence (yijk) converges to L1 in NNS V .

Example 3.1. Let Λ, Γ and Π be the values from Example 2.1; in this case, V is a
NNS. Further,

lim
i,j,k,p,q,r→∞

κ1

κ1 + ||yijk − ypqr||
= 1, lim

i,j,k,p,q,r→∞

||yijk − ypqr||
κ1 + ||yijk − ypqr||

= 0 and

lim
i,j,k,p,q,r→∞

||yijk − ypqr||
κ1

= 0,

that is

lim
i,j,k,p,q,r→∞

Λ(yijk − ypqr) = 1, lim
i,j,k,p,q,r→∞

Γ(yijk − ypqr) = 0 and

lim
i,j,k,p,q,r→∞

Π(yijk − ypqr) = 0.

Therefore, we can say that the triple sequence (yijk) is a triple Cauchy sequence in
NNS V .

Remark 3.4. Every triple convergent sequence in NNS V is a triple Cauchy sequence.
However, converse is not true.

Theorem 3.5. Assume that V is a NNS and that (yijk) is a triple sequence in the
NNS V . Then, the following statements are true:
(i) If we choose the continuous t-norm x1 ∗ x2 = min{x1, x2} and the continuous

t-conorm x1 � x2 = max{x1, x2} for x1, x2 ∈ [0, 1], then every triple Cauchy
sequence is bounded in NNS V .

(ii) Let (yijk) and (zpqr) be triple Cauchy sequences, and (aijk) be scalars in NNS
V . Then, the triple sequences (yijk + zpqr) and (aijkyijk) are triple Cauchy in
NNS V .

(iii) If every triple Cauchy sequence in NNS V has a triple convergent subsequence,
then V is a complete NNS.

Proof. As we can easily prove Λ,Γ, and Π, Cauchy triple sequence in V and com-
pleteness, it is followed by the definitions of NNS. �

Definition 3.6. Let V be a NNS. A triple sequence (yijk) is said to be statistical
convergence with respect to the neutrosophic norm (TSC-NN), if there exists L1 ∈ E
such that the set,

Rε3 = {i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1, κ1) ≤ 1− ε1 or

Γ(yijk − L1, κ1) ≥ ε1, Π(yijk − L1, κ1) ≥ ε1}

or, equivalently,

Rε3 = {i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1, κ1) > 1− ε1 and

Γ(yijk − L1, κ1) < ε1,Π(yijk − L1, κ1) < ε1},
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has a triple natural density (TND) zero, for every ε1 > 0 and κ1 > 0. That is
d(Rε3) = 0 or equivalently,

lim
n,m,r

1

nmr
|{i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1, κ1) ≤ 1− ε1 or

Γ(yijk − L1, κ1) ≥ ε1,Π(yijk − L1, κ1) ≥ ε1}| = 0.

Therefore, we can write SM3 − lim yijk = L1 or yijk → L1(SM3). The set of TSC-NN
will be denoted by SM3

. If L1 = 0, then we can write S0
M3

.

Lemma 3.7. Let V be a NNS. Then the following statements are equivalent, ∀ ε1 > 0
and κ1 > 0,
(i) SM3

− lim yijk = L1,
(ii) limn,m,r

1
nmr |{i ≤ m, j ≤ n, k ≤ r : Λ(yijk−L1, κ1) ≤ 1−ε1}| = limn,m,r

1
nmr |{i ≤

m, j ≤ n, k ≤ r : Γ(yijk − L1, κ1) ≥ ε1}| = limn,m,r
1

nmr |{i ≤ m, j ≤ n, k ≤ r :
Π(yijk − L1, κ1) ≥ ε1}| = 0,

(iii) limn,m,r
1

nmr |{i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1, κ1) > 1 − ε1 and Γ(yijk −
L1, κ1) < ε1,Π(yijk − L1, κ1) < ε1}| = 1,

(iv) limn,m,r
1

nmr |{i ≤ m, j ≤ n, k ≤ r : Λ(yijk−L1, κ1) > 1−ε1}| = limn,m,r
1

nmr |{i ≤
m, j ≤ n, k ≤ r : Γ(yijk − L1, κ1) < ε1}| = limn,m,r

1
nmr |{i ≤ m, j ≤ n, k ≤ r :

Π(yijk − L1, κ1) < ε1}| = 0,
(v) SM3 − Λ(yijk − L1, κ1) = 1 and SM3 − Γ(yijk − L1, κ1) = 0, SM3 − Π(yijk −
L1, κ1) = 0.

Theorem 3.8. Let V be a NNS. If (yijk) is TSC-NN, then SM3
− lim yijk = L1 is

unique.

Proof. Let us suppose that SM3
− lim yijk = L1 and SM3

− lim yijk = L2 for L1 6= L2.
Then take ε1 > 0 and for a given ξ > 0, (1 − ε1) ∗ (1 − ε1) > 1 − ξ and ε1 � ε1 < ξ.
For any κ1 > 0. The following sets should be written as:

RΛ1(ε1, κ1) := {i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1,
κ1

2
) ≤ 1− ε1},

RΛ2(ε1, κ1) := {i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L2,
κ1

2
) ≤ 1− ε1},

RΓ1(ε1, κ1) := {i ≤ m, j ≤ n, k ≤ r : Γ(yijk − L1,
κ1

2
) ≥ ε1},

RΓ2
(ε1, κ1) := {i ≤ m, j ≤ n, k ≤ r : Γ(yijk − L2,

κ1

2
) ≥ ε1},

RΠ1
(ε1, κ1) := {i ≤ m, j ≤ n, k ≤ r : Π(yijk − L1,

κ1

2
) ≥ ε1},

RΠ2
(ε1, κ1) := {i ≤ m, j ≤ n, k ≤ r : Π(yijk − L2,

κ1

2
) ≥ ε1}.

Since that SM3 − lim yijk = L1. Then by Lemma 3.7, for all κ1 > 0,

d(RΛ1
(ε1, κ1)) = d(RΓ1

(ε1, κ1)) = d(RΠ1
(ε1, κ1)) = 0.

Moreover, since we have SM3
− lim yijk = L2. Then by the Lemma 3.7, for κ1 > 0,

d(RΛ2
(ε1, κ1)) = d(RΓ2

(ε1, κ1)) = d(RΠ2
(ε1, κ1)) = 0.
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Now, let

RM3
(ξ, κ1) := {RΛ1

(ε1, κ1) ∪ {RΛ2
(ε1, κ1)} ∩ {RΓ1

(ε1, κ1)

∪{RΓ2
(ε1, κ1)} ∩ {RΠ1

(ε1, κ1) ∪ {RΠ2
(ε1, κ1)}.

Then, we can see that d(RM3
(ξ, κ1)) = 0 which implies d(N× N× N−RM3

(ε1, κ1)) =
1. Then there are the following possibilities when we take (i, j, k) ∈ (N× N× N −
RM3

(ε1, κ1)):
(i) (i, j, k) ∈ (N× N× N− (RΓ1(ε1, κ1) ∪RΓ2(ε1, κ1)),

(ii) (i, j, k) ∈ (N× N× N− (RΛ1(ε1, κ1) ∪RΛ2(ε1, κ1)),
(iii) (i, j, k) ∈ (N× N× N− (RΠ1

(ε1, κ1) ∪RΠ2
(ε1, κ1)),

First of all, consider (i). Then, we have

Γ(L1 − L2, κ1) ≥ Γ(yijk − L1,
κ1

2
) ∗ Γ(yijk − L2,

κ1

2
) > (1− ε1) ∗ (1− ε1).

Since we have (1− ε1) ∗ (1− ε1) > (1− ξ),

Γ(L1 − L2, κ1) > (1− ξ). (1)

So by (1), For all κ1 > 0, we have that Γ(L1 − L2, κ1) = 1, where ξ > 0 is arbitrary.
So we obtain L1 = L2. For case (ii) if we select (i, j, k) ∈ (N× N× N− (RΛ1

(ε1, κ1)∪
RΛ2(ε1, κ1)), then we can write,

Λ(L1 − L2, κ1) ≤ Λ(yijk − L1,
κ1

2
) � Λ(yijk − L1,

κ1

2
) < ε1 � ε1.

Now using ε1 � ε1 < ξ, We observe that Λ(L1 − L2, κ1) < ξ. ∀ κ1 > 0, we get
Λ(L1 − L2, κ1) = 0, where ξ > 0 is arbitrary. Therefore L1 = L2.
Lastly, in the same manner, for case (iii), if we choose (i, j, k) ∈ (N× N× N −

(RΠ1
(ε1, κ1) ∪RΠ2

(ε1, κ1)), then we can write,

Π(L1 − L2, κ1) ≤ Π(yijk − y1,
κ1

2
) � Π(yijk − y2,

κ1

2
) < ε1 � ε1.

Now using ε1 � ε1 < ξ, we can observe that Π(L1 − L2, κ1) < ξ. ∀ κ1 > 0, we get
Π(L1 − L2, κ1) = 0, where ξ > 0 is arbitrary. Therefore L1 = L2.
Hence the proof is over. �

Theorem 3.9. If M3 − lim yijk = L1 for a NNS V , then SM3 − lim yijk = L1.

Proof. Let M3 − lim yijk = L1. Then , ∀ ε1 > 0 and κ1 > 0, there exists a number
n1 ∈ N such that Λ(yijk−L1, κ1) > 1−ε1 and Γ(yijk−L1, κ1) < ε1,Π(yijk−L1, κ1) <
ε1, ∀ i, j, k ≥ n1 .
Hence the set,

{i ≤ m, j ≤ n, k ≤ r :Λ(yijk − L1, κ1) > 1− ε1 and Γ(yijk − L1, κ1) < ε1,

Π(yijk − y, κ1) < ε1},

has a finite number of terms. This means that every finite subset of N× N× N has a
triple natural density zero, indicating that,

limn,m,r
1

nmr |{i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1, κ1) ≤ 1− ε1 or Γ(yijk − L1, κ1) ≥
ε1, Π(yijk − L1, κ1) ≥ ε1}| = 0.

Hence the proof is over. �
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Theorem 3.10. Let V be a NNS. SM3
− lim yijk = L1 iff there exists an increasing

index triple sequence P = {p1, p2, ...pn, p1, p2...pm, p1, p2..., pr} ⊂ N× N× N while
d(P) = 1, M3 − lim ynmr = L1.

Proof. Let us suppose that SΓM3
− lim yijk = L1. For any κ1 > 0 and ξ = 1, 2, 3, ...,

QM3
(ξ, κ1) = {i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1, κ1) > 1− 1

ξ
and

Γ(yijk − L1, κ1) <
1

ξ
,Π(yijk − L1, κ1) <

1

ξ
},

and

RM3(ξ, κ1) = {i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1, κ1) ≤ 1− 1

ξ
or

Γ(yijk − L1, κ1) ≥ 1

ξ
,Π(yijk − L1, κ1) ≥ 1

ξ
}.

Then, d(RM3
(ξ, κ1)) = 0, since SM3

− lim yijk = L1. Apart from, for κ1 > 0 and
ξ = 1, 2, 3, ..., QM3

(ξ + 1, κ1) ⊂ QM3
(ξ, κ1)

d(QM3
(ξ, κ1)) = 1. (2)

We will now show that for (i, j, k) ∈ QM3(ξ, κ1), M3 − lim ynmr = L1. Let us take
M3 − lim ynmr 6= L1, for some (i, j, k) ∈ QM3

(ξ, κ1). Then, there is σ > 0 and a
integer n1 such that Λ(yijk−L1, κ1) ≤ 1−σ or Γ(yijk−L1, κ1) ≥ σ,Π(yijk−L1, κ1) ≥
σ, ∀ i, j, k ≥ n1. Hence,

lim
n,m,r

1

nmr
|{i ≤ m, j ≤ n, k ≤ r :Λ(yijk − L1, κ1) > 1− σ and Γ(yijk − L1, κ1) < σ

,Π(yijk − L1, κ1) < σ}| = 0.

Since σ > 1
ξ , we have that d(QM3

(ξ, κ1)) = 0, we get a contradiction from (2). There-

fore, M3 − lim yijk = L1.

Let us now suppose that there is a subset P = {p1, p2, ...pn, p1, p2...pm, p1, p2..., pr} ⊂
N× N× N such that d(P) = 1 and M3 − lim yijk = L1, this implies that there exist
n1 ∈ N such that Λ(yijk−L1, κ1) > 1−ξ and Γ(yijk−L1, κ1) < ξ, Π(yijk−L1, κ1) < ξ
, for every ξ > 0 and κ1 > 0. In this case,

RM3
(ξ, κ1) := {i ≤ m, j ≤ n, k ≤ r : Λ(yijk −L1, κ1) ≤ 1− ξ or Γ(yijk −L1, κ1) ≥

ξ,Π(yijk−L1, κ1) ≥ ξ} ⊆ N× N× N−{pn+1, pn+2, ...; pm+1, pm+, ...; pr+1, pr+1, pr+2...}.
Therefore, RM3(ξ, κ1) ≤ 1− 1 = 0. Hence M3 − lim yijk = L1. �

4. Statistical completeness of triple sequence in NNS

Definition 4.1. If a triple sequence yijk is statistically Cauchy with respect to
NN(TSCa-NN) in NNS V , if there exits N = N(ε1) , M = M(ε1) and R = R(ε1), for
every ε1 > 0 and κ1 > 0 such that

RCε1 := {i ≤ m, j ≤ n, k ≤ r : Λ(yijk − yNMR, κ1) ≤ 1− ε1 or
Γ(yijk − yNMR, κ1) ≥ ε1,Π(yijk − yNMR, κ1) ≥ ε1},

has triple natural density zero. That is d(RCε1) = 0.
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Theorem 4.2. If triple sequence (yijk) is TSC-NN in NNS V . Then it becomes
TSCa-NN.

Proof. Let (yijk) be TSC-NN. We have that (1− ε1)∗ (1− ε1) > 1− ξ and ε1 � ε1 < ξ,
for a given ε1 > 0 , take ξ > 0 then, we have

d(A(ε1, ξ)) = d({i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1,
κ1

2
) ≤ 1− ε1 or

Γ(yijk − L1,
κ1

2
) ≥ ε1 ,Π(yijk − L1,

κ1

2
) ≥ ε1}) = 0

or

d(Ac(ε1, ξ)) = d({i ≤ m, j ≤ n, k ≤ r : Λ(yijk − L1,
κ1

2
) > 1− ε1 and

Γ(yijk − L1,
κ1

2
) < ε1, Π(yijk − L1,

κ1

2
) < ε1}) = 1,

for κ1 > 0. Let us suppose s, t, u ∈ Ac(ε1, ξ) . Then,

Λ(ystu − L1, κ1) > 1− ε1 and Γ(ystu − L1, κ1) < ε1,Π(ystu − L1, κ1) < ε1.

Also, let

B(ε1, ξ) = {i ≤ m, j ≤ n, k ≤ r : Λ(yijk − ystu, κ1) ≤ 1− ξ or
Γ(yijk − ystu, κ1) ≥ ξ,Π(yijk − ystu, κ1) ≥ ξ}.

Now we claim that B(ε1, ξ) ⊂ Ac(ε1, ξ). Let a, b, c ∈ B(ε1, ξ)− A(ε1, ξ). Then

Λ(yabc − ystu, κ1) ≤ 1− ξ and Λ(yabc − L1,
κ1

2
) > 1− ξ,

in particular Λ(ystu − L1, κ1) > 1− ε1. Then

1− ξ ≥ Λ(yabc − ystu, κ1)

≥ Λ(yabc − L1,
κ1

2
) ∗ Λ(ystu − L1,

κ1

2
)

> (1− ε1) ∗ (1− ε1)

> 1− ξ,
which is not possible. In addition,

Γ(yabc − ystu, κ1) ≥ ξ and Γ(yabc − L1, κ1) < ξ,

in particular Γ(ystu − L1,
κ1

2 ) < ε1. Then,

ξ ≤ Γ(yabc − ystu, κ1) ≤ Γ(yabc − L1,
κ1

2
) � Γ(ystu − L1,

κ1

2
) < ε1 � ε1 < ξ,

which is not possible. Similarly

Π(yabc − ystu, κ1) ≥ ξ and Π(yabc − L1, κ1) < ξ,

in particular Π(ystu − L1,
κ1

2 ) < ε1. Then,

ξ ≤ Π(yabc − ystu, κ1) ≤ Π(yabc − L1,
κ1

2
) � Π(ystu − L1,

κ1

2
) < ε1 � ε1 < ξ,

which is not possible. In this case B(ε1, ξ) ⊂ A(ε1, ξ). Then by equation (3) d(A(ε1, ξ)) =
0, so the triple sequaence (yijk) is TSCa-NN. �

Definition 4.3. Let V be a NNS. Then, V is called triple statistically complete
(TSC-NN) if every TSCa-NN is TSC-NN.
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Theorem 4.4. Every NNS V is (TSC-NN)-complete.

Proof. Let us suppose that (yijk) be TSCa-NN but not TSC-NN. Now take ξ > 0.
We have that (1 − ε1) ∗ (1 − ε1) > (1 − ξ) and ε1 � ε1 < ξ, for a given ε1 > 0 and
κ1 > 0, since (yijk) is not TSC-NN,

Λ(yijk − yNMR, κ1) ≥ Λ(yijk − L1,
κ1

2
) ∗ Λ(yNMR − L1,

κ1

2
)

> (1− ε1) ∗ (1− ε1) > (1− ξ),

Γ(yijk − yNMR, κ1) ≤ Γ(yijk − L1,
κ1

2
) � Γ(yNMR − L1,

κ1

2
) < ε1 � ε1 < ξ,

Π(yijk − yNMR, κ1) ≤ Π(yijk − L1,
κ1

2
) � Π(yNMR − L1,

κ1

2
) < ε1 � ε1 < ξ,

For

T(ε1, κ1) = {i ≤ N, j ≤M,k ≤ R : Λyijk−yNMR
(ε1) ≤ 1− ξ},

d(Tc(ε1, κ1) = 0 and hence d(T(ε1, κ1) = 1, so we have a contradiction, since (yijk)
is TSCa-NN. Therefore, (yijk) must be TSC-NN. As a result, we get, every NNS is
(TSC-NN)-complete. �

Lemma 4.5. Let V be a NNS. Then, for any triple sequence (yijk) ∈ E,the following
conditions are equivalent:
(i) (yijk) is TSC-NN.

(ii) (yijk) is TSCa-NN.
(iii) NNS V is(TSC-NN)-complete.
(iv) There exists an increasing triple sequence P = (pnmr) of natural numbers such

that d(P) = 1 and the triple subsequence ypnmr is a TSCa-NN.

Proof. The proof is followed directly by Theorem 3.10, 4.2 and 4.4. �

5. Conclusion

The objective of the work is to generalize the statistical convergence of the triple
sequence in neutrosophic norm linear space. Along with the established structural
unique characteristics of NNSs, examples are offered. Additionally, statistical Cauchy
triple sequences and statistically triple completeness for the neutrosophic norm were
defined.

The work’s main goal is to generalize the triple sequences’ statistical convergence
in neutrosophic norm linear space. Examples are provided in addition to the well-
established structurally distinctive properties of NNSs. Also defined were statistically
triple completeness and Cauchy triple sequence for the neutrosophic norm.
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