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Paired Hayman Conjecture of Some Delay-Differential
Polynomials That Share a Small Function
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Abstract. In this paper, we investigate the uniqueness problems of P (f)L(g) and P (g)L(f)
when they share a nonzero small function α(z) with finite weights. Here L(h) may take the

derivatives h(k)(z) or the shift h(z+c) or the difference h(z+c)−h(z) or the delay-differential

h(k)(z+c), k ≥ 1 and c is a nonzero constant and P (z) is a polynomial of degree n. Also, f(z)
and g(z) are transcendental meromorphic (or entire) functions and α(z) is a small function

with respect to both f(z) and g(z). The results of the paper improve and supplement the

recent results of Sahoo and Pal [17].
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1. Introduction, Definitions and Results

Let C denote the complex plane. By a meromorphic function we mean a meromorphic
function in the complex plane C. We adopt the standard notations and fundamental
results of Nevanlinna theory as explained in [9, 12, 18]. In addition, S(r, f) =
o{T (r, f)} as r →∞ outside a possible exceptional set of finite logarithmic measure.
We say that two meromorphic functions f(z) and g(z) share a small function a(z)
CM (counting multiplicities), if f(z)−a(z) and g(z)−a(z) admit the same zeros with
same multiplicities. If we do not consider the multiplicities, then we say that f(z)
and g(z) share the small function a(z) IM (ignoring multiplicities). The order ρ(f)
and hyper-order ρ2(f) of a meromorphic function f are defined as follows:

ρ(f) = lim sup
r→∞

log T (r, f)

log r
and ρ2(f) = lim sup

r→∞

log log T (r, f)

log r
.

In 2001, Lahiri [10, 11] has introduced the concept of weighted sharing of values
as follows:

Definition 1.1. Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}, we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z0 is an a-
point of f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity
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m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only if it is an a-point
of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

Definition 1.2. [10, 11] We denote by N(r, a; f | ≥ k) the counting function of those
a-points of f whose multiplicities are not less than k, where each a-point of f is
counted according to its multiplicity. N(r, a; f | ≥ k) is the counting function of those
a-points of f whose multiplicities are not less than k, where each a-point of f is
counted only once ignoring its multiplicity.

Definition 1.3. [10, 11] We denote by N2(r, a; f) the sum N(r, a; f)+N(r, a; f | ≥ 2).

In 1959, Hayman [8] proved the following result relating to the zero distribution of
a special type of complex differential polynomial.

Theorem A. If f(z) is a transcendental entire function and n ≥ 2 is a positive
integer, then fn(z)f ′(z)− a has infinitely many zeros, a is a nonzero constant.

In 1967, Clunie [5] proved that Theorem A is also true if n = 1. Analogous result
for meromorphic function is known as Hayman Conjecture which is as follows:
Hayman Conjecture. [8] If f(z) is a transcendental meromorphic function and n is
a positive integer, then fn(z)f ′(z)−a has infinitely many zeros, where a is a nonzero
constant.

It is to be noted that the above conjecture has been proved completely by many
researchers. Hayman himself proved the conjecture for n ≥ 3. Mues [16] proved the
conjecture for n = 2. For n = 1 it was proved in [3, 4, 19]. In 2007, Laine and Yang
[14] proved a result for the zero distribution of a complex difference polynomial. Their
result is as follows:

Theorem B. If f(z) is a transcendental entire function of finite order and n ≥ 2,
then fn(z)f(z + c)− a has infinitely many zeros, where a, c are nonzero constants.

In 2020, Laine and Latreuch [13] proved the following result related to delay-
differential form of Hayman Conjecture.

Theorem C. Let f(z) be a transcendental meromorphic (resp. entire) function with
ρ2(f) < 1 and a(z) be a nonzero small function with respect to f(z). If n ≥ k + 4
(resp. n ≥ 3), then fn(z)f (k)(z + c) − a(z) has infinitely many zeros, c is a nonzero
constant.

Henceforth we denote byM the class of transcendental meromorphic functions and
by M′ the class of transcendental meromorphic functions of hyper-order less than 1.
Similarly, we denote by E the class of transcendental entire functions and by E ′ the
class of entire functions of hyper-order less than 1.

Recently, Gao and Liu [6] have proved a result relating to paired Hayman Conjec-
ture for complex delay-differential polynomials. The result is as follows:

Theorem D. If one of the following conditions is satisfied:
(1) L(h) = h(k)(z), n ≥ k + 4 and h ∈M or n ≥ 3 and h ∈ E ;
(2) L(h) = h(z + c), n ≥ 4 and h ∈M′ or n ≥ 3 and h ∈ E ′;
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(3) L(h) = h(z + c)− h(z), n ≥ 5 and h ∈M′ or n ≥ 3 and h ∈ E ′;
(4) L(h) = h(k)(z + c), n ≥ k + 4 and h ∈M′ or n ≥ 3 and h ∈ E ′,

then atleast one of fn(z)L(g)− a(z) and gn(z)L(f)− a(z) has infinitely many zeros,
where a(z) is a nonzero small function with respect to both f(z) and g(z), k ≥ 1 and
c is a nonzero constant.

Let us define a polynomial P (z) of degree n by

P (z) = anz
n + an−1z

n−1 + ...+ a1z + a0, (1.1)

where a0, a1, ..., an−1, an( 6= 0) are complex constants. Also, let m1 and m2 be the
number of simple zeros and multiple zeros of P (z) respectively.

Now the following question arises.

Question 1.1. What will happen if fn is replaced by a polynomial P (f) defined as
in (1.1) in Theorem D?

Recently, Sahoo and Pal [17] proved the following result which answer the above
question in a positive sense. Their result is as follows:

Theorem E. If one of the following conditions is satisfied:
(i) L(h) = h(k)(z) and n ≥ m1 + m2 + k + 3 and h ∈ M or n ≥ m1 + m2 + 2 and
h ∈ E ;
(ii) L(h) = h(z+c) and n ≥ m1 +m2 +3 and h ∈M′ or n ≥ m1 +m2 +2 and h ∈ E ′;
(iii) L(h) = h(z + c)− h(z) and n ≥ m1 +m2 + 4 and h ∈ M′ or n ≥ m1 +m2 + 2
and h ∈ E ′;
(iv) L(h) = h(k)(z + c) and n ≥ m1 + m2 + k + 3 and h ∈ M′ or n ≥ m1 + m2 + 2
and h ∈ E ′,
then at least one of P (f)L(g)− α(z) and P (g)L(f)− α(z) has infinitely many zeros,
where α(z) is a nonzero small function with respect to both f(z) and g(z), k ≥ 1 and
c is a nonzero constant.

In the same paper, the authors proved the following theorems on uniqueness of
delay-differential polynomials.

Theorem F. Let f(z) and g(z) be two transcendental meromorphic functions. If
P (f)L(g) and P (g)L(f) share a nonzero small function α(z) CM and one of the
following conditions is satisfied:
(i) L(h) = h(k)(z), n ≥ 2m1 + 4m2 + 3k + 12 and f, g ∈M;
(ii) L(h) = h(z + c), n ≥ 2m1 + 4m2 + 10 and f, g ∈M′;
(iii) L(h) = h(z + c)− h(z), n ≥ 2m1 + 4m2 + 15 and f, g ∈M′;
(iv) L(h) = h(k)(z + c), n ≥ 2m1 + 4m2 + 3k + 12 and f, g ∈M′,
then either P (f)L(g) = P (g)L(f) or P (f)L(g)P (g)L(f) = α2(z).

Theorem G. Let f(z) and g(z) be two transcendental entire functions. If P (f)L(g)
and P (g)L(f) share a nonzero small function α(z) CM and one of the following
conditions is satisfied:
(i) L(h) = h(k)(z), n ≥ 2m1 + 4m2 + 4 and f, g ∈ E ;
(ii) L(h) = h(z + c), n ≥ 2m1 + 4m2 + 4 and f, g ∈ E ′;
(iii) L(h) = h(z + c)− h(z), n ≥ 2m1 + 4m2 + 4 and f, g ∈ E ′;
(iv) L(h) = h(k)(z + c), n ≥ 2m1 + 4m2 + 4 and f, g ∈ E ′,
then either P (f)L(g) = P (g)L(f) or P (f)L(g)P (g)L(f) = α2(z).
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Now it is natural to ask the following question.

Question 1.2. What will happen if we relax the nature of sharing of small function
in Theorems F and G?

Regarding above question we prove the following results:

Theorem 1.1. Let f(z) and g(z) be two nonconstant transcendental meromorphic
functions, n, k be two positive integers, and α(z) be a nonzero small function with
respect to both f(z) and g(z) and P be a polynomial of degree n defined as in (1.1).
If P (f)L(g) and P (g)L(f) share (α, l) (l ≥ 2, an integer) and one of
(1) L(h) = h(k)(z), n ≥ 3k + 2m1 + 4m2 + 12 and f, g ∈M;
(2) L(h) = h(z + c), n ≥ 2m1 + 4m2 + 10 and f, g ∈M′;
(3) L(h) = h(z + c)− h(z), n ≥ 2m1 + 4m2 + 15 and f, g ∈M′;
(4) L(h) = h(k)(z + c), n ≥ 3k + 2m1 + 4m2 + 12 and f, g ∈M′,

holds, then either P (f)L(g) = P (g)L(f) or P (f)L(g)P (g)L(f) = α2(z).

Remark 1.1. Theorem 1.1 improves Theorem F by relaxing the nature of sharing of
small function.

Theorem 1.2. Let f(z) and g(z) be two nonconstant transcendental meromorphic
functions, n, k be two positive integers, and α(z) be a nonzero small function with
respect to both f(z) and g(z) and P be a polynomial of degree n defined as in (1.1).
If P (f)L(g) and P (g)L(f) share (α, 1) and one of
(1) L(h) = h(k)(z), n > 7

2k + 5
2m1 + 9

2m2 + 25
2 and f, g ∈M;

(2) L(h) = h(z + c), n > 5
2m1 + 9

2m2 + 21
2 and f, g ∈M′;

(3) L(h) = h(z + c)− h(z), n > 5
2m1 + 9

2m2 + 33
2 and f, g ∈M′;

(4) L(h) = h(k)(z + c), n > 7
2k + 5

2m1 + 9
2m2 + 25

2 and f, g ∈M′,
holds, then either P (f)L(g) = P (g)L(f) or P (f)L(g)P (g)L(f) = α2(z).

Theorem 1.3. Let f(z) and g(z) be two nonconstant transcendental meromorphic
functions, n, k be two positive integers, and α(z) be a nonzero small function with
respect to both f(z) and g(z) and P be a polynomial of degree n defined as in (1.1).
If P (f)L(g) and P (g)L(f) share (α, 0) and one of
(1) L(h) = h(k)(z), n ≥ 6k + 5m1 + 7m2 + 21 and f, g ∈M;
(2) L(h) = h(z + c), n ≥ 5m1 + 7m2 + 19 and f, g ∈M′;
(3) L(h) = h(z + c)− h(z), n ≥ 5m1 + 7m2 + 30 and f, g ∈M′;
(4) L(h) = h(k)(z + c), n ≥ 6k + 5m1 + 7m2 + 21 and f, g ∈M′,

holds, then either P (f)L(g) = P (g)L(f) or P (f)L(g)P (g)L(f) = α2(z).

For transcendental entire functions f and g we obtain the following corollaries.

Corollary 1.1. Under the same hypothesis as in Theorem 1.1, the same conclusions
hold in each of the following cases:
(1) L(h) = h(k)(z), n ≥ 2m1 + 4m2 + 4 and f, g ∈ E ;
(2) L(h) = h(z + c), n ≥ 2m1 + 4m2 + 4 and f, g ∈ E ′;
(3) L(h) = h(z + c)− h(z), n ≥ 2m1 + 4m2 + 4 and f, g ∈ E ′;
(4) L(h) = h(k)(z + c), n ≥ 2m1 + 4m2 + 4 and f, g ∈ E ′.

Remark 1.2. Corollary 1.1 improves Theorem G by relaxing the nature of sharing
of small function.
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Corollary 1.2. Under the same hypothesis as in Theorem 1.2, the same conclusions
hold in each of the following cases:
(1) L(h) = h(k)(z), n > 5

2m1 + 9
2m2 + 7

2 and f, g ∈ E ;

(2) L(h) = h(z + c), n > 5
2m1 + 9

2m2 + 7
2 and f, g ∈ E ′;

(3) L(h) = h(z + c)− h(z), n > 5
2m1 + 9

2m2 + 7
2 and f, g ∈ E ′;

(4) L(h) = h(k)(z + c), n > 5
2m1 + 9

2m2 + 7
2 and f, g ∈ E ′.

Corollary 1.3. Under the same hypothesis as in Theorem 1.3, the same conclusions
hold in each of the following cases:
(1) L(h) = h(k)(z), n ≥ 5m1 + 7m2 + 7 and f, g ∈ E ;
(2) L(h) = h(z + c), n ≥ 5m1 + 7m2 + 7 and f, g ∈ E ′;
(3) L(h) = h(z + c)− h(z), n ≥ 5m1 + 7m2 + 7 and f, g ∈ E ′;
(4) L(h) = h(k)(z + c), n ≥ 5m1 + 7m2 + 7 and f, g ∈ E ′.

2. Lemmas

We consider

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
,

where F and G are nonconstant meromorphic functions defined in the complex plane
C.

Now we give the following lemmas which will be needed in the sequal.

Lemma 2.1. [18] Let f be a nonconstant meromorphic function and k be a positive
integer. Then

N

(
r,

1

f (k)(z)

)
≤ N

(
r,

1

f(z)

)
+ kN(r, f(z)) + S(r, f(z)). (2.1)

Lemma 2.2. [17]
(1) If f, g ∈M, then

nT (r, f)− (k + 1)T (r, g) ≤ T (r, P (f)g(k)) + S(r, g) ≤ nT (r, f) + (k + 1)T (r, g).

(2) If f, g ∈ E , then

nT (r, f)− T (r, g) ≤ T (r, P (f)g(k)) + S(r, g) ≤ nT (r, f) + T (r, g).

Lemma 2.3. [17] If f, g ∈M′ or E ′, then

nT (r, f)− T (r, g) ≤ T (r, P (f)g(z + c)) + S(r, g) ≤ nT (r, f) + T (r, g).

Lemma 2.4. [17]
(1) If f, g ∈M′ and g(z + c)− g(z) 6≡ 0, then

nT (r, f)− 2T (r, g) ≤ T (r, P (f)(g(z + c)− g(z))) + S(r, g) ≤ nT (r, f) + 2T (r, g).

(2) If f, g ∈ E ′ and g(z + c)− g(z) 6≡ 0, then

nT (r, f)− T (r, g) ≤ T (r, P (f)(g(z + c)− g(z))) + S(r, g) ≤ nT (r, f) + T (r, g).

Lemma 2.5. [17]
(1) If f, g ∈M′, then

nT (r, f)− (k+ 1)T (r, g) ≤ T (r, P (f)g(k)(z+ c)) +S(r, g) ≤ nT (r, f) + (k+ 1)T (r, g).
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(2) If f, g ∈ E ′, then

nT (r, f)− T (r, g) ≤ T (r, P (f)g(k)(z + c)) + S(r, g) ≤ nT (r, f) + T (r, g).

Lemma 2.6. [15] Suppose that T : [0,∞) → [0,∞) is a non-decreasing continuous
function with ρ2(T ) < 1 and c is a nonzero real number. If δ ∈ (0, 1− ρ2(T )), then

T (r + c) = T (r) + o

(
T (r)

rδ

)
.

Lemma 2.7. Let f be a transcendental meromorphic function with ρ2(f) < 1 and c
be a nonzero constant. Then the following inequalities hold:
(1) N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f);
(2) N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f);
(3) N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f);
(4) N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f).

Proof. The lemma can be proved easily by using Lemma 2.6 above. �

Lemma 2.8.

(1) T
(
r, 1
h(z+c)−h(z)

)
≤ 2T (r, h(z)) + S(r, h(z)), h ∈M′

and T
(
r, 1
h(z+c)−h(z)

)
≤ T (r, h(z)) + S(r, h(z)), h ∈ E ′.

(2) T
(
r, 1
h(k)(z+c)

)
≤ (k + 1)T (r, h(z)) + S(r, h(z)), h ∈M′

and T
(
r, 1
h(k)(z+c)

)
≤ T (r, h(z)) + S(r, h(z)), h ∈ E ′.

Proof. The results can easily be obtained by Lemma 8.3 of [7] and the first funda-
mental theorem of Nevanlinna. �

Lemma 2.9. Let f, g be two nonconstant meromorphic functions, and let α be a
nonzero small function with respect to both f and g. If f and g share (α, 2), then
one of the following holds:
(1) T (r, f)+T (r, g) ≤ 2{N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)}+S(r, f)+
S(r, g);
(2) f = g;
(3) fg = α2.

Proof. The proof is exactly similar to the proof of Lemma 2 [1]. �

Lemma 2.10. Let f, g be two nonconstant meromorphic functions, and let α be
a nonzero small function with respect to both f and g. If f and g share (α, 1) and
H 6≡ 0, then

T (r, f) + T (r, g) ≤ 2{N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g)}

+
1

2
{N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g)}

+S(r, f) + S(r, g). (2.2)

Proof. Let F = f
α and G = g

α . If f and g do not share any zero or pole with α,
then F and G share (1, 1). Now

N2(r,∞;F ) = N2(r,∞; f) +N2(r,∞;α).
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Also

T (r, f) = T (r, F.α) ≤ T (r, F ) + S(r, f),

T (r, g) = T (r,G.α) ≤ T (r,G) + S(r, g).

Then using Lemma 2.15 of [2] we get the desired result. �

Lemma 2.11. Let f, g be two nonconstant meromorphic functions, and let α be
a nonzero small function with respect to both f and g. If f and g share (α, 0) and
H 6≡ 0, then

T (r, f) + T (r, g) ≤ 2{N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g)}
+3{N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g)}
+S(r, f) + S(r, g). (2.3)

Proof. Let F = f
α and G = g

α . Then F and G share (1, 0). Also T (r, f) =
T (r, F.α) ≤ T (r, F ) + S(r, f) and T (r, g) = T (r,G.α) ≤ T (r,G) + S(r, g). Then using
Lemma 2.14 of [2] we get the result. �

3. Proof of the Theorems

Proof of Theorem 1.1. Let F (z) = P (f)L(g), G(z) = P (g)L(f). Then F and G
share (α, 2). Suppose that (1) of Lemma 2.9 holds. Then

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)}
+S(r, F ) + S(r,G). (3.1)

Part I. Let L(h) = h(k)(z). Then F (z) = P (f)g(k)(z), G(z) = P (g)f (k)(z).
Therefore

N2(r,∞;F ) ≤ 2N(r,∞;F ) ≤ 2{N(r,∞; f) +N(r,∞; g)}; (3.2)

N2(r,∞;G) ≤ 2N(r,∞;G) ≤ 2{N(r,∞; g) +N(r,∞; f)}. (3.3)

Again

N2(r, 0;P (f)) ≤ (m1 + 2m2)T (r, f) + S(r, f).

Then using Lemma 2.1 we have

N2(r, 0;F ) ≤ N2(r, 0;P (f)) +N(r, 0; g(k))

≤ (m1 + 2m2)T (r, f) +N(r, 0; g) + kN(r,∞; g)

+S(r, f) + S(r, g) (3.4)

and

N2(r, 0;G) ≤ N2(r, 0;P (g)) +N(r, 0; f (k))

≤ (m1 + 2m2)T (r, g) +N(r, 0; f) + kN(r,∞; f)

+S(r, f) + S(r, g). (3.5)
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Using (1) of Lemma 2.2 and (3.2)-(3.5) in (3.1) we get

(n− k − 1){T (r, f) + T (r, g)} ≤ (2k + 8){N(r,∞; f) +N(r,∞; g)}+ 2(m1 + 2m2)

{T (r, f) + T (r, g)}+ 2{N(r, 0; f) +N(r, 0; g)}
+S(r, f) + S(r, g)

≤ (2k + 2m1 + 4m2 + 10){T (r, f) + T (r, g)}
+S(r, f) + S(r, g).

Thus we obtain

{n− (3k + 2m1 + 4m2 + 11)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction to the fact that n ≥ 3k + 2m1 + 4m2 + 12 for L(h) = h(k)(z).

Part II. Let L(h) = h(z + c). Then F (z) = P (f)g(z + c), G(z) = P (g)f(z + c).
Using Lemma 2.7 we get

N2(r,∞;F ) ≤ 2N(r,∞; f) +N(r,∞; g(z + c))

≤ 2N(r,∞; f) +N(r,∞; g) + S(r, g); (3.6)

N2(r,∞;G) ≤ 2N(r,∞; g) +N(r,∞; f(z + c))

≤ 2N(r,∞; g) +N(r,∞; f) + S(r, f); (3.7)

N2(r, 0;F ) ≤ N2(r, 0;P (f)) +N(r, 0; g(z + c))

≤ (m1 + 2m2)T (r, f) +N(r, 0; g) + S(r, g) + S(r, f); (3.8)

N2(r, 0;G) ≤ N2(r, 0;P (g)) +N(r, 0; f(z + c))

≤ (m1 + 2m2)T (r, g) +N(r, 0; f) + S(r, f) + S(r, g). (3.9)

Using Lemma 2.3 and (3.6)-(3.9) in (3.1) we get

(n− 1){T (r, f) + T (r, g)} ≤ 6{N(r,∞; f) +N(r,∞; g)}+ 2{N(r, 0; f) +N(r, 0; g)}
+2(m1 + 2m2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (2m1 + 4m2 + 8){T (r, f) + T (r, g)}
+S(r, f) + S(r, g).

Hence we have

{n− (2m1 + 4m2 + 9)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction to the assumption that n ≥ 2m1 + 4m2 + 10 for L(h) = h(z + c).

Part III. Let L(h) = h(z+ c)−h(z). Then F (z) = P (f)(g(z+ c)− g(z)), G(z) =
P (g)(f(z + c)− f(z)). Using Lemma 2.7 we get

N2(r,∞;F ) ≤ 2N(r,∞; f) +N(r,∞; g(z + c)) +N(r,∞; g)

≤ 2{N(r,∞; f) +N(r,∞; g)}+ S(r, g); (3.10)

N2(r,∞;G) ≤ 2N(r,∞; g) +N(r,∞; f(z + c)) +N(r,∞; f)

≤ 2{N(r,∞; g) +N(r,∞; f)}+ S(r, f). (3.11)
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Using (1) of Lemma 2.8 we get

N2(r, 0;F ) ≤ N2(r, 0;P (f)) +N(r, 0; g(z + c)− g(z)) + S(r, g)

≤ (m1 + 2m2)T (r, f) + 2T (r, g) + S(r, f) + S(r, g); (3.12)

N2(r, 0;G) ≤ N2(r, 0;P (g)) +N(r, 0; f(z + c)− f(z)) + S(r, f)

≤ (m1 + 2m2)T (r, g) + 2T (r, f) + S(r, f) + S(r, g). (3.13)

Using (1) of Lemma 2.4 and (3.10)-(3.13) in (3.1) we get

(n− 2){T (r, f) + T (r, g)} ≤ 8{N(r,∞; f) +N(r,∞; g)}+ (2m1 + 4m2 + 4)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (2m1 + 4m2 + 12){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Therefore

{n− (2m1 + 4m2 + 14)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction to the assumption that n ≥ 2m1+4m2+15 for L(h) = h(z+c)−h(z).

Part IV. Let L(h) = h(k)(z+c). Then F (z) = P (f)g(k)(z+c), G(z) = P (g)f (k)(z+
c). Using Lemma 2.7 we obtain

N2(r,∞;F ) ≤ 2N(r,∞;F ) ≤ 2{N(r,∞; f) +N(r,∞; g(z + c))}
≤ 2{N(r,∞; f) +N(r,∞; g)}+ S(r, g); (3.14)

N2(r,∞;G) ≤ 2N(r,∞;G) ≤ 2{N(r,∞; g) +N(r,∞; f(z + c))}
≤ 2{N(r,∞; g) +N(r,∞; f)}+ S(r, f). (3.15)

Using (2) of Lemma 2.8 we obtain

N2(r, 0;F ) ≤ N2(r, 0;P (f)) +N(r, 0; g(k)(z + c))

≤ (m1 + 2m2)T (r, f) + (k + 1)T (r, g) + S(r, f) + S(r, g); (3.16)

N2(r, 0;G) ≤ N2(r, 0;P (g)) +N(r, 0; f (k)(z + c))

≤ (m1 + 2m2)T (r, g) + (k + 1)T (r, f) + S(r, f) + S(r, g). (3.17)

Using (1) of Lemma 2.5 and (3.14)-(3.17) in (3.1) we get

(n− k − 1){T (r, f) + T (r, g)} ≤8{N(r,∞; f) +N(r,∞; g)}+ (2m1 + 4m2 + 2k + 2)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤(2m1 + 4m2 + 2k + 10){T (r, f) + T (r, g)}
+ S(r, f) + S(r, g),

i.e. {n− (3k + 2m1 + 4m2 + 11)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 3k+2m1+4m2+12 for L(h) = h(k)(z+c).
Thus we have either F = G or FG = α2. This however means that either P (f)L(g) =
P (g)L(f) or P (f)L(g)P (g)L(f) = α2. This proves Theorem 1.1. �
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Proof of Theorem 1.2. Let F , G be defined as in Theorem 1.1. Then F and G share
(α, 1). Let H be defined as in the beginning of section 2 and H 6≡ 0. Then using
Lemma 2.10 we have

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)}

+
1

2
{N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)}

+S(r, F ) + S(r,G). (3.18)

Part I. Let L(h) = h(k)(z). Then

N(r,∞;F ) = N(r,∞;P (f)g(k)) = N(r,∞; f) +N(r,∞; g); (3.19)

N(r,∞;G) = N(r,∞;P (g)f (k)) = N(r,∞; g) +N(r,∞; f). (3.20)

Now

N(r, 0;P (f)) ≤ (m1 +m2)T (r, f) + S(r, f).

Using Lemma 2.1 we get

N(r, 0;F ) ≤ N(r, 0;P (f)) +N(r, 0; g(k))

≤ (m1 +m2)T (r, f) +N(r, 0; g) + kN(r,∞; g)

+S(r, f) + S(r, g). (3.21)

Similarly,

N(r, 0;G) ≤ N(r, 0;P (g)) +N(r, 0; f (k))

≤ (m1 +m2)T (r, g) +N(r, 0; f) + kN(r,∞; f)

+S(r, f) + S(r, g). (3.22)

Therefore using (1) of Lemma 2.2, (3.2)-(3.5) and (3.19)-(3.22) in (3.18) we obtain

(n− k − 1){T (r, f) + T (r, g)} ≤
(

5

2
k + 9

)
{N(r,∞; f) +N(r,∞; g)}

+
5

2
{N(r, 0; f) +N(r, 0; g)}+

(
5

2
m1 +

9

2
m2

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤
(

5

2
k +

5

2
m1 +

9

2
m2 +

23

2

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e.
{
n−

(
7
2k + 5

2m1 + 9
2m2 + 25

2

)}
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

Since n > 7
2k + 5

2m1 + 9
2m2 + 25

2 , for L(h) = h(k)(z), we arrive at a contradiction.

Part II. Let L(h) = h(z + c). Using Lemma 2.7 we obtain

N(r,∞;F ) ≤ N(r,∞; f) +N(r,∞; g(z + c))

≤ N(r,∞; f) +N(r,∞; g) + S(r, g); (3.23)

N(r,∞;G) ≤ N(r,∞; g) +N(r,∞; f(z + c))

≤ N(r,∞; g) +N(r,∞; f) + S(r, f); (3.24)

N(r, 0;F ) ≤ N(r, 0;P (f)) +N(r, 0; g(z + c))

≤ (m1 +m2)T (r, f) +N(r, 0; g) + S(r, f) + S(r, g); (3.25)
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N(r, 0;G) ≤ N(r, 0;P (g)) +N(r, 0; f(z + c))

≤ (m1 +m2)T (r, g) +N(r, 0; f) + S(r, f) + S(r, g). (3.26)

Therefore using Lemma 2.3, (3.6)-(3.9) and (3.23)-(3.26) in (3.18) we obtain

(n− 1){T (r, f) + T (r, g)} ≤ 7{N(r,∞; f) +N(r,∞; g)}+
1

2
(N(r, 0; f) +N(r, 0; g))

+

(
5

2
m1 +

9

2
m2

)
{T (r, f) + T (r, g)}+ 2{N(r, 0; f) +N(r, 0; g)}+ S(r, f) + S(r, g)

≤
(

5

2
m1 +

9

2
m2 +

19

2

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e.
{
n−

(
5
2m1 + 9

2m2 + 21
2

)}
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicts with the fact that n > 5
2m1 + 9

2m2 + 21
2 , for L(h) = h(z + c).

Part III. Let L(h) = h(z + c)− h(z). Then using Lemma 2.7 we get

N(r,∞;F ) ≤ N(r,∞; f) +N(r,∞; g(z + c)) +N(r.∞; g)

≤ N(r,∞; f) + 2N(r,∞; g) + S(r, g); (3.27)

N(r,∞;G) ≤ N(r,∞; g) +N(r,∞; f(z + c)) +N(r.∞; f)

≤ N(r,∞; g) + 2N(r,∞; f) + S(r, f). (3.28)

From Lemma 2.8 we have

N(r, 0;F ) ≤ N(r, 0;P (f)) +N(r, 0; g(z + c)− g(z))

≤ (m1 +m2)T (r, f) + 2T (r, g) + S(r, f) + S(r, g); (3.29)

N(r, 0;G) ≤ N(r, 0;P (g)) +N(r, 0; f(z + c)− f(z))

≤ (m1 +m2)T (r, g) + 2T (r, f) + S(r, f) + S(r, g). (3.30)

Therefore using (1) of Lemma 2.4, (3.10)-(3.13) and (3.27)-(3.30) in (3.18) we obtain

(n− 2){T (r, f) + T (r, g)} ≤ 19

2
{N(r,∞; f) +N(r,∞; g)}+

(
5

2
m1 +

9

2
m2 + 5

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤
(

5

2
m1 +

9

2
m2 +

29

2

)
{T (r, f) + T (r, g)}

+S(r, f) + S(r, g),

i.e.
{
n−

(
5
2m1 + 9

2m2 + 33
2

)}
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicts with the fact that n > 5
2m1 + 9

2m2 + 33
2 , for L(h) = h(z + c)− h(z).

Part IV. Let L(h) = h(k)(z + c). Then using Lemma 2.7 we get

N(r,∞;F ) ≤ N(r,∞; f) +N(r,∞; g(z + c))

≤ N(r,∞; f) +N(r,∞; g) + S(r, g); (3.31)

N(r,∞;G) ≤ N(r,∞; g) +N(r,∞; f(z + c))

≤ N(r,∞; g) +N(r,∞; f) + S(r, f). (3.32)
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Using Lemma 2.8, we get

N(r, 0;F ) ≤ N(r, 0;P (f)) +N(r, 0; g(k)(z + c))

≤ (m1 +m2)T (r, f) + (k + 1)T (r, g) + S(r, f) + S(r, g); (3.33)

N(r, 0;G) ≤ N(r, 0;P (g)) +N(r, 0; f (k)(z + c))

≤ (m1 +m2)T (r, g) + (k + 1)T (r, f) + S(r, f) + S(r, g). (3.34)

Therefore using (1) of Lemma 2.5, (3.14)-(3.17) and (3.31)-(3.34) in (3.18) we obtain

(n− k − 1){T (r, f) + T (r, g)} ≤ 9{N(r,∞; f) +N(r,∞; g)}

+

(
5

2
k +

5

2
m1 +

9

2
m2 +

5

2

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤
(

5

2
k +

5

2
m1 +

9

2
m2 +

23

2

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e.
{
n−

(
7
2k + 5

2m1 + 9
2m2 + 25

2

)}
{T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g), contradicts

with the fact that n > 7
2k + 5

2m1 + 9
2m2 + 25

2 , for L(h) = h(k)(z + c).

Thus we have H = 0. Then
(
F ′′

F ′ − 2F ′

F−1

)
=

(
G′′

G′ − 2G′

G−1

)
. Integrating twice, we

get

F =
(B − 1)G− (A+B − 1)

BG− (A+B)
and G =

(A+B)F − (A+B − 1)

BF − (B − 1)
,

where A( 6= 0), B are constants. Now we consider the following two cases.

Case 1. Let B = 0. Then F = G−(1−A)
A and G = A(F − A−1

A ).

If A 6= 1, then N(r, 1 − A;G) = N(r, 0;F ) and N(r, A−1A ;F ) = N(r, 0;G). Using
Nevanlinna’s second fundamental theorem we have

T (r, F ) ≤ N(r, 0;F ) +N

(
r,
A− 1

A
;F

)
+N(r,∞;F ) + S(r, F )

= N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) + S(r, F )

and

T (r,G) ≤ N(r, 0;G) +N(r, 1−A;G) +N(r,∞;G) + S(r,G)

= N(r, 0;G) +N(r, 0;F ) +N(r,∞;G) + S(r,G).

Hence

T (r, F ) + T (r,G) ≤ 2{N(r, 0;F ) +N(r, 0;G)}+N(r,∞;F ) +N(r,∞;G)

+ S(r, F ) + S(r,G). (3.35)

We now consider the following:
Part I. Let L(h) = h(k)(z). Using (1) of Lemma 2.2 and (3.19)-(3.22) in (3.35) we

get

(n− k − 1){T (r, f) + T (r, g)} ≤ (2k + 2){N(r,∞; f) +N(r,∞; g)}
+2{N(r, 0; f) +N(r, 0; g)}+ (2m1 + 2m2)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (2k + 2m1 + 2m2 + 4){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),
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i.e. {n− (3k + 2m1 + 2m2 + 5)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 3k + 2m1 + 2m2 + 6 for L(h) = h(k)(z).

Part II. Let L(h) = h(z + c). Using Lemma 2.3 and (3.23)-(3.26) in (3.35) we get

(n− 1){T (r, f) + T (r, g)} ≤ 2{N(r,∞; f) +N(r,∞; g)}+ 2{N(r, 0; f) +N(r, 0; g)}
+ (2m1 + 2m2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤(2m1 + 2m2 + 4){T (r, f) + T (r, g)}
+ S(r, f) + S(r, g),

i.e. {n− (2m1 + 2m2 + 5)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 2m1 + 2m2 + 6 for L(h) = h(z + c).

Part III. Let L(h) = h(z+ c)−h(z). Using (1) of Lemma 2.4 and (3.27)-(3.30) in
(3.35) we get

(n− 2){T (r, f) + T (r, g)} ≤ 3{N(r,∞; f) +N(r,∞; g)}+ (2m1 + 2m2 + 4)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (2m1 + 2m2 + 7){T (r, f) + T (r, g)}
+S(r, f) + S(r, g).

From this we obtain

{n− (2m1 + 2m2 + 9)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction to the assumption that n ≥ 2m1+2m2+10 for L(h) = h(z+c)−h(z).

Part IV. Let L(h) = h(k)(z + c). Using (1) of Lemma 2.5 and (3.31)-(3.34) in
(3.35) we get

(n− k − 1){T (r, f) + T (r, g)} ≤ 2{N(r,∞; f) +N(r,∞; g)}+ (2k + 2m1 + 2m2 + 2)

× {T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (2k + 2m1 + 2m2 + 4){T (r, f) + T (r, g)}
+ S(r, f) + S(r, g).

Hence we obtain

{n− (3k + 2m1 + 2m2 + 5)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction with the assumption that n ≥ 3k+2m1+2m2+6 for L(h) = h(k)(z+c).

If A = 1, then F = G, that is P (f)L(g) = P (g)L(f).

Case 2. Let B 6= 0. Now we consider the following three subcases.
Subcase 2.1 Assume thatB 6= 1. ThenN(r, B−1B ;F ) = N(r,∞;G) andN(r, A+B

B ;G) =
N(r,∞;F ). Using Nevanlinna’s second fundamental theorem we obtain

T (r, F ) ≤ N(r, 0;F ) +N

(
r,
B − 1

B
;F

)
+N(r,∞;F ) + S(r, F )

= N(r, 0;F ) +N(r,∞;G) +N(r,∞;F ) + S(r, F )
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and

T (r,G) ≤ N(r, 0;G) +N

(
r,
A+B

B
;G

)
+N(r,∞;G) + S(r,G)

= N(r, 0;G) +N(r,∞;F ) +N(r,∞;G) + S(r,G).

Therefore

T (r, F ) + T (r,G) ≤ N(r, 0;F ) +N(r, 0;G) + 2{N(r,∞;F ) +N(r,∞;G)}
+S(r, F ) + S(r,G). (3.36)

We now discuss the following:
Part I. Let L(h) = h(k)(z). Using (1) of Lemma 2.2 and (3.19)-(3.22) in (3.36) we

get

(n− k − 1){T (r, f) + T (r, g)} ≤ (k + 4){N(r,∞; f) +N(r,∞; g)}
+{N(r, 0; f) +N(r, 0; g)}+ (m1 +m2)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (k +m1 +m2 + 5){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),

i.e. {n− (2k +m1 +m2 + 6)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 2k +m1 +m2 + 7 for L(h) = h(k)(z).

Part II. Let L(h) = h(z + c). Using Lemma 2.3 and (3.23)-(3.26) in (3.36) we
obtain

(n− 1){T (r, f) + T (r, g)} ≤ 4{N(r,∞; f) +N(r,∞; g)}+N(r, 0; f) +N(r, 0; g)

+(m1 +m2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (m1 +m2 + 5){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),

i.e. {n− (m1 +m2 + 6)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ m1 +m2 + 7 for L(h) = h(z + c).

Part III. Let L(h) = h(z+ c)−h(z). Using (1) of Lemma 2.4 and (3.27)-(3.30) in
(3.36) we obtain

(n− 2){T (r, f) + T (r, g)} ≤ 6{N(r,∞; f) +N(r,∞; g)}+ (m1 +m2 + 2)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (m1 +m2 + 8){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),

i.e. {n− (m1 +m2 + 10)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ m1 +m2 + 11 for L(h) = h(z+ c)− h(z).
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Part IV. Let L(h) = h(k)(z + c). Using (1) of Lemma 2.5 and (3.31)-(3.34) in
(3.36) we get

(n− k − 1){T (r, f) + T (r, g)} ≤ 4{N(r,∞; f) +N(r,∞; g)}+ (k +m1 +m2 + 1)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (k +m1 +m2 + 5){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),

i.e. {n− (2k +m1 +m2 + 6)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 2k+m1 +m2 + 7 for L(h) = h(k)(z + c).

Subcase 2.2 Assume that B = 1, A 6= −1. Then F = − A
G−(A+1) and G =

(A+1)F−A
F . Hence N(r, 0;F ) = N(r,A + 1;G) and N(r, 0;G) = N(r, A

A+1 ;F ). Using
Nevanlinna’s second fundamental theorem we have

T (r, F ) ≤ N(r, 0;F ) +N

(
r,

A

A+ 1
;F

)
+N(r,∞;F ) + S(r, F )

= N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) + S(r, F )

and

T (r,G) ≤ N(r, 0;G) +N(r,A+ 1;G) +N(r,∞;G) + S(r,G)

= N(r, 0;G) +N(r, 0;F ) +N(r,∞;G) + S(r,G).

Thus

T (r, F ) + T (r,G) ≤ 2{N(r, 0;F ) +N(r, 0;G)}+N(r,∞;F ) +N(r,∞;G)

+S(r, F ) + S(r,G).

Now proceeding similarly as in Subcase 2.1, we reach at a contradiction.

Subcase 2.3 Let B = 1, A = −1. Then FG = 1, and hence P (f)L(g)P (g)L(f) =
α2(z). This proves the theorem.

Proof of Theorem 1.3. Let F, G be defined as in Theorem 1.1. Then F and G
share (α, 0). Assume that H 6≡ 0. Therefore by Lemma 2.11 we have

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)}
+3{N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)}
+S(r, F ) + S(r,G). (3.37)

Part I. Let L(h) = h(k)(z). Using (1) of Lemma 2.2, (3.2)-(3.5) and (3.19)-(3.22)
in (3.37) we obtain

(n− k − 1){T (r, f) + T (r, g)} ≤ (5k + 14){N(r,∞; f) +N(r,∞; g)}
+5{N(r, 0; f) +N(r, 0; g)}+ (5m1 + 7m2)

×{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (5k + 5m1 + 7m2 + 19){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),
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i.e. {n− (6k + 5m1 + 7m2 + 20)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 6k + 5m1 + 7m2 + 21 for L(h) = h(k)(z).

Part II. Let L(h) = h(z + c). Using Lemma 2.3, (3.6)-(3.9) and (3.23)-(3.26) in
(3.37) we get

(n− 1){T (r, f) + T (r, g)} ≤ 12{N(r,∞; f) +N(r,∞; g)}+ 3{N(r, 0; f) +N(r, 0; g)}
+ 2{N(r, 0; f) +N(r, 0; g)}+ (5m1 + 7m2){T (r, f) + T (r, g)}
+ S(r, f) + S(r, g)

≤ (5m1 + 7m2 + 17){T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e. {n− (5m1 + 7m2 + 18)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 5m1 + 7m2 + 19 for L(h) = h(z + c).

Part III. Let L(h) = h(z + c) − h(z). Using (1) of Lemma 2.4, (3.10)-(3.13) and
(3.27)-(3.30) in (3.37) we obtain

(n− 2){T (r, f) + T (r, g)} ≤ 17{N(r,∞; f) +N(r,∞; g)}+ (5m1 + 7m2 + 10)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (5m1 + 7m2 + 27){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),

i.e. {n− (5m1 + 7m2 + 29)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 5m1+7m2+30 for L(h) = h(z+c)−h(z).

Part IV. Let L(h) = h(k)(z+c). Using (1) of Lemma 2.5, (3.14)-(3.17) and (3.31)-
(3.34) in (3.37) we get

(n− k − 1){T (r, f) + T (r, g)} ≤14{N(r,∞; f) +N(r,∞; g)}+ (5k + 5m1 + 7m2 + 5)

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤(5k + 5m1 + 7m2 + 19){T (r, f) + T (r, g)}
+ S(r, f) + S(r, g),

i.e. {n− (6k + 5m1 + 7m2 + 20)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
a contradiction to the assumption that n ≥ 6k+5m1+7m2+21 for L(h) = h(k)(z+c).
Therefore H = 0. Rest of the proof is similar to that of the case H = 0 in Theorem
1.2. This proves the theorem. �

Proof of Corollary 1.1. Since f and g are entire functions, L(h) is also an entire func-
tion. Therefore F and G are also entire functions. Hence

N(r,∞; f) = 0, N(r,∞; g) = 0, N(r,∞;F ) = 0 and N(r,∞;G) = 0. (3.38)

Then the proof follows from the proof of Theorem 1.1. �

Proof of Corollary 1.2. Assume that H 6≡ 0. As f and g are entire, using (3.38), we
obtain from Lemma 2.10 that

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G)}+
1

2
{N(r, 0;F ) +N(r, 0;G)}

+S(r, F ) + S(r,G).



PAIRED HAYMAN CONJECTURE OF SOME DELAY-DIFFERENTIAL POLYNOMIALS. . . . .331

Now the proof follows from the proof of Theorem 1.2. �

Proof of Corollary 1.3. Assume that H 6≡ 0. As f and g are entire functions, using
(3.38), we obtain from Lemma 2.11 that

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G)}+ 3{N(r, 0;F ) +N(r, 0;G)}
+S(r, F ) + S(r,G).

Now the proof follows from the proof of Theorem 1.3. �
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