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On the valuation of American options

Lori Badea

Abstract. We first give theoretical results obtained in [1] and [2] concerning the existence

and uniqueness of a weak solution of the valuation of American options. In our approach,
the problem, of free boundary type, has a bounded domain and is described by a variational
inequality. The discretized form of this variational inequality is obtained using the finite

element method at each time step of the backward Euler method. We find the finite element
solution by two methods, the relaxation method and the Brennan–Schwartz direct method.
The main goal of this paper is to illustrate by numerical examples that our finite element

method over a bounded domain is an effective method. Indeed, the numerical results we have
obtained are in a very good agreement with those given in [13].
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1. Introduction

It has shown in [14] and [15] that the value of the live American call is governed
by a problem having the parabolic equation

∂w

∂t
−

σ2

2
x2 ∂2w

∂x2
− (r − δ)x

∂w

∂x
+ rw = 0 in D (1.1)

with the initial condition

w(x, 0) = w0(x) for 0 < x < s(0) (1.2)

and the boundary conditions

w(0, t) = 0
w(s(t), t) = w0(s(t))
∂w
∂x

(s(t), t) = 1
(1.3)

for all 0 < t ≤ T . Above, T is the time at which the American call expires, x = s(t),
for 0 < t ≤ T , is the optimal exercise curve representing the asset price above which
American calls are exercised optimally, D = {(x, t) : 0 < x < s(t), 0 < t ≤ T} and
w0(x) = max(x − Z, 0). The curve x = s(t), 0 < t ≤ T , is not previously known, and
(1.1)–(1.3) is a free boundary problem.

In some analytical approaches, closed form solutions for both the price function
and the optimal exercise curve, have given in [9], [11] and [13]. Using variational
inequalities, the existence and the uniqueness of the solution are studied in [5] and
[12]. Concerning the numerical methods, schemes of finite difference type are used in
[6], [7], [8] and [4].

By the transformation y = log(x), problem (1.1)–(1.3) can be replaced by another
one in which the coefficients of the equation are constant, and, to our knowledge, this
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is the way in which this problem was approached so far. The above transformation
leads to a problem with an unbounded domain which, in practical applications, have to
be approached by a bounded one. This is the reason for which a new weak formulation
of problem (1.1)–(1.3) has been given in [1] and [2]. In this formulation, the domain
of the problem is (0, S) × (0, T ), with an S satisfying only max

t∈[0,T ]
s(t) ≤ S.

The main goal of this paper is to show by numerical examples that the finite element
method applied to this weak formulation gives very good results. In the next section
we give the main results in [1] and [2]. In Section 3, we define a discretized problem of
the weak formulation of the problem, which is obtained by a backward Euler method
in time and uses the finite element method at each time step. Numerical applications
are given in Section 4. In this section, we first apply the relaxation method to solve
the finite element problem. Our numerical results match very well with those given
in [13]. Then, we apply the Brennan–Schwartz direct method (given in [6] and also
used in [12]) to the solution of our discretized problem. In a future paper we shall
prove that the Brennan–Schwartz direct method can be applied to our problem, ie.
our problem satisfy the hypotheses asked by this method, and we shall give an error
estimation between the exact solution and its finite element approximation.

2. Weak formulation of the problem

In [1], it is shown that there exists a positive constant S0 such that s(t) ≤ S0,
t ∈ [0, T ], and the following space has been introduced

W (0, T ) =
{

v : v ∈ L2(0, T ;H1
0 (0, S)), x−1∂tv ∈ L2(0, T ;L2(0, S))

}

for an S ≥ S0. Writing u(x, t) = w(x, t)−w0(x), we get from (1.3) that u(s(t), t) = 0
for any t ∈ [0, T ], and we can extend u(x, t) with 0 in (0, S) × (0, T )\D. Over the
domain (0, S)×(0, T ), the following weak formulation of problem (1.1)–(1.3) has been
considered for the valuation of American calls,

Find u ∈ W (0, T ) such that it satisfies a.e. in (0, T ) the equation

(x−1∂tu, x−1v) + a(u, v) + (qH(u), v)
σ2

2
v(Z) ∀v ∈ H1

0 (0, S) (2.4)

and the initial condition
u(x, 0) = 0. (2.5)

In the above equation, H is the Heaviside function, and we have written

a(u, v) =
σ2

2
(∂xu, ∂xv) − (r − δ)(∂xu, x−1v) + r(x−1u, x−1v)

and
q(x) = (δx−1 − rZx−2)H(x − Z), x ∈ (0, S).

In the following we shall also write Z̃ = Z when r < δ and Z̃ = rZ/δ when r ≥ δ.

We can summarize the main results in [1] and [2] as the following theorem.

Theorem 2.1. Problem (2.4) and (2.5) has a unique solution u = u(x, t) and it
satisfies

x−1u ∈ L∞(0, T ;L2(0, S)), (2.6)

∂xu ∈ L∞(0, T ;L2(0, S)), (2.7)

x−1∂tu ∈ L2(0, T ;L2(0, S)). (2.8)
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Moreover, u ≥ 0 and ∂tu ≥ 0 in (0, S) × (0, T ). If S is large enough, ie. S ≥ S0, for

any t ∈ (0, T ) there exists Z̃ < s(t) < S such that u(x, t) > 0 for x ∈ (0, s(t)) and
u(x, t) = 0 for x ∈ [s(t), S], and the values of u(x, t) for t ∈ (0, T ) and x ∈ (0, s(t))
do not depend on the value of S.

Now, let

K = {v ∈ H1
0 (0, S) : v ≥ 0 in (0, S)}

and u be the solution of problem (2.4)–(2.5). Since u(t, x) ∈ K for any t ∈ (0, T ),
if we take a v ∈ K, we get H(u)(v − u) ≤ v − u in (0, S). Taking into account that

q(x) ≥ 0 in (Z̃, S) and since u(x, t) > 0 for any (x, t) ∈ (0, Z̃) × (0, T ), we get that
∫ S

Z

q(x)H(u)(v − u) ≤

∫ S

Z

q(x)(v − u),

for any v ∈ K. Consequently, a.e. in (0, T ), u will be solution of the following
inequality

(x−2∂tu, v − u) + a(u, v − u) +
∫ S

Z
q(x)(v − u) ≥

σ2

2 (v(Z) − u(Z)) ∀v ∈ K.
(2.9)

Since inequality (2.9) has a unique solution, we have obtained in this way,

Theorem 2.2. Problem (2.4)–(2.5) is equivalent with the problem of finding u ∈
L2(0, T ;K) with x−1∂tu ∈ L2(0, T ;L2(0, S)) which satisfies inequality (2.9), a.e. in
(0, T ), and the initial condition (2.5).

3. Discretized problem

Most numerical methods ask a symmetric bilinear form in inequality (2.9). To this
end, if we write

ws = xpw (3.10)

with p = r−δ
σ2 , it is easy to see that problem (1.1)–(1.3) can be written as

∂ws

∂t
−

σ2

2
x2 ∂2ws

∂x2
+

1

2
(p2σ2 + r + δ)ws = 0 in D (3.11)

with the initial condition

ws(x, 0) = xpw0(x) for 0 < x < s(0) (3.12)

and the boundary conditions

ws(0, t) = 0
ws(s(t), t) = s(t)pw0(s(t))
∂ws

∂x
(s(t), t) = d[xp(x−Z)]

dx
(s(t))

(3.13)

for all 0 < t ≤ T . Now, writing us(x, t) = ws(x, t)−xpw0(x), in a similar way to that
in the previous section, we prove that the solution of problem (3.11)–(3.13) can be be
found using the solution us(x, t) ∈ K, for almost all t ∈ (0, T ), of the problem with
the initial condition

us(x, 0) = 0 (3.14)

and satisfying the variational inequality

(x−2∂tus, v − us) + b(w, v − us) +
∫ S

Z
xpq(x)(v − us) ≥

σ2

2 Zp(v(Z) − us(Z)) ∀v ∈ K,
(3.15)
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where

b(u, v) =
σ2

2
(∂xu, ∂xv) +

1

2
(p2σ2 + r + δ)(x−1u, x−1v).

This time, the bilinear form b is symmetric.
Now, for an n ∈ N, we consider a uniform partition 0 = t0 < t1 < · · · < tn = T ,

ti = ik and k = T/n, of the interval [0, T ]. Let Vh be the linear finite element space
obtained from a uniform partition of the interval [0, S], 0 = x0 < x1 < · · · < xm = S,
with xj = jh and h = S/m, m ∈ N. Also, we define

Kh = {vh ∈ Vh : vh(xj) ≥ 0, j = 0, · · · ,m}

We notice that since Vh is the linear finite element space, then Kh = Vh ∩ K. We
consider the following discretization of problem (3.14)–(3.15).

Find wi
hk ∈ Kh, i = 1, . . . , n satisfying

(x−2∂kwi
hk, vh − wi

hk) + b(wi
hk, vh − wi

hk) + (xpq(x), vh − wi
hk) ≥

σ2

2 Zp(vh(Z) − wi
hk(Z)) ∀vh ∈ Kh.

(3.16)

with the initial condition

w0
hk = 0. (3.17)

We have denoted above by ∂kwi
hk the difference (wi

hk − wi−1
hk )/k.

4. Numerical examples

First, we solve variational inequalities (3.16) by the relaxation method (see [10]).
This method is the simplest variant of the Schwarz domain decomposition method
([3], for instance). In our numerical tests, we have taken over the examples given
in [13], and the results are plotted in Fig 4.1. The iteration was stopped when the
relative error between the solutions of two successive iterations was lesser then 0.1E-
05. In these examples, we have taken h = 0.25, k = 0.0025, S = 200 and Z = 100.
The constants in problem (3.16) are given in Table 4.1. We also give in this table
the average number (over those 400 time steps) of necessary iterations to obtain the
imposed relative error. We notice that our results match very well with the results
given in [13].
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Fig. 4.1. Critical asset price as a function of time to expiration

a

b

c

Curve σ r δ Average nb. of iter.
a .2 .08 .08 134.81
b .2 .10 .08 155.38
c .3 .10 .08 398.48

Table 4.1

In the following we show numerical results obtained by the Brennan-Schwartz direct
method given in [6] and also used in [12]. In Fig. 4.2 we have plotted six critical assets
prices depending on the time to expiration for the following values of the constants
in problem (3.16)

Curve σ r δ
a .2 .08 .12
b .2 .08 .10
c .2 .08 .08
d .2 .10 .08
e .3 .10 .08
f .2 .12 .08

Table 4.2
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Fig. 4.2. Critical asset price as a function of time to expiration

a
b

c

d

e
f

In these examples we have taken h = 0.2, k = 0.01, S = 200 and Z = 100. The
curves c, d and e are the examples a, b and c, respectively, which has been used
to illustrate the relaxation method, and we see that the results obtained by the two
methods are identical.
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