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1. Introduction

The aim of this paper is to investigate the multiplicity of solutions for the impulsive
Hamiltonian system

−u′′(t)− q(t)u′(t) +A(t)u(t) = λ∇F (t, u(t)) + µ∇G(t, u(t)) +∇H(u(t)),
a.e. t ∈ [0, T ],

4(u′i(tj)) = Iij(ui(tj)), i = 1, 2, ..., N, j = 1, 2, ..., p,
u(0)− u(T ) = u′(0)− u′(T ) = 0,

(1)

where u = (u1, u2, ..., uN )T (transpose), N ≥ 1 , p > 1, T > 0, λ > 0 and µ ≥ 0

are parameters, q ∈ L1([0, T ];R), Q(t) =
∫ t

0
q(s)ds for all t ∈ [0, T ], Q(T ) = 0,

0 = t0 < t1 < ... < tp < tp+1 = T , A : [0, T ] → RN×N is a continuous map
from the interval [0, T ] to the set of N × N symmetric matrices, and 4(u′i(tj)) =
u′i(t

+
j )− u′i(t

−
j ) = limt→t+j

u′i(t)− limt→t−j
u′i(t). Here, each Iij : R→ R satisfies

|Iij(s)| ≤ Lij |s|,
for every s ∈ R and i = 1, 2, ..., N , j = 1, 2, ..., p; F,G : [0, T ] × RN → R are
measurable with respect to t for all u ∈ RN , continuously differentiable in u for
almost every t ∈ [0, T ], and satisfy the summability condition

sup
|x|≤α

max{|F (., x)|, |∇F (., x)|, |G(., x)|, |∇G(., x)|} ∈ L1([0, T ]), (2)

for any α > 0; F (t,0) = G(t,0) = 0 for all t ∈ [0, T ], where 0 = (0, ..., 0); and
H : RN → R is a continuously differentiable function for which there is a constant
L > 0 such that

|H(x)| ≤ L|x|2,
for every x ∈ RN . Note that if ∇F,∇G : [0, T ]×RN → R are continuous, then clearly
condition (2) is satisfied.
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As a special case of dynamical systems, Hamiltonian systems are very important in
the study of areas such as fluid mechanics, gas dynamics, nuclear physics, relativistic
mechanics, and many others. It is now recognized that the theory of Hamiltonian sys-
tems is a natural framework for modeling many natural phenomena. For background,
theory, and applications of Hamiltonian systems, we refer the reader to [16, 27, 29, 34].
Inspired by the monographs [27, 30], the existence and multiplicity of periodic solu-
tions for Hamiltonian systems using variational methods have been investigated in
many papers (see, for example, [2, 5, 7, 8, 11, 13, 14, 15, 17, 18, 21, 22, 26, 35, 36,
37, 39, 40, 41, 42, 43, 44, 46, 47] and the references contained therein). For example,
in [36], Tang and Wu obtained existence theorems for periodic solutions of a class of
unbounded, non-autonomous, non-convex, sub-quadratic, second-order Hamiltonian
systems by using minimax methods in critical point theory. Cordaro [14] established
a multiplicity result for an eigenvalue problem related to second-order Hamiltonian
systems, and proved the existence of an open interval of positive eigenvalues in which
the problem admits three distinct periodic solutions. Faraci [18] studied multiplicity
of solutions of a second-order non-autonomous system. He and Wu [22] showed the
existence of nontrivial T-periodic solutions to second-order Hamiltonian systems us-
ing a mountain pass theorem and a local linking theorem, while Zhang and Tang [43]
obtained some new results on T-periodic solutions for the same second-order Hamil-
tonian systems under weaker assumptions thus generalizing the corresponding results
in [22].

In [7], Bonanno and Livrea proved the existence of infinitely many periodic solu-
tions for a class of second-order Hamiltonian systems assuming an oscillating behavior
of the nonlinear term. Moreover, they obtained multiplicity of periodic solutions for
the system with a coercive potential and also did so in the non-coercive case. Gu
and An [21] and Zhang and Liu [42] used a variant of the fountain theorem to show
the existence of infinitely many periodic solutions of a class of super-quadratic non-
autonomous second-order Hamiltonian systems. Zhang and Zhou [47] studied a class
of non-autonomous second-order Hamiltonian system and obtained new existence the-
orems by the least action principle.

On the other hand, impulsive differential equation is one of the main tools to
study the dynamics of processes in which sudden changes occur. In the last few
years, variational methods have been used to determine the existence of solutions
for impulsive differential equations possessing variational structures under certain
boundary conditions (see, for instance, [3, 4, 19, 25, 38, 45] and the references therein
for detailed discussions).

Recently, problems of second-order impulsive Hamiltonian systems have been stud-
ied by a number of authors. For the background, theory and applications of impulsive
Hamiltonian systems, we refer the interest readers to [12, 32, 33, 43] and the refer-
ences therein. For example, Zhou and Li in [43] by means of some critical point
theorems, established some sufficient conditions for the existence of solutions for the
second-order Hamiltonian systems with impulsive effects. Sun et al. in [32] based on
variational methods, studied the existence of infinitely many solutions for a class of
second-order impulsive Hamiltonian systems. Chen and He in [12] by using a varia-
tional method and some critical points theorems of Ricceri, studied the existence of
three solutions for second-order impulsive Hamiltonian systems.
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In [20, 24] the authors, studied the existence of infinitely many periodic solutions
and three solutions for second-order impulsive Hamiltonian systems of problem −u

′′
(t) +A(t)u(t) = λ∇F (t, u(t)) + µ∇G(t, u(t)) +∇H(u(t)), a.e. t ∈ (0, T ),

4(u′i(tj)) = Iij(ui(tj)), i = 1, 2, ..., N, j = 1, 2, ..., p,
u(0)− u(T ) = u′(0)− u′(T ) = 0.

Also, in [23] the authors, by using a version of Ricceri,s variational principle [31],
employed a critical point theorem for differentiable functionals of problem −u

′′
(t)− q(t)u′(t) +A(t)u(t) = λ∇F (t, u(t)) +∇H(u(t)), a.e. t ∈ (0, T ),

4(u′i(tj)) = Iij(ui(tj)), i = 1, 2, ..., N, j = 1, 2, ..., p,
u(0)− u(T ) = u′(0)− u′(T ) = 0.

The paper organized as follows. In Section 2, we recall some basic definitions and our
main tool, while Section 3 proofs to our abstract results. Finally, Section 4 is devoted
to some concrete applications.

2. Preliminaries

Our main tools are the following theorems.

Theorem 2.1. [31, Theorem 2.5] Let X be a real Banach space, Φ,Ψ : X → R
be two Gâteaux differentiable functionals such that Φ is sequentially weakly lower
semicontinuous, strongly continuous and coercive, and Ψ is sequentially weakly upper
semicontinuous, For every r > infX Φ, let

ϕ(r) := inf
u∈Φ−1((−∞,r))

(
supv∈Φ−1((−∞,r)) Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then the following properties hold:
(a) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the functional

Iλ = Φ− λΨ,

to Φ−1((−∞, r)) admits a global minimum, which is a critical point (local mini-
mum) of Iλ in X.

(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either
(1) Iλ possesses a global minimum, or
(2) there is a sequence {un} of critical points (local minima) of Iλ such that

limn→+∞ Φ(un) = +∞.
(c) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either

(1) there is a global minimum of Φ which is a local minimum of Iλ, or
(2) there is a sequence {un} of pairwise distinct critical points (local minima)

of Iλ, that converges weakly to a global minimum of Φ.

For a given non-empty set X and two functionals Φ,Ψ : X → R, we define the
following functions

β(r1, r2) := inf
v∈Φ−1(r1,r2)

supu∈Φ−1(r1,r2) Ψ(u)−Ψ(v)

r2 − Φ(v)
,
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ρ(r1, r2) = sup
v∈Φ−1(r1,r2)

Ψ(v)− supu∈Φ−1(−∞,r1) Ψ(u)

Φ(v)− r1
,

for all r1, r2 ∈ R, r1 < r2.

Theorem 2.2. [6, Theorem 5.1] Let X be a real Banach space; Φ : X → R be
a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux dif-
ferentiable function whose Gâteaux derivative admits a continuous inverse on X∗,
Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux deriva-
tive is compact. Assume that there are r1, r2 ∈ R, r1 < r2, such that

β(r1, r2) < ρ(r1, r2).

Then, setting Iλ := Φ−λΨ, for each λ ∈ ( 1
ρ2(r1,r2) ,

1
β(r1,r2) ) there is u0,λ ∈ Φ−1(r1, r2)

such that Iλ(u0,λ) ≤ Iλ(u) ∀u ∈ Φ−1(r1, r2) and I ′λ(u0,λ) = 0.

Theorem 2.3. [9, Theorem 2.6] Let X be a reflexive real Banach space, Φ : X −→ R
be a coercive continuously Gâteaux differentiable and sequentially weakly lower semi-
continuous functional whose Gâteaux derivative admits a continuous inverse on X∗,
Ψ : X −→ R be a continuously Gâteaux differentiable functional whose Gâteaux de-
rivative is compact such that Φ(0) = Ψ(0) = 0.
Assume that there exist r > 0 and v ∈ X, with r < Φ(v) such that

(d)
supΦ(u)≤r Ψ(u)

r
<

Ψ(v)

Φ(v)
,

(e) for each λ ∈ Λr :=

]
Φ(v)

Ψ(v)
,

r

supΦ(u)≤r Ψ(u)

[
the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ− λΨ has at least three distinct critical points
in X.

We assume that A satisfies the following conditions:
(B1) A(t) = (aij(t)) is a symmetric matrix with aij ∈ L∞[0, T ] for any t ∈ [0, T ], i, j =
1, ..., N ,
(B2) there exists ` > 0 such that (A(t)x, x) ≥ `|x|2 for any x ∈ RN and a.e. t ∈ [0, T ]
where (., .) denotes the inner product in RN .
Here, we recall some basic concepts that will be used in what follows. Let

E =

{
u : [0, T ]→ RN : u is absolutely continuous, u(0) = u(T ), u′ ∈ L2([0, T ],RN )

}
,

with the inner product

〈u, v〉E =

∫ T

0

[(u
′
(t), v

′
(t)) + (u(t), v(t))]dt

for all u, v ∈ E where (., .) denotes the inner product in RN . The corresponding norm
is defined by

‖u‖E =

(∫ T

0

(
|u′(t)|2 + |u(t)|2

)
dt

) 1
2

,∀u ∈ E.

For every u, v ∈ E, we define

〈u, v〉 =

∫ T

0

eQ(t)[(u
′
(t), v

′
(t)) + (A(t)u(t), v(t))]dt,
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and we observe that, by the assumptions (B1) and (B2), it defines an inner product
in E. Then is a separable and reflexive Banach space with the norm

‖u‖ = 〈u, u〉
1
2 ∀u ∈ E.

Obviously, E is an uniformly convex Banach space.

A simple computation shows that (A(t)x, x) =
∑N
i,j=1 aij(t)xixj ≤

∑N
i,j=1 ‖aij‖∞|x|2

for t ∈ [0, T ] and x ∈ RN , and this along with (B2) implies

√
m‖u‖E ≤ ‖u‖ ≤

√
M‖u‖E , (3)

therefore, the norm ‖.‖ is equivalent to the norm ‖.‖E . Since (E, ‖.‖) is compactly
embedded in C([0, T ],RN ) (see [28]), there exists a positive constants C such that

‖u‖∞ ≤ C‖u‖ (4)

where

‖u‖∞ = max
t∈[0,T ]

|u(t)|.

Let Q1 ≤ Q(t) ≤ Q2 for all t ∈ [0, T ]. Now we want to introduce the definition of the

weak solution for the system (1). Since q ∈ L1([0, T ];RN ), we have Q
′
(t) = q(t) for

a.e. t ∈ [0, T ]. Multiplying both sides of

−u
′′
(t)−q(t)u

′
(t)+A(t)u(t) = λ∇F (t, u(t))+µ∇G(t, u(t))+∇H(u(t)), a.e. t ∈ [0, T ]

by eQ(t), we obtain

− eQ(t)u
′′
(t)− eQ(t)q(t)u

′
(t) + eQ(t)A(t)u(t)

= eQ(t)λ∇F (t, u(t)) + eQ(t)µ∇G(t, u(t)) + eQ(t)∇H(u(t)), a.e. t ∈ [0, T ]. (5)

Since u
′

is the classical derivative of u a.e. on [0, T ](see Remarks [28]), from (5) we
obtain

[−eQ(t)u
′
(t)]

′
= eQ(t)(−A(t)u(t) + λ∇F (t, u(t)) + µ∇G(t, u(t)) +∇H(u(t))),

a.e. t ∈ [0, T ] (6)

Now multiplying (6) by v ∈ E and integrating between 0 and T , we have∫ T

0

([−eQ(t)u
′
(t)]

′
, v(t))dt

=

∫ T

0

eQ(t)(−A(t)u(t) + λ∇F (t, u(t)) + µ∇G(t, u(t)) +∇H(u(t))), v(t))dt. (7)

As calculated in [1] , the first term of above equation is∫ T

0

([−eQ(t)u
′
(t)]

′
, v(t))dt =

p∑
j=0

∫ tj+1

tj

([−eQ(t)u
′
(t)]

′
, v(t))dt

=

p∑
j=1

N∑
i=1

eQ(tj)Iij(ui(tj))vi(tj) +

∫ T

0

eQ(t)(u
′
(t), v

′
(t))dt,
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which combined with (7) yields∫ T

0

eQ(t)[(u
′
(t), v

′
(t)) + (A(t)u(t), v(t))]dt+

p∑
j=1

N∑
i=1

eQ(tj)Iij(ui(tj))vi(tj)

− λ
∫ T

0

eQ(t)(∇F (t, u(t)), v(t))dt− µ
∫ T

0

eQ(t)(∇G(t, u(t)), v(t))dt

−
∫ T

0

eQ(t)(∇H(u(t)), v(t))dt = 0. (8)

So, a function u : [0, T ] → RN is a weak solution to the system (1) if u ∈ E and for
every v ∈ E, (8) holds.∫ T

0

[(
u′(t), v′(t)

)
+
(
A(t)u(t), v(t)

)]
dt+

p∑
j=1

N∑
i=1

Iij(ui(tj))vi(tj)

−λ
∫ T

0

(
∇F (t, u(t)), v(t)

)
dt− µ

∫ T

0

(
∇G(t, u(t)), v(t)

)
dt = 0,

for all v ∈ E.

3. Main results

We use the following notations

k := C2(2LT +

p∑
j=1

N∑
i=1

Lij) < 1,

D :=
(T − tp)2

t1t2p
+

t1
3t2p

(t2p + tpT + T 2) + (tp − t1) +
T − tp
t2p

+
1

3t2p
(T 3 − t3p) > 0,

f∞ := lim inf
ξ→+∞

∫ T
0
eQ(t) max|v|<ξ F (t, v(t))dt

ξ2
,

G∞ := lim
ξ→+∞

∫ T
0
eQ(t) max|v|<ξ G(t, v(t))dt

ξ2
,

B∞ := lim sup
ξ→+∞

∫ tp
t1
eQ(t)F (t, ξε)dt

ξ2
,

λ1 :=
MD(1 + k)eQ2

2B
,

and

λ2 :=
(1− k)eQ1

2C2f∞
,

where ε = (1, 0, ..., 0). We now formulate our main result as follows.

Theorem 3.1. Assume that
(A1)

∫ tp
t1
eQ(t)F (t, dnε)dt ≥ 0 for every t ∈ [0, T ];

(A2) ( 1+k
1−k )MDC2eQ2−Q1f∞ < B∞.
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Then, for each λ ∈ (λ1, λ2) and for every arbitrary non-negative function G(t, x) :
[0, T ] × RN → R that is measurable with respect to t for all x ∈ RN , continuously
differentiable in x for almost every t ∈ [0, T ], and satisfies

G∞ < +∞, (9)

if we put

µG,λ :=
(1− k)eQ1 − 2λC2f∞

2C2G∞
,

where µG,λ = +∞ when G∞ = 0, the problem (1) has an unbounded sequence of weak
solutions for every µ ∈ [0, µG,λ).

Proof. Our aim is to apply Theorem 2.1(b) to problem (1). Take X = E and consider
the functionals Φ,Ψ : E → R defined by

Φ(u) : =
1

2
‖u‖2 +

p∑
j=1

N∑
i=1

eQ(tj)

∫ ui(tj)

0

Iij(s)ds−
∫ T

0

eQ(t)H(u(t))dt

=
1

2

∫ T

0

eQ(t)
[
|u
′
|2 + (A(t)u(t), u(t))

]
dt+

p∑
j=1

N∑
i=1

eQ(tj)

∫ ui(tj)

0

Iij(s)ds

−
∫ T

0

eQ(t)H(u(t))dt

and

Ψ(u) :=

∫ T

0

eQ(t)
[
F (t, u) +

µ

λ
G(t, u)

]
dt

and put
Jλ(u) := Φ(u)− λΨ(u),

for each u ∈ E.
Note that the weak solutions of (1) are exactly the critical points of Jλ. Then the
functionals Φ,Ψ satisfy the regularity assumptions of Theorem 2.1. Indeed, by stan-
dard arguments, we have that Φ is Gâteaux differentiable and sequentially weakly
lower semicontinuous and its Gâteaux derivative is the functional Φ′(u) ∈ E∗, given
by

Φ
′
(u) =

∫ T

0

eQ(t)
[
(u
′
(t), v

′
(t)) + (A(t)u(t), v(t))− (∇H(u(t)), v(t))

]
dt

+

p∑
j=1

N∑
i=1

eQ(tj)Iij(ui(tj))vi(tj) (10)

for any v ∈ E. Furthermore, Φ′ : E → E∗ admits a continuous inverse. On the other
hand, the fact that E is embedded into C([0, T ]) implies that the functional Ψ is
well defined, continuously Gâteaux differentiable and with compact derivative, whose
Gâteaux derivative is given by

Ψ′(u)(v) =

∫ T

0

eQ(t)[(∇F (t, u(t)), v(t)) +
µ

λ
(∇G(t, u(t)), v(t))]dt. (11)

Now, Φ is sequentially weakly lower semicontinuous.. To see this, let un ∈ E with
un → u weakly in E, and using the sequential weakly lower semicontinuity of the
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norm, we have lim infn→+∞ ‖un‖ ≥ ‖u‖ and un → u uniformly on [0, T ]. hence, since
H is continuous,

lim inf
n→+∞

(1

2
||un||2 +

p∑
j=1

N∑
i=1

∫ uni (tj)

0

eQ(tj)Iij(s)ds−
∫ T

0

eQ(t)H(un(t))dt
)

≥ 1

2
||u||2 +

p∑
j=1

N∑
i=1

∫ ui(tj)

0

eQ(tj)Iij(s)ds−
∫ T

0

eQ(t)H(u(t))dt,

i.e. lim infn→+∞ Φ(un) ≥ Φ(u). This implies Φ is sequentially weakly lower semicon-
tinuous.
From the definition of Φ, since (E, ‖.‖) is compactly embedded in C([0, T ],RN ), we
observe that Φ is strongly continuous. Since −L|x|2 ≤ H(x) ≤ L|x|2 for every x ∈ RN
and −Lij |s|2 ≤ Iij(s) ≤ Lij |s|2 for every s ∈ R for all i = 1, 2, ..., N and j = 1, 2, ..., p,
in view of (4), we see that

(1− k)eQ1

2
‖u‖2 ≤ Φ(u) ≤ (1 + k)eQ2

2
‖u‖2 (12)

Furthermore, lim||u||→+∞ Φ(u) = +∞ for all u ∈ X and so Φ is coercive.

First of all, we will show that λ < 1
γ . Hence, let {θn} be a sequence of positive numbers

such that limn→+∞ θn = +∞. Put rn := (1−k)eQ1

2C2 θ2
n for all n ∈ N. Then, for all u ∈ E

with Φ(u) ≤ rn one has

Φ−1(−∞, rn) = {u ∈ X; Φ(u) < rn}

= {u ∈ X; Φ(u) <
(1− k)eQ1

2C2
θ2
n}

= {u ∈ X; |u| < θn}.

Then, for all n ∈ N,

ϕ(rn) = inf
u∈Φ−1((−∞,rn))

(
supv∈Φ−1((−∞,rn)) Ψ(v)

)
−Ψ(u)

rn − Φ(u)

≤
supv∈Φ−1((−∞,rn)) Ψ(v)

rn

≤ 2C2

(1− k)eQ1

(∫ T
0
eQ(t) max|v|<θn F (t, v(t))dt

θ2
n

+
µ

λ

∫ T
0
eQ(t) max|v|<θn G(t, v(t))dt

θ2
n

)
.

Moreover, from the assumption (A2) and (9)

γ = lim inf
r→+∞

ϕ(r) ≤ lim inf
n→+∞

ϕ(rn)

≤ 2C2

(1− k)eQ1

(
f∞ +

µ

λ
G∞

)
< +∞.

The assumption µ ∈ (0, µG,λ) immediately yields γ < 1
λ
. Let λ be fixed. We claim

that the functional Jλ is unbounded from below. Since

1

λ
<

2B∞
(1 + k)MDeQ2

,
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there exist a sequence {dn} and a positive constant τ such that limn→+∞ dn = +∞
and

1

λ
< τ <

2
∫ tp
t1
eQ(t)F (t, dnε)dt

DM(1 + k)eQ2d2
n

. (13)

Let {wn} be a sequence in E defined by

wn(t) :=


(T +

tp − T
t1

t)
dnε

tp
if t ∈ [0, t1),

dnε if t ∈ [t1, tp],
dnε
tp
t if t ∈ (tp, T ].

(14)

It is clear that wn ∈ E for all n ∈ N, and mDd2
n ≤ ‖wn‖2 ≤MDd2

n. Therefore, from
(12),

Φ(wn) ≤ eQ2

2
(1 + k)MDd2

n (15)

From (A1) and since G is nonnegative, due to definition of Ψ, we infer

Ψ(wn) ≥
∫ tp

t1

eQ(t)F (t, dnε)dt, (16)

so from (13), (15) and (16), we have

Jλ(wn) = Φ(wn)− λΨ(wn)

≤ eQ2

2
(1 + k)MDd2

n − λ
∫ tp

t1

eQ(t)F (t, dnε)dt

=
eQ2

2
(1 + k)MDd2

n(1− λτ) (17)

for every n ∈ N large enough. Since λτ > 1 and limn→+∞ dn = +∞, we have

lim
n→+∞

Jλ(wn) = −∞.

Then, the functional Jλ is unbounded from below, and it follows that Jλ has no global
minimum. Therefore, by Theorem 2.1(b), there exists a sequence {un} of critical
points of Jλ such that limn→+∞ ||un|| = +∞ and the conclusion is achieved. �

For a given non-negative constant θ and a given positive constant d, with (1−k)θ2 6=
(1 + k)MDC2d2eQ2−Q1 , put

ad(θ) :=

∫ T
0 eQ(t) max|v|<θ

[
F (t, v(t)) + µ

λ
G(t, v(t))

]
dt−

∫ tp
t1
eQ(t)F (t, dε)dt

θ2 − 1+k
1−kMDC2d2eQ2−Q1

,

µ1 :=

(1 − k)eQ1θ21 − (1 + k)MDC2d2eQ2 + 2C2λ
∫ T
0 eQ(t) max|v|<θ1 F (t, v)dt+ 2C2λ

∫ tp
t1
eQ(t)F (t, dε)dt

2C2
∫ T
0 eQ(t) max|v|<θ1 G(t, v)dt

,

µ2 :=

(1 − k)eQ1θ22 − (1 + k)MDC2d2eQ2 + 2C2λ
∫ T
0 eQ(t) max|v|<θ2 F (t, v)dt+ 2C2λ

∫ tp
t1
eQ(t)F (t, dε)dt

2C2
∫ T
0 eQ(t) max|v|<θ2 G(t, v)dt

.

Now, we present an application of Theorem 2.2 which we will use to obtain one
nontrivial weak solution.
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Theorem 3.2. Assume that there exist three nonnegative constant θ1, θ2 and d with
hold (A1) such that

θ2
1 < (

1 + k

1− k
)MDC2d2eQ2−Q1 < θ2

2 (18)

(A3) ad(θ2) < ad(θ1).

Moreover, λ ∈ (1−k)eQ1

2C2

]
1

ad(θ1) ,
1

ad(θ2)

[
and whose potential G(t, x) for all (t, x) ∈

[0, T ]× RN , is non-negative. Then for every µ ∈ (µ1, µ2), the problem (1) admits at
least one nontrivial weak solution u1 ∈ E.

Proof. Fix λ, G and µ as in the conclusion and take Φ and Ψ as in the proof of
Theorem (3.1). We observe that the regularity assumptions of Theorem (2.2) on Φ
and Ψ are satisfied. To this end, put

w(t) :=


(T +

tp − T
t1

t)
dε

tp
if t ∈ [0, t1),

dε if t ∈ [t1, tp],
dε
tp
t if t ∈ (tp, T ],

(19)

it is easy to verify that w ∈ E. Now, put r1 := (1−k)eQ1

2C2 θ2
1, r2 := (1−k)eQ1

2C2 θ2
2 and

(1−k)eQ1

2 mDd2 ≤ Φ(w) ≤ (1+k)eQ2

2 MDd2. In particular, from (18), we conclude

r1 < Φ(w) < r2.

On the other hand, for all u ∈ E, we have

Φ−1(−∞, r2) = {u ∈ X; Φ(u) < r2}
= {u ∈ X; |u| < θ2}.

From which it follows

sup
u∈Φ−1(−∞,r2)

Ψ(u) = sup
u∈Φ−1(−∞,r2)

∫ T

0

eQ(t)
[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt

≤
∫ T

0

eQ(t) max
|v|<θ2

[
F (t, v(t)) +

µ

λ
G(t, v(t))

]
dt.

Arguing as before, we obtain

sup
u∈Φ−1(−∞,r1)

Ψ(u) = sup
u∈Φ−1(−∞,r1)

∫ T

0

eQ(t)
[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt

≤
∫ T

0

eQ(t) max
|v|<θ1

[
F (t, v(t)) +

µ

λ
G(t, v(t))

]
dt,

assumption (A1) ensures that

ψ(w) ≥
∫ tp

t1

eQ(t)F (t, dε)dt.

Then, due to G ≥ 0, we get∫ T

0

eQ(t) sup
|v|<θ2

[
F (t, v) +

µ

λ
G(t, v)

]
dt ≥

∫ tp

t1

eQ(t)F (t, dε)dt,
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and thus ad(θ2) ≥ 0. At this point, one has

β(r1, r2) ≤
supu∈Φ−1(−∞,r2) Ψ(u)−Ψ(w)

r2 − Φ(w)

≤

∫ T
0
eQ(t) max|v|<θ2

[
F (t, v(t)) + µ

λG(t, v(t))
]
dt−

∫ tp
t1
eQ(t)F (t, dε)dt

θ2
2 − ( 1+k

1−k )MDC2d2eQ2−Q1

=
2C2

(1− k)eQ1

∫ T
0
eQ(t) max|v|<θ2

[
F (t, v(t)) + µ

λG(t, v(t))
]
dt−

∫ tp
t1
eQ(t)F (t, dε)dt

θ2
2 − ( 1+k

1−k )MDC2d2eQ2−Q1

=
2C2

(1− k)eQ1
ad(θ2).

Since ad(θ2) ≥ 0, hypothesis (A3) implies that∫ T

0

eQ(t) max
|v|<θ1

[
F (t, v(t)) +

µ

λ
G(t, v(t))

]
dt <

∫ tp

t1

eQ(t)F (t, dε)dt.

So, one has

ρ(r1, r2) ≥
Ψ(w)− supu∈Φ−1(−∞,r1) Ψ(u)

Φ(w)− r1

≥

∫ tp
t1
eQ(t)F (t, dε)dt−

∫ T
0
eQ(t) max|v|<θ1

[
F (t, v(t)) + µ

λG(t, v(t))
]
dt

( 1+k
1−k )MDC2d2eQ2−Q1 − θ2

1

=
2C2

(1− k)eQ1

∫ tp
t1
eQ(t)F (t, dε)dt−

∫ T
0
eQ(t) max|v|<θ1

[
F (t, v(t)) + µ

λG(t, v(t))
]
dt

( 1+k
1−k )MDC2d2eQ2−Q1 − θ2

1

=
2C2

(1− k)eQ1
ad(θ1).

Hence, from assumption (A3), one has β(r1, r2) < ρ(r1, r2). Therefore, from Theorem

(2.2), for each λ ∈ (1−k)eQ1

2C2

]
1

ad(θ1) ,
1

ad(θ2)

[
the functional Jλ admits at least one

critical point u1 such that

r1 < Φ(u1) < r2.

�

Set Gθ :=

∫ T

0

max
|ξ|≤θ

G(t, ξ)dt for every θ > 0 and Gd := inf [0,T ]×[0,d]G for every

d > 0, then Gθ ≥ 0 and Gd ≤ 0. Put

λ3 :=
(1 + k)MDeQ2d2

2

∫ tp

t1

eQ(t)F (t, dε)dt

,

λ4 :=
(1− k)eQ1θ2

2C2
∫ T

0
eQ(t) max|v|≤θ F (t, v)dt

,

µ3 :=
(1− k)eQ1θ2 − 2C2λ

∫ T
0
eQ(t) max|v|≤θ F (t, v)dt

2TC2eQ2Gθ
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and

µ4 :=
(1 + k)MDd2eQ2 − 2λ

∫ t2
t1
eQ(t)F (t, dε)dt

2TeQ1Gd

Theorem 3.3. Assume that there exist two positive constants θ and d with

θ

C

√
(1− k)eQ1−Q2

MD(1 + k)
< d

and hold (A1) such that

(A4)
C2

eQ1(1− k)

∫ T

0

eQ(t) max
|v|≤θ

F (t, v(t))dt

θ2
<

1

eQ2(1 + k)MD

∫ tp

t1

eQ(t)F (t, dε)dt

d2

(A5) lim sup
|ξ|→+∞

maxt∈[0,T ] F (t, ξ)

ξ2
≤ 0.

Then, for each λ ∈ (λ3, λ4) and for every L1-Carathéodory function G(t, x) : [0, T ]×
RN → R satisfying the condition

lim sup
|ξ|→+∞

maxt∈[0,T ]G(t, ξ)

ξ2
< +∞,

for each µ ∈ (µ3, µ4), the problem (1) admits at least three distinct weak solutions in
E.

Proof. In order to apply Theorem 2.3 to our problem. Then, our aim is to verify (d)

and (e). To this end, put w as given (19), as well as r := (1−k)eQ1

2C2 θ2. Clearly, the weak
solutions of the problem (1) are exactly the solutions of the equation Φ′(u)−λΨ′(u) =

0. We observe 0 < r < Φ(w). Since (1−k)eQ1

2 ‖u‖2 ≤ Φ(u) for each u ∈ E and bearing
(4) in mind, we see that

Φ−1(]−∞, r]) = {u ∈ E; Φ(u) ≤ r}
⊆ {u ∈ E; |u(t)| ≤ θ for each t ∈ [0, T ]} ,

and it follows that

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

∫ T

0

eQ(t)
[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt

≤
∫ T

0

eQ(t) max
|v|≤θ

F (t, v(t))dt+
µ

λ
eQ2Gθ.

On the other hand, by using condition (A1), we deduce

Ψ(w) ≥
∫ tp

t1

eQ(t)F (t, dε)dt+
µ

λ

∫ T

0

eQ(t)G(t, dε)dt

≥
∫ tp

t1

eQ(t)F (t, dε)dt+
µ

λ
TeQ1 inf

[0,T ]×[0,d]
G

=

∫ tp

t1

eQ(t)F (t, dε)dt+
µ

λ
TeQ1Gd.
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Therefore, we have

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
=

sup
u∈Φ−1(]−∞,r])

∫ T

0

eQ(t)
[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt

r

≤

∫ T

0

eQ(t) max
|v|≤θ

F (t, v(t))dt+
µ

λ
eQ2Gθ

(1−k)eQ1

2C2 θ2
, (20)

and

Ψ(w)

Φ(w)
≥

∫ tp

t1

eQ(t)F (t, dε)dt+
µ

λ

∫ T

0

eQ(t)G(t, dε)dt

eQ2

2 (1 + k)MDd2

≥

∫ tp

t1

eQ(t)F (t, dε)dt+
µ

λ
TeQ1Gd

eQ2

2 (1 + k)MDd2
. (21)

we observe that the condition (d) of Theorem 2.1 is fulfilled.

Finally, we can fix b > 0 such that lim sup
|ξ|→∞

maxt∈[0,T ]G(t, ξ)

ξ2
< b. Therefore, there

exists a function s ∈ L1([0, T ]) such that

G(t, ξ) ≤ bξ2 + s(t), (22)

for every t ∈ [0, T ] and ξ ∈ RN .

Now, fix 0 < ε <
(1− k)eQ1−Q2

2C2Tλ
− µb

λ
. From (A5) there is a function hε ∈ L1([0, T ])

such that

F (t, ξ) ≤ εξ2 + hε(t), (23)

for every t ∈ [0, T ] and ξ ∈ RN .
Taking (4) into account, it follows that, for each u ∈ E,

Jλ(u) = Φ(u)− λΨ(u) ≥ eQ1

2
(1− k)‖u‖2 − λ

∫ T

0

eQ(t)
[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt

≥ eQ1

2
(1− k)‖u‖2 − λεeQ2

∫ T

0

u2(t)dt− λeQ2‖hε‖1 − µbeQ2

∫ T

0

u2(t)dt− µeQ2‖s‖1

≥
(eQ1

2
(1− k)− λεTC2eQ2 − µTbC2eQ2

)
‖u‖2 − λeQ2‖hε‖1 − µeQ2‖s‖1,

and thus

lim
‖u‖→+∞

(Φ(u)− λΨ(u)) = +∞,

which means the functional Jλ is coercive, and the condition (e) of Theorem 2.3 is
verified.
Since from relations (20)-(21),

λ ∈

]
Φ(w)

Ψ(w)
,

r

supΦ(u)≤r Ψ(u)

[
,
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Theorem 2.1 (with v = w) assures the desired conclusion. �

4. Applications

Remark 4.1. The conditions f∞ = 0 and B∞ = +∞ where ε = (1, 0, ..., 0) ∈ RN ,

Theorem (3.1) ensures that for every λ > 0 and for each µ ∈ [0, (1−k)eQ1

2C2G∞
) the problem

(1) admits infinitely many classical periodic solutions.Moreover, if G∞ = 0, then the
result holds for every λ > 0 and µ ≥ 0.

Remark 4.2. Assumption (A2) in Theorem (3.1) can be replaced by the more general
condition
(A
′

2) there exist two sequence {θn} and {ηn} with

(1− k)eQ1

2C2
η2
n >

(1 + k)DMeQ2

2
θ2
n

for every n ∈ N and limn→+∞ ηn = +∞ such that

lim
n→+∞

∫ T
0
eQ(t) max|v|<ηn F (t, v(t))−

∫ tp
t1
eQ(t)F (t, θnε)dt

(1−k)eQ1

2C2 η2
n −

(1+k)DMeQ2

2 θ2
n

< lim sup
|ξ|→+∞

∫ tp
t1
eQ(t)F (t, ξε)dt

(1+k)DMeQ2

2 ξ2

where ε = (1, 0, ..., 0) By choosing θn = 0 for all n ∈ N, (A2) follows from (A
′

2).

Moreover, if we assume (A
′

2) instead of (A2) and set rn := (1−k)eQ1

2C2 η2
n for all n ∈ N,

by the same reasoning as in the proof of Theorem (3.1), we obtain

ϕ(rn) ≤

(
supv∈Φ−1((−∞,r)) Ψ(v)

)
−Ψ(zn)

rn − Φ(zn)

≤
∫ T

0
eQ(t) max|v|<ηn [F (t, v(t)) + µ

λG(t, v(t))]dt−
∫ tp
t1
eQ(t)F (t, θnε)dt

(1−k)eQ1

2C2 η2
n −

(1+k)DMeQ2

2 θ2
n

where

zn(t) :=


(T +

tp − T
t1

t)
θnε

tp
if t ∈ [0, t1),

θnε if t ∈ [t1, tp],
θnε
tp
t if t ∈ (tp, T ].

(24)

We have the same conclusion as Theorem (3.1) with the interval (λ1, λ2) replaced by

(λ
′

1, λ
′

2), where

λ
′

1 :=
eQ2(1 + k)DM

2 lim supξ→+∞

∫ tp
t1
eQ(t)F (t,ξε)dt

ξ2

λ
′

2 := [ lim
n→+∞

∫ T
0
eQ(t) max|v|<ηn F (t, v(t))dt−

∫ tp
t1
eQ(t)F (t, θnε)dt

(1−k)eQ1

2C2 η2
n −

(1+k)DMeQ2

2 θ2
n

]−1.

Corollary 4.1. Assume that (B1) , (B2) and (A1) hold,

(A6) f∞ < eQ1 (1−k)
2C2

(A7) MDeQ2 (1+k)
2 < B∞

where ε = (1, 0, ..., 0). Then, for every arbitrary non-negative function G(t, x) :
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[0, T ]×RN → R that is measurable with respect to t for all x ∈ RN , continuously dif-
ferentiable in x for almost every t ∈ [0, T ], and satisfies (9), and for every µ ∈ [0, µG,1)
where

µG,1 :=
(1− k)eQ1 − 2C2f∞

2C2G∞
,

and λ2 is given in the statement of Theorem (3.1), the problem
−u′′(t)− q(t)u′(t) +A(t)u(t) = ∇F (t, u(t)) + µ∇G(t, u(t)) +∇H(u(t)),

a.e. t ∈ (0, T ),
4(u′i(tj)) = Iij(ui(tj)), i = 1, 2, ..., N, j = 1, 2, ..., p,
u(0)− u(T ) = u′(0)− u′(T ) = 0.

(25)

has an unbounded sequence of classical periodic solutions.

Theorem 4.2. Assume that (B1), (B2) hold and let F : RN → R be a continuously

differentiable function such that lim infξ→+∞
max|x|<ξ F (x)

ξ2 = 0 and lim supξ→+∞
F (ξε)
ξ2 =

+∞ where ε = (1, 0, ..., 0). Then, the problem −u
′′
(t)− q(t)u′(t) +A(t)u(t) = ∇F (u(t)) +∇H(u(t)), a.e. t ∈ (0, T ),

4(u′i(tj)) = Iij(ui(tj)), i = 1, 2, ..., N, j = 1, 2, ..., p,
u(0)− u(T ) = u′(0)− u′(T ) = 0.

(26)

has an unbounded sequence of classical periodic solutions.

Proof. Theorem proves with Corollary (4.1) and Remark (4.1) whit µ = 0. �

We use the following notations

f0 := lim inf
ξ→0+

∫ T
0
eQ(t) max|v|<ξ F (t, v(t))dt

ξ2
,

G0 := lim
ξ→0+

∫ T
0
eQ(t) max|v|<ξ G(t, v(t))dt

ξ2
,

B0 := lim sup
ξ→0+

∫ tp
t1
eQ(t)F (t, ξε)dt

ξ2
,

λ5 :=
(1 + k)MDeQ2

2B0
,

and

λ6 :=
(1− k)eQ1

2C2f0
.

Using Theorem 2.1(c) and arguing as in the proof of Theorem 3.1, we can obtain the
following result.

Theorem 4.3. Assume that
(A8)

∫ tp
t1
eQ(t)F (t, ξε)dt ≥ 0 for every t ∈ [0, T ];

(A9) ( 1+k
1−k )MDC2eQ2−Q1f0 < B0.
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Then, for each λ ∈ (λ5, λ6) and for every arbitrary non-negative function G(t, x) :
[0, T ] × RN → R that is measurable with respect to t for all x ∈ RN , continuously
differentiable in x for almost every t ∈ [0, T ], and satisfies

G0 < +∞, (27)

if we put µ
′

G,λ := (1−k)eQ1−2λC2f0
2C2G0

, where µ
′

G,λ = +∞ when G∞ = 0, the problem (1)

has an unbounded sequence of weak solutions for every µ ∈ [0, µ
′

G,λ).

Proof. Fix λ ∈ (λ5, λ6) and let G be a function that satisfies the condition (27). Since
λ < λ6, we obtain

µ
′

G,λ
:=

(1− k)eQ1 − 2λC2f0

2C2G0
> 0.

Now fix µ ∈ (0, µ
′

g,λ
) and set

Jλ(u) := Φ(u)− λΨ(u),

We take Φ, Ψ and Jλ as in the proof of Theorem 3.1. Now, as it has been pointed
out before, the functionals Φ and Ψ satisfy the regularity assumptions required in
Theorem 2.1. As first step, we will prove that λ < 1

δ . Then, let {θn} be a sequence of
positive numbers such that lim

n→+∞
θn = 0 and infXΦ = 0 and the definition of δ, we

have δ = lim inf
r→0+

ϕ(r).

Putting rn := (1−k)eQ1

2C2 θ2
n. we can prove that δ < +∞. From µ ∈ (0, µ

′

G,λ
), the

following inequalities hold

δ ≤ 2C2

(1− k)eQ1

(
f0 +

µ

λ
G0

)
.

Therefore, λ < 1
δ . Let λ be fixed. We claim that the functional Jλ has not a local

minimum at zero. Since
1

λ
<

2B

(1 + k)MDeQ2
,

there exist a sequence {dn} of positive number and η > 0 such that lim
n→+∞

dn = 0+

and

1

λ
< η <

2
∫ tp
t1
eQ(t)F (t, dnε)dt

(1 + k)DMeQ2d2
n

,

for each n ∈ N large enough. Let wn from (14) be the sequence in E. From (A1) one
has (17) holds. Note that λη > 1. we can obtain

Jλ(wn) <
eQ2

2
(1 + k)MDd2

n(1− λη) ≤ 0 = Φ(0)− λΨ(0),

for each n ∈ N large enough. Then, we see that zero is not a local minimum of Jλ.
Thus, together with the fact zero is the only global minimum of Φ, we deduce that the
energy functional Jλ has not a local minimum at the unique global minimum of Φ.
Therefore, by Theorem 2.1, there exists a sequence {un} of critical points of Jλ which
converges weakly to zero. In view of the fact that the embedding E ↪→ C([0, T ]) is
compact, we know that the critical points converge strongly to zero, and the proof is
complete. �
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Theorem 4.4. Assume that there exist two nonnegative constant θ and d with hold
(A1) such that ( 1+k

1−k )MDC2d2eQ2−Q1 < θ2 Furthermore, suppose that

(A10)
∫ T
0
eQ(t) max|v|<θ F (t,v)dt

θ2 <
∫ tp
t1
eQ(t)F (t,dε)dt

( 1+k
1−k )MDC2d2eQ2−Q1

. Then, for each

λ ∈ (1− k)eQ1

2C2

]
( 1+k

1−k )MDC2d2eQ2−Q1∫ tp
t1
eQ(t)F (t, dε)dt

,
θ2∫ T

0
eQ(t) max|v|<θ F (t, v(t))dt

[
problem −u

′′
(t)− q(t)u′(t) +A(t)u(t) = λ∇F (t, u(t)) +∇H(u(t)), a.e. t ∈ (0, T ),

4(u′i(tj)) = Iij(ui(tj)), i = 1, 2, ..., N, j = 1, 2, ..., p,
u(0)− u(T ) = u′(0)− u′(T ) = 0.

(28)

admits at least one nontrivial weak solution u such that |u(x)| < θ for all t ∈ [0, T ].

Proof. The conclusion follows from Theorem 3.2, by taking θ1 = 0, θ2 = θ and µ = 0
Indeed, owing to assumption (A10), one has

ad(θ) =

∫ T
0
eQ(t) max|v|<θ F (t, v(t))dt−

∫ t2
t1
eQ(t)F (t, dε)dt

θ2 − ( 1+k
1−k )MDC2d2eQ2−Q1

,

<

(
1− ( 1+k

1−k )MDC2d2eQ2−Q1

θ2

)∫ T
0
eQ(t) max|v|<θ F (t, v(t))dt

θ2 − ( 1+k
1−k )MDC2d2eQ2−Q1

=
1

θ2

∫ T

0

eQ(t) max
|v|<θ

F (t, v(t))dt.

On the other hand, one has

ad(0) =

∫ t2
t1
eQ(t)F (t, dε)dt

( 1+k
1−k )MDC2d2eQ2−Q1

.

Hence, taking assumption (A10) into account, Theorem 3.2 ensures the conclusion. �

A special case of Theorem 3.3 is the following theorem.

Theorem 4.5. Let ∇F : R→ R be a continuous function, F (dε) > 0 for some d > 0

in [t1, tp], F (ξ) ≥ 0 and lim infξ→0
F (ξ)
ξ2 = lim supξ→+∞

F (ξ)
ξ2 = 0.

Then there is λ∗ > 0 such that for each λ > λ∗ the problem −u
′′
(t)− u′(t) + u(t) = λ∇F (u(t)) +∇H(u(t)), a.e. t ∈ (0, T ),

4(u′(tj)) = Ij(u(tj)), j = 1, 2,
u(0)− u(T ) = u′(0)− u′(T ) = 0.

(29)

Proof. Fix λ > λ∗ := (1+k′)MDd2eT

2F (dε)etp−t1
where k′ = C2(2LT +

∑p
j=1 Lj) and ε =

(1, 0, ..., 0) for some d > 0. Since

lim inf
ξ→0

F (ξ)

ξ2
= 0,

there is a sequence {θn} ⊂ (0,+∞) such that limn→+∞ θn = 0 and

lim
n→+∞

max|ξ|6θn F (ξ)

θ2
n

= 0.
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Indeed, one has

lim
n→+∞

max|ξ|6θn F (ξ)

θ2
n

= lim
n→+∞

max|ξ|6θn F (ξ)

ξ2

ξ2

θ2
n

= 0,

Here, there exists θ > 0 such that θ
C

√
(1−k′)e−T
MD(1+k′) < d. From Theorem 3.3 the conclu-

sion follows. �

Example 4.1. Consider the system −u
′′
(t)− u′(t) +A(t)u(t) = λ∇F (t, u(t)) +∇H(u(t)), a.e. t ∈ (0, 3),

4(u′i(tj)) = Iij(ui(tj)), i = 1, 2, j = 1, 2,
u(0)− u(3) = u′(0)− u′(3) = 0.

(30)

where A(t) = I where I an identity matrix of order 2× 2, N = p = 2, q(t) = 1, t = 1
and t = 2 therefore Q(t) = t for all t ∈ [0, 3]. Also let F (t, x) = F (x) = sinh(|x|2),

H(x) = |x|2
108(1+|x|4) and Iij(s) = 1

288s(1 + sins) for all (t, x) ∈ [0, 3] × R2 and s ∈ R.

We consider C =
√

6, m = 1, M = 2, L = 1
108 , Lij = 1

288 , D = 7
2 and k = 5

12 ,

lim inf
ξ→0+

maxF (ξ)

ξ2
= 1,

lim sup
ξ→0+

F (ξ, 0)

ξ2
= +∞,

We see that all the conditions of Theorem (4.3) are satisfied. Hence, for every λ ∈
(0.048,+∞) system (30) has an unbounded sequence of classical periodic solutions
that converges uniformly to 0 in E.
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