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Existence of Solutions for a Class of Superlinear Anisotropic
Robin Problems with Variable Exponent
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Abstract. In this work we study the following nonlinear anisotropic elliptic equations

(P )

{
−
∑N

i=1 ∂xi (|∂xiu|pi(x)−2∂xiu) + |u|pM (x)−2u = f(x, u) in Ω∑N
i=1 |∂xiu|pi(x)−2∂xiu.νi + β(x)|u|pm(x)−2u = 0 on ∂Ω.

We set up that the problem (P ) admits a sequence of weak solutions and multiplicity result

under suitable conditions.
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1. Introduction

In the last few decades, one of the topics from the field of partial differential equations
that has continuously attracted interest is that concerning the Sobolev space with
variable exponents, W 1,p(.) (where p(.) is a function depending on x); see for example
the monograph [5] and the references therein. Naturally, problems involving the p(x)-
Laplacian operator were intensively studied.

On the other hand, it has been experimentally shown that the above-mentioned
fluids may have their viscosity undergoing a significant change; see [1]. Consequently,
the mathematical modelling of such fluids requires the introduction of the so-called
anisotropic variable spaces. Indeed, there is by now a large number of papers and
increasing interest about anisotropic problems. With no hope of being complete, let
us mention some pioneering works on anisotropic Sobolev spaces [14, 17]. Therefore,
in the recent years, the study of various mathematical problems modeled by quasilin-
ear elliptic and parabolic equations with both anisotropic and variable exponent has
received considerable attention.

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary. In this paper
we study the following nonlinear anisotropic elliptic equations

(P )

{
−4−→p (x)(u) + |u|pM (x)−2u = f(x, u) in Ω∑N
i=1 |∂xiu|pi(x)−2∂xiu.νi + β(x)|u|pm(x)−2u = 0 on ∂Ω,

where 4−→p (.) represents the −→p (.)-Laplace operator, that is,

4−→p (x)(u) =

N∑
i=1

∂xi(|∂xiu|pi(x)−2∂xiu),
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νi are the components of the outer normal unit vector, β ∈ L∞(∂Ω) fulfill β(.) ≥ β0

for some constant β0 > 0 , f : Ω× R→ R be a Caratheodory function,
−→p (x) = (p1(x), p2(x), ..., pN (x)) ,

pM (x) = max
i∈{1,2,...,N}

pi(x), pm(x) = min
i∈{1,2,...,N}

pi(x)

and for i = 1, ..., N , we assume that pi is a continuous function on Ω such that
inf
Ω
pi(x) > 1.

We set,
C+(Ω) = {h ∈ C(Ω)|min

x∈Ω
h(x) > 1}.

For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

Moreover, let’s put the positive real numbers P+
M , P

+
m , P

−
m which defined as the fol-

lowing

P+
M = max{p+

1 , ..., p
+
N}, P

+
m = max{p−1 , ..., p

−
N}, P

−
m = min{p−1 , ..., p

−
N}.

Throughout this paper, we assume that

N∑
i=1

1

p−i
> 1, (1)

Define P ∗−, P−,∞ ∈ R+ by

P ∗− =
N∑N

i=1
1
p−i
− 1

, P−,∞ = max{P+
m , P

∗
−}.

Let F (x, t) =
∫ t

0
f(x, s) ds, and we assume that f satisfies the following conditions:

(f0) f ∈ C(Ω× R,R) and f(x, 0) = 0 ∀x ∈ Ω, and

|f(x, t)| ≤ c(1 + |t|q(x)−1),

for all (x, t) ∈ Ω× R where c > 0 is a constant, and q(x) ∈ C+(Ω) such that
q+ = sup

x∈Ω

q(x) < P−,∞ .

(f1) There exist θ > P+
M and M > 0 such that

| t |≥M ⇒ 0 < θF (x, t) ≤ tf(x, t)

for a.e. x ∈ Ω and each t ∈ R.

(f2) f(x, t) = o(| t |P
+
M−1) as t→ 0 and uniformly for x ∈ Ω, with q− > P+

M .

(f3) lim
t→0

F (x, t)

|t|P−m
=∞, uniformly in Ω.

(f4) There exists δ > 0 be small enough such that

F(x, t) = P−mF (x, t)− f(x, t)t > 0,

for every x ∈ Ω, |t| ≤ δ and t 6= 0.
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(f5) f is odd in t with |t| ≤ δ.

The main results of this article are as follows:

Theorem 1.1. Suppose (f0), (f1) and (f2). Then, the problem (P ) has at least a
nontrivial weak solution.

Theorem 1.2. Under the assumptions (f0) and (f3) − (f5), the problem (P ) has a
sequence of weak solutions such that ‖un‖L∞ → 0 as n→∞.

Let us : f(x, t) = f1(x, t) + f2(x, t), Fi(x, t) =
∫ t

0
fi(x, s) ds and

Fi(x, t) = P−mFi(x, t)− fi(x, t)t for i = 1, 2.
We assume that the functions fi : Ω× R→ R satisfy the conditions :

(H1) For i = 1, 2. fi ∈ C(Ω× R,R) and fi(x, 0) = 0 ∀x ∈ Ω, and

|fi(x, t)| ≤ ci(1 + |t|qi(x)−1),

for all (x, t) ∈ Ω× R where ci > 0 is a constant, and qi(x) ∈ C+(Ω) such that
q+
i = sup

x∈Ω

qi(x) < P−,∞ .

(H2) lim
t→0

F1(x,t)

|t|P−m
=∞, uniformly in Ω.

(H3) There exists δ > 0 such that for every x ∈ Ω,

f1(x, t)

|t|P−m−2t
is strictly decrasing in]0, δ[.

(H4) There exist two constants b1 and b2 such that

lim
t→0

inf
F2(x, t)

F1(x, t)
≥ b1 > −1,

and

lim
t→0

inf
F2(x, t)

F1(x, t)
≥ b2 > −1,

uniformly in Ω.

(H5) fi(x,−t) = −fi(x, t), (i = 1, 2) for all x ∈ Ω, |t| ≤ γ.

Theorem 1.3. Under the assumptions (H1)− (H5), the problem (P ) has a sequence
of weak solutions such that ‖un‖L∞ → 0 as n→∞.

As an example, we consider the problem

(1.4)

{
−4−→p (x)(u) + |u|pM (x)−2u = λ

(
m(x)|u|q1(x)−2u+ n(x)|u|q2(x)−2u

)
in Ω∑N

i=1 |∂xiu|pi(x)−2∂xiu.νi + β(x)|u|pm(x)−2u = 0, on ∂Ω,

where m(x), n(x), qi(x) ∈ C(Ω), 1 < qi(x) < P−,∞, (i = 1, 2) for all x ∈ Ω, and
the parameter λ is a positive number.

Corollary 1.4. Assume that 1 < q1(x) < P−m , 1 < q1(x) < q2(x), m(x) > 0 for all
x ∈ Ω. Then, For any λ > 0 the problem (1.4) has a sequence of weak solutions such
that ‖un‖L∞ → 0 as n→∞.
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The problems studied here involve a variable exponent. The 4−→p (.)- laplacian op-

erator possesses more complicated nonlinearities than the p(.) -laplacian operator,
mainly due to the fact that it is not homogeneous. As far as we are aware, contri-
butions discussed a anisotropic Robin problems with variable exponents have seldom
been studied. So it is necessary for us to investigate the related problems deeply. A
distinguishing feature that we have assumed some conditions only at zero, however,
there are no conditions imposed on f at infinity, we borrow the main ideas from Wang
in [19] and also form [18].

This paper is organized as follows. In Section 2, we recall some preliminaries on
variable exponent spaces. In Sections 3, we give the proof of results via a variational
structure.

2. Preliminaries

In this part, we give some properties of the variable exponent Lebesgue space and
anisotropic Sobolev spaces.
For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space:

Lp(x)(Ω) = {u : u is ameasurable real−valued function such that
∫

Ω

|u(x)|p(x) dx <∞},

endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1}.

Proposition 2.1. (see [6, 9, 10])
(1) The space (Lp(x)(Ω), |u|p(x)) is a separable, uniformly convex Banach space and

its dual space is Lq(x)(Ω), where 1
p(x) + 1

q(x) = 1. For any u ∈ Lp(x)(Ω) and

v ∈ Lq(x)(Ω), we have∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

(2) If p1(x), p2(x) ∈ C+(Ω), p1(x) ≤ p2(x), ∀x ∈ Ω, then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Proposition 2.2. (see [8]) Denote ρp(x)(u) =
∫

Ω
|u(x)|p(x) dx.

Then for u ∈ Lp(x)(Ω), (un) ⊂ Lp(x)(Ω) we have
(1) |u|p(x) < 1(= 1;> 1)⇔ ρp(x)(u) < 1(= 1;> 1),

(2) |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x),

(3) |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x),

(4) |u|p(x) → 0(→∞)⇔ ρp(x)(u)→ 0(→∞),
(5) limn→∞ |un − u|p(x) = 0⇔ limn→∞ ρp(x)(un − u) = 0.

Next, we define the anisotropic space with variable exponents where we will treat
the problem (P ) by

W 1,−→p (x)(Ω) = {u ∈ LpM (x)(Ω) : ∂xiu ∈ Lpi(x)(Ω), ∀i ∈ {1, ..., N}},
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with the norm

‖u‖ = ‖u‖1,−→p (.) = |u|pM (.) +

N∑
i=1

|∂xiu|pi(.),

which is a reflexive and separable Banach space (see [3, 7]).
Let us put

p∂(x) =

{
(N − 1)p(x)/(N − p(x)) if p(x) < N,

+∞ if p(x) ≥ N.

Now, we recall some results which concerning the embedding theorem .

Proposition 2.3. (see [2, 16]) Suppose that Ω ⊂ RN (N ≥ 2) is a bounded domain
with smooth boundary and relation (1) is fulfilled.
(1) For any q ∈ C(Ω) verifying 1 < q(x) < P−,∞ ∀x ∈ Ω, the embedding

W 1,−→p (x)(Ω) ↪→ Lq(x)(Ω)

is continuous and compact.
(2) If −→p (x) ∈ (C+(Ω))N , and q ∈ C(Ω) verifying

1 < q(x) < min
x∈∂Ω

{p∂1 (x), ..., p∂N (x)} ∀x ∈ ∂Ω,

the embedding

W 1,−→p (x)(Ω) ↪→ Lq(x)(∂Ω)

is continuous and compact.

Proposition 2.4. (see [13, 15]) Let

A(u) =

∫
Ω

N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)
dx

• A is well defined on W 1,−→p (x)(Ω), A ∈ C1(W 1,−→p (x)(Ω),R) and

〈A
′
(u), ϕ〉 =

∫
Ω

N∑
i=1

∂xi(|∂xiu|pi(x)−2∂xiu)ϕ+ |u|pM (x)−2uϕdx,

for all u, ϕ ∈ W 1,−→p (x)(Ω). In addition A′ is continuous, bounded and strictly
monotone.

• A is weakly lower semi-continuous.
• A′ is an operator of type (S+).

In this work, we use the proposition below which is the main tool to prove the
existence of a sequence of solutions.

Proposition 2.5. (see[12]) Let I ∈ C1(X,R) where X is a Banach space. Assume
that I satisfies the (PS) condition , is even and bounded from below, and I(0) = 0.
If for any n ∈ N, there exists a k-dimensional subspace Xn and ρn such that

sup
Xn

⋂
Sρn

I < 0,

where Sρ = {u ∈ X : ‖u‖ = ρ}, then I has a sequence of critical values cn < 0
satisfying cn → 0 as n→ +∞.
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Let X = W 1,−→p (x)(Ω). The functional I associated with the problem (P ) is defined
as

I : X −→ R, I = I1 − I2,
where

I1(u) =

∫
Ω

[
N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)

]
dx+

∫
∂Ω

β(x)
|u|pm(x)

pm(x)
dσ,

and

I2(u) =

∫
Ω

F (x, u) dx.

Under assumption (H1), we have I is well defined on X and I ∈ C1(X,R). So we can
define a weak solution as below.

Definition 2.1. A function u is a weak solution of the problem (P ) if and only if∫
Ω

[
N∑
i=1

∂xi(|∂xiu|pi(x)−2∂xiu)ϕ+ |u|pM (x)−2uϕ

]
dx+

∫
∂Ω

β(x)|u|pm(x)−2uϕdσ

−
∫

Ω

f(x, u)ϕdx = 0,

for all ϕ ∈ X.

3. Proof of main results

To prove Theorem 1.1, we shall use the Mountain Pass theorem. We first start
with the following lemmas.

Lemma 3.1. Under (f0) and (f1), the functional I satisfies the (PS) condition.

Proof. Let (un)n be a (PS) sequence for the functional I: I bounded and
I ′(un) → 0. Let us show that (un)n is bounded in X. Using the hypothesis (f1),
since I(un) is bounded and β(.) ≥ β0 > 0, we have

C1 ≥
∫

Ω

[
N∑
i=1

|∂xiun|pi(x)

pi(x)
+
|un|pM (x)

pM (x)

]
dx+

∫
∂Ω

β(x)
|un|pm(x)

pm(x)
dσ −

∫
Ω

F (x, un) dx

≥ 1

P+
M

∫
Ω

[
N∑
i=1

|∂xiun|pi(x) + |un|pM (x)

]
dx+

1

P+
M

∫
∂Ω

β(x)|un|pm(x) dσ −∫
Ω

un
θ
f(x, un) dx+ C2,

where C1 and C2 are two constants. Note that

〈I ′(un), un〉 =

∫
Ω

[
N∑
i=1

|∂xiun|pi(x) + |un|pM (x)

]
dx+

∫
∂Ω

β(x)|un|pm(x) dσ

−
∫

Ω

f(x, un)un dx
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which implies

C1 ≥ (
1

P+
M

− 1

θ
)

∫
Ω

[
N∑
i=1

|∂xiun|pi(x) + |un|pM (x)

]
dx+ (

1

P+
M

− 1

θ
)β0

∫
∂Ω

|un|pm(x) dσ

+
1

θ
〈I ′(un), un〉+ C2. (2)

Suppose, by contradiction that (un)n unbounded in X, so ‖ un ‖≥ 1 for rather
large values of n. For each i ∈ {1, ..., N} and n we define

αi,n =

{
P+
M if |∂xiun|pi(.) < 1,
P−m if |∂xiun|pi(.) > 1.

Using 2) and 3) of proposition 2.2, we have∫
Ω

[
N∑
i=1

|∂xiun|pi(x) + |un|pM (x)

]
dx ≥

[
N∑
i=1

|∂xiu|
P−m
pi(x) −N + |u|P

−
m

pM (x) − 1

]

≥ ‖u‖P−m
(N + 1)P

−
m−1

− (N + 1).

Furthermore, I ′(un)→ 0 assure that there exists C3 > 0 such that

−C3 ‖ un ‖≤ 〈I ′+(un), un〉 ≤ C3 ‖ un ‖

for rather large values of n. Consequently,

C1 ≥ (
1

P+
M

− 1

θ
)
‖u‖P−m

(N + 1)P
−
m−1

− (
1

P+
M

− 1

θ
)(N + 1)− C3

θ
‖ un ‖ +C2.

Since P−m > 1 and ( 1
P+
M

− 1
θ ) > 0, we have

(
1

P+
M

− 1

θ
)
‖u‖P−m

(N + 1)P
−
m−1

− (
1

P+
M

− 1

θ
)(N + 1)− C3

θ
‖ un ‖ +C2 → +∞ as n→ +∞,

what is a contradiction. So (un)n is a bounded sequence in X. The proof of lemma
3.1 is complete. �

Lemma 3.2. There exist r > 0 and α > 0 such that I(u) ≥ α, for all u ∈ X with
‖ u ‖= r.

Proof. The conditions (f0) and (f2) assure that

| F (x, t) |≤ ε | t |P
+
M +C(ε) | t |q(x) for all (x, t) ∈ Ω× R.

For ‖ u ‖ small enough, we have

I(u) ≥ 1

P+
M

∫
Ω

[
N∑
i=1

|∂xiu|pi(x) + |u|pM (x)

]
dx−

∫
Ω

F (x, u) dx (3)
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For such an element u we have |∂xiu|pi(.) < 1 and , by 3) of proposition 2.2, we obtain

‖ u ‖P
+
M

NP+
M−1

= N(

∑N
i=1 |∂xiu|pi(.) + |u|pM (.)

N
)P

+
M ≤

N∑
i=1

|∂xiu|
P+
M

pi(.)
+ |u|P

+
M

pM (.)

≤
N∑
i=1

|∂xiu|
p+i
pi(.)

+ |u|P
+
M

pM (.)

≤
∫

Ω

[
N∑
i=1

|∂xiu|pi(x) + |u|PM (x)

]
dx(4)

Relations (3)-(4) imply

I(u) ≥ 1

P+
MN

P+
M−1

‖ u ‖P
+
M −ε

∫
Ω

| u |P
+
M dx− C(ε)

∫
Ω

| u |q(x) dx

(5)

By the condition (f0), it follows

P+
M < q− ≤ q(x) < P−,∞

then

X ⊂ LP
+
M (Ω) and X ⊂ Lq(x)(Ω),

with a continuous and compact embedding, what implies the existence of C4, C5 > 0
such that

‖ u ‖
LP

+
M
≤ C4 ‖ u ‖ and | u |q(x)≤ C5 ‖ u ‖

for all u ∈ X. Since ‖ u ‖ is small enough, we deduce∫
Ω

| u |q(x)≤| u |q
−

q(x)≤ C6 ‖ u ‖q
−
.

Replacing in (5), it results that

I(u) ≥ 1

P+
MN

P+
M−1

‖ u ‖P
+
M −εCP

+
M

4 ‖ u ‖P
+
M −C7 ‖ u ‖q

−
,

with Ci are positives constants. Let us choose ε > 0 such that εC
P+
M

4 ≤ 1

2P+
MN

P
+
M
−1

,

we obtain

I(u) ≥ 1

2P+
MN

P+
M−1

‖ u ‖P
+
M −C7 ‖ u ‖q

−

≥ ‖ u ‖P
+
M (

1

2P+
MN

P+
M−1

− C7 ‖ u ‖q
−−P+

M ).

Since P+
M < q−, the function t → ( 1

2P+
MN

P
+
M
−1
− C7t

q−−P+
M ) is strictly positive in a

neighborhood of zero. It follows that there exist r > 0 and α > 0 such that

I(u) ≥ α ∀u ∈ X : ‖ u ‖= r.

The proof is completed. �
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Proof of Theorem 1.1. In order to apply the Mountain Pass Theorem, we must
prove that

I(su)→ −∞ as s→ +∞,
for a certain u ∈ X. From the condition (f1), we obtain

F (x, t) ≥ c | t |θ for all (x, t) ∈ Ω̄× R.

Let u ∈ X and s > 1 we have

I(su) =

∫
Ω

[
N∑
i=1

spi(x)

pi(x)
|∂xiu|pi(x) +

spM (x)

pM (x)
|u|pM (x)

]
dx+

∫
∂Ω

β(x)
spm(x)

pm(x)
|u|pm(x) dσ

−
∫

Ω

F (x, (su)) dx,

≤ sP
+
M

∫
Ω

[
N∑
i=1

1

pi(x)
|∂xiu|pi(x) +

|u|pM (x)

pM (x)

]
dx+ sP

+
M

∫
∂Ω

β(x)
|u|pm(x)

pm(x)
dσ

− csθ
∫

Ω

| u |θ dx.

The fact θ > P+
M , gives that

I(su)→ −∞ as s→ +∞.

It follows that there exists e ∈ X such that ‖ e ‖> r and I(e) < 0.
According to the Mountain Pass Theorem, I admits a critical value µ ≥ α which is
characterized by

µ = inf
h∈Λ

sup
t∈[0,1]

I(h(t))

where

Λ = {h ∈ C([0, 1], X) : h(0) = 0 and h(1) = e}.
Then, the functional I has a critical point u with I(u) ≥ α. But, I(0) = 0, that is,

u 6= 0. Therefore, the problem (P ) has a nontrivial solution.

We split the proof of the second result into five lemmas as follows.

Lemma 3.3. There exists λ1 > 0 such that

λ1 = inf
u∈V

∫
Ω

{∑N
i=1

|∂xiu|
pi(x)

pi(x) + |u|pM (x)

pM (x)

}
dx∫

Ω
|u|P−m dx

.

where

V = {u ∈ X : ‖u‖ > N + 1},

Proof. For a given u ∈ V , there exists j ∈ {1, 2, ..., N} such that |∂xju|pj(x) > 1, or
|u|pM (x) > 1.
If |∂xju|pj(x) > 1, then ∫

Ω

|∂xju|pj(x)

pj(x)
dx ≥ 1

P+
M

|∂xju|
P−m
pj(x). (6)
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Since Lpj(x)(Ω) is continuously embedded in LP
−
m (Ω), we infer that

|∂xju|P−m ≤ Cj |∂xju|pj(x), where Cj > 0, in other way

|∂xju|
P−m
pj(x) ≥

1

CP
−
m

j

∫
Ω

|∂xju|P
−
m dx. (7)

Using the relation (11) proved in [11], we obtain∫
Ω

|∂xju|P
−
m dx ≥Mj

∫
Ω

|u|P
−
m dx, (8)

where Mj > 0.
From relations (6), (7) and (8), we deduce that there exists a constant A such that∫

Ω

|∂xju|pj(x)

pj(x)
dx ≥ A

∫
Ω

|u|P
−
m dx,

where A = min
j∈{1,...,N}

Mj

P+
MC

P
−
m

j

.

Therefore ∫
Ω

{
N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)

}
dx ≥ A

∫
Ω

|u|P
−
m dx.

If |u|pM (x) > 1, then ∫
Ω

|u|pM (x)

pM (x)
dx ≥ 1

P+
M

|u|P
−
m

pM (x).

As the embedding LpM (x)(Ω) ↪→ LP
−
m (Ω) is continuous, so there exists D > 0 such

that |u|P−m ≤ D|u|pM (x), or |u|P
−
m

pM (x) ≥
1

DP
−
m
|u|P

−
m

P−m
.

It follows ∫
Ω

|u|pM (x)

pM (x)
dx ≥ 1

P+
MD

P−m

∫
Ω

|u|P
−
m dx.

Consequently, ∫
Ω

{
N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)

}
dx ≥ K

∫
Ω

|u|P
−
m dx,

where K = 1

P+
MD

P
−
m
.

Hence for u ∈ V , we have∫
Ω

{
N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)

}
dx ≥ K1

∫
Ω

|u|P
−
m dx,

where K1 = min{A,K}.
According to this inequality, we can see easily that λ1 > 0. �

Lemma 3.4. There exist a > 0, and f̃ ∈ C(Ω× R) such that

(1) f̃(x,−t) = −f̃(x, t), for every x ∈ Ω and t ∈ R.

(2) f̃(x, t) = f(x, t) for all |t| < a.

(3) F̃(x, t) = P−m F̃ (x, t)− f̃(x, t)t ≥ 0, for every x ∈ Ω and t ∈ R, where

F̃ (x, t) =
∫ t

0
f̃(x, s) ds .
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(4) F̃(x, t) = 0 for every |t| > 2a or t = 0.

Proof. From (f3), there exists a ∈]0, δ2 [ such that

F (x, t) ≥ λ1

4
|t|P

−
m , ∀|t| ≤ 2a.

Let us define a cut-off function h as follow

h(t) =

{
1 if |t| ≤ a.
0 if |t| ≥ 2a,

and h
′
(t)t ≤ 0, |h′(t)| ≤ 2

a .
Using this cut-off function, we can define

F̃ (x, t) = h(t)F (x, t) +
λ1

4
(1− h(t))|t|P

−
m .

By the definition of the function h and F̃ , we deduce there exists B > 0 such that

λ1

4
|t|P

−
m ≤ F̃ (x, t) ≤ B +

λ1

2
|t|P

−
m , ∀(x, t) ∈ Ω× R. (9)

On the other hand, we have

f̃(x, t) =
∂

∂t
F̃ (x, t) = h

′
(t)F (x, t)+h(t)f(x, t)+

λ1

4
P−m(1−h(t))|t|P

−
m−2t−λ1

4
h
′
(t)|t|P

−
m .

and

F̃(x, t) = h(t)F(x, t) + h
′
(t)t(

λ1

4
|t|P

−
m − F (x, t)). (10)

From the definition of h, (f4), and (f5), obviously 1., 2., 3., and 4. of the Lemma
above are fulfilled for |t| ≤ a and |t| ≥ 2a. In order to finish the proof, let’s take

a ≤ |t| ≤ 2a, we know that F (x, t) ≥ λ1

4 |t|
P−m and h

′
(t)t ≤ 0, then from (10) we have

F̃(x, t) > 0. �

Now, we extend the functional associated with the problem (P ) to the functional

Ĩ(u) = I1(u)−
∫

Ω

F̃ (x, u) dx, for u ∈ X.

Lemma 3.5. Suppose that (f4) is satisfied, so if 〈Ĩ ′(u), u〉 = 0 then u = 0.

Proof. We have

P−m

[∫
Ω

N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)
dx+

∫
∂Ω

β(x)
|u|pm(x)

pm(x)
dσ

]
= P−m

∫
Ω

F̃ (x, u) dx,

and ∫
Ω

N∑
i=1

|∂xiu|pi(x) + |u|pM (x) dx+

∫
∂Ω

β(x)|u|pm(x) dσ =

∫
Ω

f̃(x, u)u dx.

Therfore, we have

P−m

[∫
Ω

N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)
dx+

∫
∂Ω

β(x)
|u|pm(x)

pm(x)
dσ

]
≤
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∫
Ω

N∑
i=1

|∂xiu|pi(x) + |u|pM (x) dx+

∫
∂Ω

β(x)|u|pm(x) dσ.

Then

P−m

∫
Ω

F̃ (x, u) dx ≤
∫

Ω

f̃(x, u)u dx,

finally ∫
Ω

P−m F̃ (x, u)−
∫

Ω

f̃(x, u)u dx ≤ 0,

by (f4), we obtain that u = 0. �

Lemma 3.6. The functional Ĩ is even and satisfies the (PS) condition.

Proof. Using Lemma 3.4 we can see easily that Ĩ is even and Ĩ ∈ C1(X,R). Since
β(.) ≥ 0 and for ‖u‖ > N + 1, we have

Ĩ(u) =

∫
Ω

[
N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)

]
dx+

∫
∂Ω

β(x)
|u|pm(x)

pm(x)
dσ −

∫
Ω

F̃ (x, u) dx

≥
∫

Ω

{
N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)

}
dx−

∫
Ω

F̃ (x, u) dx

≥
∫

Ω

{
N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)

}
dx− λ1

2

∫
Ω

|u|P
−
m −B|Ω|.

≥ 1

2

∫
Ω

{
N∑
i=1

|∂xiu|pi(x)

pi(x)
+
|u|pM (x)

pM (x)

}
dx−B|Ω|

≥ 1

2P+
M

{
N∑
i=1

|∂xiu|
P−m
pi(x) −N + |u|P

−
m

pM (x) − 1

}
−B|Ω|

≥ ‖u‖P−m
2P+

M (N + 1)P
−
m−1

− N + 1

2P+
M

−B|Ω|,

where |Ω| is the measure of Ω, therefore Ĩ(u) is coercive. Then any (PS)c sequence

of Ĩ is bounded. Using a standard argument, we show that Ĩ verifies (PS)c condition
on X for all c. �

Lemma 3.7. For every k ∈ N, there exists ρk such that

sup
Xk

⋂
Sρk

Ĩ < 0.

Proof. For every k ∈ N we have k independent smooth functions ϕi, for i = 1, 2, ..., k,
let’s define the subspace Xk = span{ϕ1, ..., ϕk}. For the moment, using again (f0)

we can find a constant d > λ1

4 satisfying F̃ (x, t) > d|t|P−m for |t| < ε < δ
2 . For any

v ∈ Xk \ {0} such that ‖v‖ = 1, and |ρkv(x)| < ε with 0 < ρk < 1, and x ∈ Ω, and
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from Lemma 3.4, we have

Ĩ(ρkv) = I1(ρkv)−
∫

Ω

F̃ (x, ρkv) dx

≤ I1(ρkv)− dρP
−
m

k

∫
Ω

|v|P
−
m dx.

On the other hand, we have

I1(ρkv) ≤
ρ
P−m
k

P−m

N∑
i=1

∫
Ω

|∂xiv|pi(x) dx+
ρ
P−m
k

P−m

∫
Ω

|v|pM (x) dx+
ρ
P−m
k

P−m

∫
∂Ω

β(x)|v|pm(x) dσ

≤
ρ
P−m
k

P−m

(
N∑
i=1

∫
Ω

|∂xiv|pi(x) dx+

∫
Ω

|v|pM (x) dx+

∫
∂Ω

β(x)|v|pm(x) dσ

)
.

Therefore, from 2) of proposition 2.3 and β ∈ L∞, there exists C > 0 such that

Ĩ(ρkv) ≤ C
ρ
P−m
k

P−m

(
N∑
i=1

∫
Ω

|∂xiv|pi(x) dx+

∫
Ω

|v|pM (x) dx

)
− dρP

−
m

k

∫
Ω

|v|P
−
m dx.

Since all norms on the finite dimensional vector space Xk are equivalent, put u = ρkv,
so for ρk small enough and for d large enough, we obtain

sup
Xk

⋂
Sρk

Ĩ < 0.

�

Proof of Theorem 1.2. From Lemma 3.5, Lemma 3.6 and Lemma 3.7, we deduce
that the conditions of Proposition 2.5 are fulfilled, and then there exists a sequence
of negative critical values ck for the functional Ĩ which verifies ck → 0 when k is large
enough.

Thereby, for any uk satisfying Ĩ(uk) = ck and Ĩ
′
(uk) = 0, we have (uk)k is (PS)0

sequence of Ĩ(u), then the subsequence still denoted (uk) has a limit.
Using again Lemma 3.5 and Lemma 3.4, we infer that 0 is the only critical point

when the energy is zero, then the subsequence (uk) has to converge to zero.
In order to achieve the proof we apply the results of regularity in [4]. Hence

(uk) ∈ C(Ω) and |uk|L∞(Ω) → 0 as k →∞.
Finally from Lemma 3.4, we get |un|C(Ω) ≤ a, so the sequence (uk)k are solutions

of the problem (P ). �

Proof of Theorem 1.3. Firstly, we begin by proving of the third result into two
claims as follows.
Claim: There exists δ > 0 be small enough such that

F1(x, t) = P−mF1(x, t)− f(x, t)t > 0,

for every x ∈ Ω, |t| ≤ δ and t 6= 0,

Proof. In view of the condition (H3), for the case t > 0 and s ∈]0, t[ we have

f1(x, s) >
f1(x, t)

|t|P−m−2t
|s|P

−
m−2s.
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Integrating this inequality over ]0, t[, we deduce

F1(x, t) =

∫ t

0

f1(x, s) ds >
f1(x, t)

|t|P−m−2t

∫ t

0

|s|P
−
m−2s ds =

1

P−m
f1(x, t)t.

Thus, P−mF1(x, t)− f1(x, t)t > 0, in t ∈]0, δ[.
Since f(x, .) is odd and so F (x, .) is even. It is easy to see that

P−mF1(x, t)− f1(x, t)t > 0, in t ∈]− δ, 0[.
Therfore,the claim follows. �

Claim: Assume that (H1) − (H5) are satisfied, then f = f1 + f2 satisfies the
conditions (f0) and (f3)− (f5).

Proof. It is easy to see that

F (x, t)

|t|P−m
=
F1(x, t) + F2(x, t)

|t|P−m
=

(
1 +

F2(x, t)

F1(x, t)

)
F1(x, t)

|t|P−m

and

F(x, t) = F1(x, t) + F2(x, t) =

(
1 +
F2(x, t)

F1(x, t)

)
F1(x, t).

Now, we choose ε ∈ (0,min
(
b1+1

2 , b2+1
2

)
, then by (H2) , (H3) and (H4) there exist

δ > 0 such that

1 +
F2(x, t)

F1(x, t)
≥ 1 + b1 − ε ≥

b1 + 1

2
> 0

and

1 +
F2(x, t)

F1(x, t)
≥ 1 + b2 − ε ≥

b2 + 1

2
> 0,

for |t| ≤ δ and a.e. x ∈ Ω.
Then, we obtain easily (f3) and (f4) . So, (f5) with δ ≤ γ, follows from (H5). �

Finally, by using Theorem 1.2, we infer that the problem (P ) has a sequence of
weak solutions such that ‖un‖L∞ → 0 as n→∞. �

Proof of Corollary 1.1. Take

f1(x, t) = λm(x)|t|q1(x)−2t and f2(x, t) = λn(x)|t|q2(x)−2t,

we can see that f1 and f2 still satisfies the above conditions used in the Theorem 1.3.
Thus, the result is a consequence of Theorem 1.3. �
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