Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 50(2), 2023, Pages 476-487, DOI: 10.52846/ami.v50i2.1831
ISSN: 1223-6934

On the Adaptivity Analysis of the Wave Equation
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ABSTRACT. The purpose of this work deals with the discretization of a second order linear
wave equation by the implicit Euler scheme in time and by the spectral elements method in
space. We prove that the adaptivity of the time steps can be combined with the adaptivity of
the spectral mesh in an optimal way. Two families of error indicators, in time and in space,
are proposed. Optimal estimates are obtained.
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1. Introduction

A posteriori error analysis of partial differential equation has gained much attention
over the past twenty years. Elliptic, and parabolic problems have been widely devel-
oped by this theory in the context of the finite element approximation [27, 6, 12, 4, 3],
and [7, 13, 14, 18, 19, 20, 28, 17]. However, the a posteriori analysis of hyperbolic
problems either by the finite element method or by the spectral element method has
not been well addressed in the literature [5, 10, 11, 16, 24, 25, 15, 1, 2].

The purpose of this work is to develop the a posteriori error analysis of initial-
boundary-value problem for the second-order linear wave equation, discretized by the
spectral elements method. The spectral element method consists of approximating
the solution of partial differential equations with higher order polynomial functions
on each element of the decomposition [38, 9, 23]. The discretization parameter is a
K-tuple formed by the maximum polynomial degree N on each element. However,
as for the h — p version of the finite element method, (see [0, 13]) this parameter is
also a quantity hj representing the diameter of the element. To convert the second-
order wave equation to a first-order system, we show that the time discretization is
equivalent to the backward Euler-time discretization of the related first-order system.

This work is an extension to the spectral element method of the results obtained
by Bernardi and al. [7] for the finite element method. More specifically, we present
here two families of indicators, both of them are residual types. The first family of
indicators is introduced in [20]. Those indicators are global with respect to spatial
variable but local with respect to time discretization. Choosing the next time step
is based on the time error indicator. The second family of indicators is an efficient
tool for mesh adaptivity. These indicators are local for both temporal and spatial
variables and can be computed explicitly as a function of the discrete solution and
problem data. They are said to be optimal if their Hilbert sum is equivalent to the
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error and the equivalent constant is independent of the discretization parameter. This
document is organized as follows:

Section 2 presents the second order linear wave equation and discusses the time-
semi-discrete problem and its spatial discretization.

In section 3, we construct error indicators for the wave equation and prove upper
and lower bounds based on time and space indicators.

2. Time and space discretization

2.1. The continuous problem. We consider {2 an open bounded connected domain
of R, for d =1, d =2 or d=3. Let I its Lipschitz continuous boundary and T a
positive real number.

For f € LY(0,T; H}(Q)), we consider the following initial-boundary-value problem
for the second-order linear wave equation,

02— Au=f in Qx]0,T],

u=0 on I'x]0,TJ, )
u(.,0) = ug in Q,
Oru(.,0) = vg in Q,

where u is the unknown defined on 2x]0,T], and (ug,vg) are the data functions
defined on Q.

Proposition 2.1. For any data f belongs to L*(0,T; HE(2)) and (ug,vo) belongs to
HY(Q)x L?(Q), problem (1) has a unique solution u in C*(0,T; L?(Q))NCY(0,T; H}(Q2))
which satisfies the estimation for 0 <t < T,

1

(How i +19u® )" < (Nl +1Vu2) + 171 @as. @)

The proof of the well posed-ness of the system (1) is based on the Cauchy-Lipschitz
theorem and the estimate (2), see ([21], Chap. 1, Th. 12.3) for the detail of the proof.
See also [22, 26, 29, 30, 31] for more general study about a non linear wave equation.

2.2. The time semi discrete problem. We make a partition of the interval [0, T
into sub-intervals [t;,t;41], 1 < i < I, where 0 = tg < t; < ... < t; = T. Let

Ti=tiy1 —ti, T=(11,...,75), |T| = 112?SXI|TZ-\, and

Ti

or = max
2<i<I T;—1
the regularity parameter.

For any family (u')1<;<; = u(.,t;), we consider the function u,, defined on the
interval [0, T'], affine on each sub-interval [¢;_1,%;]; 1 < i < I, such that u,(¢;) = u(t;),
SO
t; — 1

Yt € [tio1, ti], ur(t) =u' — (u® —u'™t).

i
Then, we use Euler implicit method for the discretization of the time derivative in
problem (1), where the data f = 0 to simplify the analysis. The time discrete problem
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I+1

consists to find the sequence u' = u(z,t;)g<;<; in Hy(Q) " such that

I S S S £ | ' ' '
— — AU =0 in Q, 1<i<I,
T Ti—1
i+1 <i<
U =0 on I, 1<i<I, (3)
u® =g in Q,
u! = ug + hovo in Q,

where (ug,vg) belongs to HE(Q2) x HE(). If the value of u® and v° are known, we
prove tha‘_c w1l > 1 is a solution of the following variational formulation:
Find vt in H{(Q2) such that for any v € H} () we have:

/Q w L ()0 (x)dx + 7 /Q Vit (x) Vo (x)dx

_ /Q (v + T =) ) (u(x)dx. (4)

Ti—1

Proposition 2.2. If (ug,vg) belongs to € H(2) x HY(Q), problem (4) has a unique
solution u't1; i > 1 belongs to H (), which satisfies the following stability conditions

Wit i _
IIfIIQ + [IVu ™ < lwoll? + 2 Vuol1? + 275 [ Voo |- (5)
1
and
witl

o _
| = 1P+ 1 Vet P 2ot 2+ ) vut ). (6)
Proof. We use the Lax-Milgram theorem for easily proving that the variational for-
mulation (4) has a unique solution. See [1] for the proof of the stability conditions
(5) and (6), O

Now, we present in the following theorem the a priori time error estimate.

Theorem 2.3. For the solution u of the problem (1) and (u')1<;<1 solution of the
problem (3), the a priori error estimate holds for 0 <i < 1I:

|| u(ti+1) B u(tl)

= ulticn)|* + [V (u(t) — u')|?

< ( /Oti<|| ul +1129u )(5)s) ™)

where C' is a positive constant independent of the step T.

See [1] for the proof of theorem 2.3. The estimations (7) is of order 1 since the
time discretization is based on the implicit Euler scheme.

2.3. Spectral element discretization. In the following, we will focus to the a pos-
teriori analysis of the spectral element method in one dimension, since the polynomials
inverse inequalities are not optimal for the spectral method in dimension d > 2. We
now describe the discrete space. Let A the interval | — 1,1[. For each discrete time
t;,0 < i < I, we introduce a partition P; of the interval A such that

71:a0§a1§ ......... §aK_1§aK:1,
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and Ap =lag_1,ar[,1 < k < K. Let hj the length of the sub-interval Ay, and
h=  max hi. The discrete parameter 0 is a K-tuple of couples (hg, N),1 <k < K

where_a_integer N, > 2.

First, we recall the following formulas which we will use after. Let &y < ... < £n be
the zeros of the polynomial (1 — x2)L;V and p; are its associated weights where Ly
is the Legendre polynomial defined on A. The Gauss-Lobatto quadrature formula on
the interval A =] — 1,1] is written

1 N
¥6 € Paw-a(); | Ol =3 o€ (8)
i 2

where Py (A) is the space of polynomials, defined on A, with degree < N.
We introduce a discrete scalar product for any u and v continuous on A by

K N

(w,0)s =y > ul§ 2)eg )

k=1 7=0

where f;v’c = F,;l(ij) and pj-v’“ = (ax — ak,l)pﬁy, 0 < j < N, such that F}, is the
bijection from Ay into A.

We denote by is the Lagrange interpolation operator on the set of nodes §§V ¥ with
values in

Ys = {w € H'(A); vsja, € P, (Ag), 1<k < K}.
Then, for each function ¢ continuous on A, i5(¢)|a, in Py, (Ag), and verify
i5(0) 18, (§7) = Pan (€.
We consider the following property, which will be widely used in the following:
Vus € Vs, |lusl|7z(n) < (us,us)s < 3l|usll7za)- (10)
We define the discrete space as

Xi = {w € HE(A); YA, € P vga, € Py (Ag), 1 <k < K}. (11)

We introduce the orthogonal projection operator II§ defined on H} () into X{. If
w € HE(Q), Mw belongs to X} such that:

: O(w — Miw) Ots

Vts € X3, (7‘;,—) =0. 12

€% oz ox (12)

So using the Galerkin method combined with numerical integration, the discrete prob-

lem deduced from the problem (3) is written as: If ug, and vy are continuous on A,
I

find (u%)o<i<r in HX; such that:
i=0
ul =isup ,and uf = isug + Toisvo, (13)

7+1 i+1 4 7 4. 1—1 1+1
wg — IS B u5—H5u5 5) +T(8u 61)5
’ T dr

Yus € X§+1, (

Ti Ti—1
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As in the problem (4), we show that each uf;“, 1 < ¢ < I is the solution of the
following discrete variational problem:
Find u?‘l in X;H such that:

Qus™ dvs
Or  Ox

Yus € Xg'H, (uf{“, vs)s + 7'2(

Ti
g .

)s = (H?‘lué + (uf; — ngg_l),vg>5.

(15)
Thus, we easily prove using the Lax-Milgram theorem that the problem (13)-(14) has
a unique solution.

Ti—1

Remark 2.1. The choice to work with different spectral meshes at each time step
motivated us to use the II§ operators in contrary to the classical discretization of the
spectral fixed-grid of the wave equation (see [1]),

3. A posteriori analysis of the discretization

In this section, we begin by defining two families of error indicators. The first relates
to the discretization in time, and the second concerns the spectral discretization. We
prove upper and lower bounds on the error, focusing first on the time discretization,
and then on the spatial discretization.

3.1. A posteriori analysis of the time discretization. We define the time indi-
cators for each 1 <i <1,

i+1 i i+1 i+1, i i i i—1
O(ug" — ug) - ug' — I ug _Us — 5ug

8x Ti Ti—1

i =i | I (16)
This type of time indicators was first used in [20]. We refer also to [7] for their use
in a posteriori analysis of the finite element discretization of some parabolic problem
(Heat equation). We remark that if the values of the discrete solutions uj™", u} and
uf;l are known, we can easily compute the time indicator ;.

Let o' = % for 1 < i < I. Thus the residual problem if U = (ZL) , and

0 1 D, .
QU — U,) — (A O) U —U,) = (DU> in Qx0,T],
w—uy =0 on T'x]0,T], (17)
(U~ U,)(,0)=0 n Q,
where D, (z,t) = v —v,, fort; <t <t;41, 1 <i<I—1,and D,(z,t) =0, for 0 <
2
t <t likewise D, (z,t) = ZW0) for ¢ <t <tq, 1 <i < —1and D,(,t) =

Puy for 0 <t <t.

dx2

Proposition 3.1. The a posteriori error estimate between the solution u of prob-
lem (1), when the data f = 0, and the solution (u')o<;<r of problem (3) holds for
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0<i<I:
Uit i ,
| (Qew)(tivr) — — -1y + [l u(tivr) —u* |
: A+t — it (! — ul)
< ) el S B bl S VA

j j+1 j i+1, 7
@ ) - @ T |

(18)

. : U — Uy
Proof. We make the inner product of (17) with (Al(v B v(;))' Let

N

26 = (Nu=us |2+ 1 v=vs 310 )
Then, we conclude that
e
2 dt
So,

[N

= (Duyu =) + (Do, A7 w0 = 05)) < (11 Du |2+ 1 Dy 3100 ) %
ds 3
T < 1Dl + 1Dy ooy ) <IDull+ 1Dy -y~ (19)

Since X(0) = 0, then by integration of (19) between 0 and ¢;1, we obtain

tit1
S(ti) < / (Ul D |+ | Do 111 )t
We know that
, tirq —t . _
V€ [tj,tj11), ur(t) = wl T — L (W — ),
7

then

ti+1 92 (il — yJ titr ¢ ¢
[ 1D e e = ( ) TG
t t

j 8x2 j Tj
Q)(82(uj+1 —u!)

~(

2 Ox?
Thus, we conclude using the triangular inequality
O?(witt — 92 (it — 02 (I +l — o711 02 (u! — ul
A Dy E_—w) o T )y T )y
Ox? Ox? Ox? Ox?

i1
We use the same arguments to evaluate / I D, || dt. Combining all these
tj

inequalities leads to the desired result (18). O

In the following proposition, we prove an upper bound of the error indicators &,
for each 0 <17 < I.
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Proposition 3.2. For each indicators k;, 0 <1i < I, we have the following estimate

tit1 5‘2(u _ "u,5) tit1
wsl [ e [ @ ae
ts t;

1 witl—k _ ik -
+ Z | (Oru)(tit1-k) — . la-1() + Il utivi—r) — w77
k=0 v
1 ; i1
a2(uz+1fk _ ug—‘rl k)
o (uit1=k — unglfk) — (k- Hf;rlfkuf;k) .
Ti—k (20)

Proof. Using triangular inequality, it is enough to bound the following terms
82 (wi+! — u) i
Ox? ’

i) To bound the first term of (21), we make the inner product of the second line of
(17) by (u'™! —u?) and we integrate between the time ¢; and ¢;11. So, we have

o OF(uttt —ut) /ti“ . .
ki T 2< O¢(v —vy), u' ™ —ub)dt
12 [ - )

tiv1 92 _ 2(,,i+1 _ i
+(/ 0% (u uT)dt’a(u u))
¢

7i || il — gt Il - (21)

7

Ox? 02

i

Then by integrating by parts, we conclude that

Ti 62(ui+1 _ ul) Wit — gt ; ;
5 | o 1> < ((3tu)(ti+1) B H—u )
i i1 _
- () — " )
Ti—1
Lt 92 (u —uy) . 02 (uft — ub)
T2 dt, )
+ (/t Ox? ox?
Applying Cauchy-Schwarz inequality we conclude
70Ut — ) Wit i
2 I < @) = ey
ui _ ui—l tit1 82(’& _ u‘r)
@) - v+ [
—1 t; T

ii) As in the estimation of the first term of (21), to bound the second term of (21), we
make the inner product of the first equation of (17) with v**1 — v¢ and integrating
between the time t; and ;1. This leads to

2 [ =o' |2 < (u(ti-H) —u Tt — vi> - (u(tl) —ut vttt — vi)

2
tit1 ) )
- (/ (v — v, )dt,v" — vl).
t;

This permits us to conclude the estimate (20). O
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3.2. A posteriori analysis of the spectral discretization. For each 1 < i < T
and each Ag,1 < k < K, we define the refinement spectral indicators

_ S PRV AN (2 S A | e
B =l s — T3 g || + NG || = = S | (22)

Ti Ti—1

These indicators are local and respect both the time and spaces variables and depends
of the local discrete solution. So, they can be computed explicitly for each iteration
of time. We remark that the first term in (22) appears since we use different spatial
meshes on the various time levels, while the other term is the same as those in standard
residual-based error bounds for the elliptic equation (see [27]). Then, the residual
problem deduced from the system (13)-(14). We define for each 1 <i < T

. - , —
ut — il ok — IR » ~ . . - .

vi= ———— b= 00 eyl =tk evk =0 — vk (23)
Ti—1 Ti—1

Then, we conclude from the two problems 3 and 13-14 that the error vector Eg =

7

i
(ZZ‘-S) is the solution of the following residual problem
5

Ei+1_Ei . i
55_(0 1>E§+1:<€u5) n oQ 0<i<I,

Ti A 0 f’[)z;
eus™ =0 on I, 0<i<I, (24)
0o_,0 0o_,0
o <“ uévjf’é}j ”6)) in Q.
é

The two terms &ujy and v} belongs to H~1(Q2) and are defined as

. ub — TT
< Cuf,v>=(2—92 5,1})
Ti
; i+, 4 ; i i1 i+1
i Ly Iy ug — ITug _(Ougm Ov
<£’U§,U>— , U ) )
or ~Ox

i

Ti Ti—1 (25)
where < -,- > is the duality product between H~1(Q), and H{(2). The bound of
the error estimate by the refinement spectral indicators is the subject of the following
proposition.

Proposition 3.3. The a posteriori error estimate between the solution (u®) of the
problem (3), and the solution (u$) of the problem (13)-(14) holds for all1 <i<I—1

uz‘+1 o ui+1 . ui 7 Hz‘+1ui ) )
( [ ) ( ) [ ||H*1(Q) + H uz+1 _u15+1 H

% K
<D (B I = | 700 =g | ) (26)

j=1 k=1
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Proof. By using the inequality (6) applied to the residual problem (24), and knowing
that for any @ > 0, b > 0, f(a—f— b) < Va? +b? < a+ b, we obtain that

vyt N + I ews™ 11 < C( Il evd 1oy + Il eus |

7

+ 3 n (el e + 1 €651 1)). D)
j=1

Then, we have to bound the terms in the right hand side of inequality (27). The
bounds of || euj ||g-1(q), and || evy || are done using the last equation of the system
(24). From the definition of {u}, we show that

H]-Hu' K ) ) ) 1
+1 +1
I &uf™ 11=1 = — j(Z | wh =T d |2y )2
Since,
; < &vkv >
I &%H HH—l(Q): sup 0

vEHL(Q) | Vo

and using the equality (14), we have for any v € HJ(2) and vs € X}

1wttt — Tyt ol — Tt out O(v —vs
| €v* |- Q)——*( 2 e ,v—va)—( 577( ))~
T T Ti1 ox ox

We consider for any function v € Hg () the function

ZT‘-Nk L (v = v(ag—1)r—1 — vlar)ir) +Z v(ak)r,

k=1 -
where 1, are an affine functions on Ay equal to 1 on the node ag, and equal to 0 on
the other nodes a;,l # k. 7711\}271 is the orthogonal projection operator from HE(Ay)
into Py, (Ax) N HE(Ag), we refer the reader to [3] for the properties of this operator.
The function vs is in the space X since v € HE (). Then, we make an integration
by part we obtain that

; 1wt — Tyt gl — T

+1 s 5 Us 5 sUs

&3 i ey= —= (Bt - v — )
3 3 1—1

So, we conclude the result (26) using the Cauchy Schwarz inequality. O

The upper bound estimate of the spectral refinement indicators is subject of the
following proposition.

Proposition 3.4. The following estimate holds for the indicators 3%, 1 <i <1,
(ui-l—l—j _ u?—l_j) _ (ui—j _ H?_l_juf;_j)

Tifj

1

sr<o( (1

=0

lFr=1(a)

(ui+1 _ u?rl) _ ( Hz+1 )

O A lz2ap ) + 7 (|l —
1

I 22(An)

a(ui-i-l _ uf;rl)
+ H o ||L2(Ak) ))7

(28)
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where C' is a constant independent of T and §.
Proof. We bound successively the two terms in 3% denoted by /31? and Bgf. We have
from the first equation of the system (24)
euf{"l — euf; TR ul — Hf{"lug
—— —evs =fuy =t
T T

Now, we make the L? norm of this equation and we multiply by 7; leads to
; i+1 1
(! — ) — (T u)

Ti

1
I
By <Y T —ug™ T e, 4 |l 22 (Ak) -
=0

(29)
1
)wk on the interval Ay, and

equal to 0 on A\Ay, where v, is an affine functions on Ay equal to 1 on the node ay,
and equal to 0 on the other nodes a;,l # k. Then, we show by integration by part
that

i+1 i+1_ 4 7 i, 1—
us Il us  us—Ilzug

Ti Ti—1

Let vs be the function equal to (

“Ll Hf;“uf; uf; - ngg !

T Ti—1

1
< it vs >=—— || ( )¢z§ [ Z2(ap) -

Thus, making the inner product of the second equation of the system (24) with —7;v;5
gives

41 i1, ; 1
2 ||( ug — I uy g — Muy )w% 12,
i Ti—1 kLA

() ) )

Ti—j

| z-1(an)

O(u*t —ulth) Ovs

8 g ) 1| 52

Now, we use the following two inverse inequality (see [8] and [9] for the proof). For
all py € Py (A), we have

+ H ||L2 (Ag) -

1

1
[ (OO =< e N / GO — (P,

and
1 1
/ AOdC < ¢ N? / G(O)(1— ¢A)dC.
—1 1

Then, we combine all this inequality we conclude that there exists a constant C' such
that

1 i1 ikl imj _ ritl—d, i—j
(uitt=7 —u )—(ui -1 us 7)
gt<c(Y — ; " [lg-1(an)
=0 -
A(uitt — it
+ |l 5 2 |lL2ay) ) (30)

Finally, from (29) and (30) we have the desired result (28). O
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Conclusion

For the discretization of the a partial differential equations the a posteriori analysis is
a very efficient tool for mesh adaptivity. We interested in this work to the a posteriori
analysis of the discretization of the second order wave equation by the spectral element
method. We constructed two residual kind of indicators and we proved their optimal
upper and lower error bounds. The algorithm of resolution and the implementation
of these results will be the subject of our future paper.
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