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Abstract. The purpose of this work deals with the discretization of a second order linear
wave equation by the implicit Euler scheme in time and by the spectral elements method in

space. We prove that the adaptivity of the time steps can be combined with the adaptivity of

the spectral mesh in an optimal way. Two families of error indicators, in time and in space,
are proposed. Optimal estimates are obtained.
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1. Introduction

A posteriori error analysis of partial differential equation has gained much attention
over the past twenty years. Elliptic, and parabolic problems have been widely devel-
oped by this theory in the context of the finite element approximation [27, 6, 12, 4, 3],
and [7, 13, 14, 18, 19, 20, 28, 17]. However, the a posteriori analysis of hyperbolic
problems either by the finite element method or by the spectral element method has
not been well addressed in the literature [5, 10, 11, 16, 24, 25, 15, 1, 2].

The purpose of this work is to develop the a posteriori error analysis of initial-
boundary-value problem for the second-order linear wave equation, discretized by the
spectral elements method. The spectral element method consists of approximating
the solution of partial differential equations with higher order polynomial functions
on each element of the decomposition [8, 9, 23]. The discretization parameter is a
K-tuple formed by the maximum polynomial degree Nk on each element. However,
as for the h − p version of the finite element method, (see [6, 13]) this parameter is
also a quantity hk representing the diameter of the element. To convert the second-
order wave equation to a first-order system, we show that the time discretization is
equivalent to the backward Euler-time discretization of the related first-order system.

This work is an extension to the spectral element method of the results obtained
by Bernardi and al. [7] for the finite element method. More specifically, we present
here two families of indicators, both of them are residual types. The first family of
indicators is introduced in [20]. Those indicators are global with respect to spatial
variable but local with respect to time discretization. Choosing the next time step
is based on the time error indicator. The second family of indicators is an efficient
tool for mesh adaptivity. These indicators are local for both temporal and spatial
variables and can be computed explicitly as a function of the discrete solution and
problem data. They are said to be optimal if their Hilbert sum is equivalent to the
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error and the equivalent constant is independent of the discretization parameter. This
document is organized as follows:

Section 2 presents the second order linear wave equation and discusses the time-
semi-discrete problem and its spatial discretization.

In section 3, we construct error indicators for the wave equation and prove upper
and lower bounds based on time and space indicators.

2. Time and space discretization

2.1. The continuous problem. We consider Ω an open bounded connected domain
of Rd, for d = 1, d = 2 or d = 3. Let Γ its Lipschitz continuous boundary and T a
positive real number.

For f ∈ L1(0, T ;H1
0 (Ω)), we consider the following initial-boundary-value problem

for the second-order linear wave equation,
∂2
t u−∆u = f in Ω×]0,T[,

u = 0 on Γ×]0,T[,

u(., 0) = u0 in Ω,

∂tu(., 0) = v0 in Ω,

(1)

where u is the unknown defined on Ω×]0, T [, and (u0, v0) are the data functions
defined on Ω.

Proposition 2.1. For any data f belongs to L1(0, T ;H1
0 (Ω)) and (u0, v0) belongs to

H1
0 (Ω)×L2(Ω), problem (1) has a unique solution u in C1(0, T ;L2(Ω))∩C0(0, T ;H1

0 (Ω))
which satisfies the estimation for 0 ≤ t ≤ T ,(

‖ ∂tu ‖2 + ‖ ∇u ‖2
) 1

2 ≤
(
‖ v0 ‖2 + ‖ ∇u0 ‖2

) 1
2

+

∫ t

0

‖ f ‖ (s)ds. (2)

The proof of the well posed-ness of the system (1) is based on the Cauchy-Lipschitz
theorem and the estimate (2), see ([21], Chap. 1, Th. 12.3) for the detail of the proof.
See also [22, 26, 29, 30, 31] for more general study about a non linear wave equation.

2.2. The time semi discrete problem. We make a partition of the interval [0, T ]
into sub-intervals [ti, ti+1], 1 ≤ i ≤ I, where 0 = t0 < t1 < . . . < tI = T . Let
τi = ti+1 − ti, τ = (τ1, . . . , τi), |τ | = max

1≤i≤I
|τi|, and

στ = max
2≤i≤I

τi
τi−1

the regularity parameter.
For any family (ui)1≤i≤I = u(., ti), we consider the function uτ , defined on the

interval [0, T ], affine on each sub-interval [ti−1, ti]; 1 ≤ i ≤ I, such that uτ (ti) = u(ti),
so

∀t ∈ [ti−1, ti], uτ (t) = ui − ti − t
τi

(ui − ui−1).

Then, we use Euler implicit method for the discretization of the time derivative in
problem (1), where the data f = 0 to simplify the analysis. The time discrete problem
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consists to find the sequence ui = u(x, ti)0≤i≤I in H1
0 (Ω)

I+1
such that

ui+1 − ui

τi
− ui − ui−1

τi−1
− τi∆ui+1 = 0 in Ω, 1 ≤ i ≤ I,

ui+1 = 0 on Γ, 1 ≤ i ≤ I,

u0 = u0 in Ω,

u1 = u0 + h0v0 in Ω,

(3)

where (u0, v0) belongs to H1
0 (Ω) × H1

0 (Ω). If the value of u0 and v0 are known, we
prove that ui+1; i ≥ 1 is a solution of the following variational formulation:

Find ui+1 in H1
0 (Ω) such that for any v ∈ H1

0 (Ω) we have:∫
Ω

ui+1(x)v(x)dx + τ2
i

∫
Ω

∇ui+1(x)∇v(x)dx

=

∫
Ω

(
ui +

τi
τi−1

(ui − ui−1)
)

(x)v(x)dx. (4)

Proposition 2.2. If (u0, v0) belongs to ∈ H1
0 (Ω)×H1

0 (Ω), problem (4) has a unique
solution ui+1; i ≥ 1 belongs to H1

0 (Ω), which satisfies the following stability conditions

‖u
i+1 − ui

τi
‖2 + ‖∇ui+1‖2 ≤ ‖v0‖2 + 2‖∇u0‖2 + 2τ2

0 ‖∇v0‖2. (5)

and

‖ u
i+1 − ui

τi
‖2 + ‖ ∇ui+1 ‖2≤ 2

(
‖ v1 ‖2 + ‖ ∇u1 ‖2

)
. (6)

Proof. We use the Lax-Milgram theorem for easily proving that the variational for-
mulation (4) has a unique solution. See [1] for the proof of the stability conditions
(5) and (6), �

Now, we present in the following theorem the a priori time error estimate.

Theorem 2.3. For the solution u of the problem (1) and (ui)1≤i≤I solution of the
problem (3), the a priori error estimate holds for 0 ≤ i ≤ I:

‖u(ti+1)− u(ti)

τi
− ∂tu(ti+1)‖2 + ‖∇(u(ti)− ui)‖2

≤ Cτ2
(∫ ti

0

(‖ ∂3
t u ‖ + ‖ ∂2

t∇u ‖)(s)ds
)2

,
(7)

where C is a positive constant independent of the step τ .

See [1] for the proof of theorem 2.3. The estimations (7) is of order 1 since the
time discretization is based on the implicit Euler scheme.

2.3. Spectral element discretization. In the following, we will focus to the a pos-
teriori analysis of the spectral element method in one dimension, since the polynomials
inverse inequalities are not optimal for the spectral method in dimension d ≥ 2. We
now describe the discrete space. Let Λ the interval ] − 1, 1[. For each discrete time
ti, 0 ≤ i ≤ I, we introduce a partition Pi of the interval Λ such that

−1 = a0 ≤ a1 ≤ ......... ≤ aK−1 ≤ aK = 1,
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and Λk =]ak−1, ak[, 1 ≤ k ≤ K. Let hk the length of the sub-interval Λk, and
h = max

1≤k≤K
hk. The discrete parameter δ is a K-tuple of couples (hk, Nk), 1 ≤ k ≤ K

where a integer Nk ≥ 2.

First, we recall the following formulas which we will use after. Let ξ0 < ... < ξN be
the zeros of the polynomial (1 − x2)L

′

N and ρj are its associated weights where LN
is the Legendre polynomial defined on Λ. The Gauss-Lobatto quadrature formula on
the interval Λ =]− 1, 1[ is written

∀φ ∈ P2N−1(Λ);

∫ 1

−1

φ(x)dx =

N∑
j=0

φ(ξNj )ρNj , (8)

where PN (Λ) is the space of polynomials, defined on Λ, with degree ≤ N .
We introduce a discrete scalar product for any u and v continuous on Λ by

(u, v)δ =

K∑
k=1

Nk∑
j=0

u(ξNkj )v(ξNkj )ρNkj , (9)

where ξNkj = F−1
k (ξNj ) and ρNkj = (ak − ak−1)ρNj , 0 ≤ j ≤ N , such that Fk is the

bijection from Λk into Λ.
We denote by iδ the Lagrange interpolation operator on the set of nodes ξNkj with

values in

Yδ =
{
vδ ∈ H1(Λ); vδ|Λk ∈ PNk(Λk), 1 ≤ k ≤ K

}
.

Then, for each function ϕ continuous on Λk, iδ(ϕ)|Λk in PNk(Λk), and verify

iδ(ϕ)|Λk(ξNkj ) = ϕ|Λk(ξNkj ).

We consider the following property, which will be widely used in the following:

∀uδ ∈ Yδ, ‖uδ‖2L2(Λ) ≤ (uδ, uδ)δ ≤ 3‖uδ‖2L2(Λ). (10)

We define the discrete space as

Xi
δ =

{
vδ ∈ H1

0 (Λ); ∀Λk ∈ Pi vδ|Λk ∈ PNk(Λk), 1 ≤ k ≤ K
}
. (11)

We introduce the orthogonal projection operator Πi
δ defined on H1

0 (Ω) into Xi
δ. If

w ∈ H1
0 (Ω), Πi

δw belongs to Xi
δ such that:

∀tδ ∈ Xi
δ,

(∂(w −Πi
δw)

∂x
,
∂tδ
∂x

)
= 0. (12)

So using the Galerkin method combined with numerical integration, the discrete prob-
lem deduced from the problem (3) is written as: If u0, and v0 are continuous on Λ,

find (uiδ)0≤i≤I in

I∏
i=0

Xi
δ such that:

u0
δ = iδu0 , and u1

δ = iδu0 + τ0iδv0, (13)

∀vδ ∈ Xi+1
δ ,

(ui+1
δ −Πi+1

δ uiδ
τi

−
uiδ −Πi

δu
i−1
δ

τi−1
, vδ

)
δ

+ τi(
∂ui+1

δ

∂x

∂vδ
∂x

)δ = 0. (14)
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As in the problem (4), we show that each ui+1
δ , 1 ≤ i ≤ I is the solution of the

following discrete variational problem:
Find ui+1

δ in Xi+1
δ such that:

∀vδ ∈ Xi+1
δ , (ui+1

δ , vδ)δ + τ2
i (
∂ui+1

δ

∂x
,
∂vδ
∂x

)δ =
(

Πi+1
δ uiδ +

τi
τi−1

(uiδ −Πi
δu
i−1
δ ), vδ

)
δ
.

(15)
Thus, we easily prove using the Lax-Milgram theorem that the problem (13)-(14) has
a unique solution.

Remark 2.1. The choice to work with different spectral meshes at each time step
motivated us to use the Πi

δ operators in contrary to the classical discretization of the
spectral fixed-grid of the wave equation (see [1]),

3. A posteriori analysis of the discretization

In this section, we begin by defining two families of error indicators. The first relates
to the discretization in time, and the second concerns the spectral discretization. We
prove upper and lower bounds on the error, focusing first on the time discretization,
and then on the spatial discretization.

3.1. A posteriori analysis of the time discretization. We define the time indi-
cators for each 1 ≤ i ≤ I,

κi = τi ‖
∂(ui+1

δ − uiδ)
∂x

‖ +τi ‖
ui+1
δ −Πi+1

δ uiδ
τi

−
uiδ −Πi

δu
i−1
δ

τi−1
‖ . (16)

This type of time indicators was first used in [20]. We refer also to [7] for their use
in a posteriori analysis of the finite element discretization of some parabolic problem
(Heat equation). We remark that if the values of the discrete solutions ui+1

δ , uiδ and

ui−1
δ are known, we can easily compute the time indicator κi.

Let vi = ui−ui−1

τi−1
for 1 ≤ i ≤ I. Thus the residual problem if U =

(
u
v

)
, and

Uτ =

(
uτ
vτ

)
is


∂t(U − Uτ )−

(
0 1
∆ 0

)
(U − Uτ ) =

(
Du

Dv

)
in Ω×]0,T[,

u− uτ = 0 on Γ×]0,T[,

(U − Uτ )(., 0) = 0 in Ω,

(17)

where Du(x, t) = v − vτ , for ti ≤ t ≤ ti+1, 1 ≤ i ≤ I − 1, and Du(x, t) = 0, for 0 ≤
t ≤ t1 likewise Dv(x, t) = ∂2(u−uτ )

∂x2 , for ti ≤ t ≤ ti+1, 1 ≤ i ≤ I − 1 and Dv(x, t) =
∂2uτ
∂x2 , for 0 ≤ t ≤ t1.

Proposition 3.1. The a posteriori error estimate between the solution u of prob-
lem (1), when the data f = 0, and the solution (ui)0≤i≤I of problem (3) holds for
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0 ≤ i ≤ I:

‖ (∂tu)(ti+1)− ui+1 − ui

τi
‖H−1(Λ) + ‖ u(ti+1)− ui+1 ‖

≤ C

(
i∑

j=1

τj
(
‖
∂(uj+1 − uj+1

δ )

∂x
‖ + ‖

∂(uj − ujδ)
∂x

‖
)

+ ‖ (uj+1 − uj+1
δ )− (uj −Πj+1

δ ujδ) ‖

+ (
τj
τj−1

) ‖ (uj − ujδ)− (uj−1 −Πj
δu
j−1
δ ) ‖ +κj + τ0‖∇u0‖+ τ2

0 ‖∇v0‖

)
.

(18)

Proof. We make the inner product of (17) with

(
u− uδ

∆−1(v − vδ)

)
. Let

Σ(t) =
(
‖ u− uδ ‖2 + ‖ v − vδ ‖2H−1(Ω)

) 1
2

.

Then, we conclude that

1

2

d2Σ

dt
= (Du, u− uδ) + (Dv,∆

−1(v − vδ)) ≤
(
‖ Du ‖2 + ‖ Dv ‖2H−1(Ω)

) 1
2

Σ.

So,

dΣ

dt
≤
(
‖ Du ‖2 + ‖ Dv ‖2H−1(Ω)

) 1
2 ≤‖ Du ‖ + ‖ Dv ‖H−1(Ω) . (19)

Since Σ(0) = 0, then by integration of (19) between 0 and ti+1, we obtain

Σ(ti+1) ≤
∫ ti+1

0

(‖ Du ‖ + ‖ Dv ‖H−1(Ω))dt.

We know that

∀t ∈ [tj , tj+1], uτ (t) = uj+1 − tj+1 − t
τj

(uj+1 − uj),

then ∫ tj+1

tj

‖ Dv ‖H−1(Ω) dt =
∂2(uj+1 − uj)

∂x2

∫ tj+1

tj

(
tj+1 − t
τj

)dt

= (
τj
2

)(
∂2(uj+1 − uj)

∂x2
).

Thus, we conclude using the triangular inequality

‖ ∂
2(uj+1 − uj)

∂x2
‖≤‖

∂2(uj+1
δ − ujδ)
∂x2

‖ + ‖
∂2(uj+1 − uj+1

δ )

∂x2
‖ + ‖

∂2(uj − ujδ)
∂x2

‖ .

We use the same arguments to evaluate

∫ tj+1

tj

‖ Du ‖ dt. Combining all these

inequalities leads to the desired result (18). �

In the following proposition, we prove an upper bound of the error indicators κi
for each 0 ≤ i ≤ I.
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Proposition 3.2. For each indicators κi, 0 ≤ i ≤ I, we have the following estimate

κi ≤‖
∫ ti+1

ti

∂2(u− uδ)
∂x2

dt ‖ + ‖
∫ ti+1

ti

(v − vδ) dt ‖

+

1∑
k=0

‖ (∂tu)(ti+1−k)− ui+1−k − ui−k

τi−k
‖H−1(Ω) + ‖ u(ti+1−k)− ui+1−k ‖

+ τi

1∑
k=0

‖
∂2(ui+1−k − ui+1−k

δ )

∂x2
‖ +

+ ‖
(ui+1−k − ui+1−k

δ )− (ui−k −Πi+1−k
δ ui−kδ )

τi−k
‖ .

(20)

Proof. Using triangular inequality, it is enough to bound the following terms

τi ‖
∂2(ui+1 − ui)

∂x2
‖, τi ‖ vi+1 − vi ‖ . (21)

i) To bound the first term of (21), we make the inner product of the second line of
(17) by (ui+1 − ui) and we integrate between the time ti and ti+1. So, we have

τi
2
‖ ∂

2(ui+1 − ui)
∂x2

‖2 ≤
∫ ti+1

ti

(∂t(v − vτ ), ui+1 − ui)dt

+
( ∫ ti+1

ti

∂2(u− uτ )

∂x2
dt,

∂2(ui+1 − ui)
∂x2

)
.

Then by integrating by parts, we conclude that

τi
2
‖ ∂

2(ui+1 − ui)
∂x2

‖2 ≤
(

(∂tu)(ti+1)− ui+1 − ui

τi
, ui+1 − ui

)
−
(

(∂tu)(ti)−
ui − ui−1

τi−1
, ui+1 − ui

)
+
(∫ ti+1

ti

∂2(u− uτ )

∂x2
dt,

∂2(ui+1 − ui)
∂x2

)
.

Applying Cauchy-Schwarz inequality we conclude

τi
2
‖ ∂

2(ui+1 − ui)
∂x2

‖ ≤‖ (∂tu)(ti+1)− ui+1 − ui

τi
‖H−1(Ω)

+ ‖ (∂tu)(ti)−
ui − ui−1

τi−1
‖H−1(Ω) + ‖

∫ ti+1

ti

∂2(u− uτ )

∂x2
dt ‖ .

ii) As in the estimation of the first term of (21), to bound the second term of (21), we
make the inner product of the first equation of (17) with vi+1 − vi, and integrating
between the time ti and ti+1. This leads to

τi
2
‖ vi+1 − vi ‖2 ≤

(
u(ti+1)− ui+1, vi+1 − vi

)
−
(
u(ti)− ui, vi+1 − vi

)
−
(∫ ti+1

ti

(v − vτ )dt, vi+1 − vi
)
.

This permits us to conclude the estimate (20). �
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3.2. A posteriori analysis of the spectral discretization. For each 1 ≤ i ≤ I
and each Λk, 1 ≤ k ≤ K, we define the refinement spectral indicators

βki =‖ uiδ −Πi+1
δ uiδ ‖ +N−1

k ‖
ui+1
δ −Πi+1

δ uiδ
τi

−
uiδ −Πi

δu
i−1
δ

τi−1
‖ . (22)

These indicators are local and respect both the time and spaces variables and depends
of the local discrete solution. So, they can be computed explicitly for each iteration
of time. We remark that the first term in (22) appears since we use different spatial
meshes on the various time levels, while the other term is the same as those in standard
residual-based error bounds for the elliptic equation (see [27]). Then, the residual
problem deduced from the system (13)-(14). We define for each 1 ≤ i ≤ I

vi =
ui − ui−1

τi−1
, viδ =

uiδ −Πi
δu
i−1
δ

τi−1
, euiδ = ui − uiδ, eviδ = vi − viδ. (23)

Then, we conclude from the two problems 3 and 13-14 that the error vector Eiδ =(
euiδ
eviδ

)
is the solution of the following residual problem



Ei+1
δ − Eiδ
τi

−
(

0 1
∆ 0

)
Ei+1
δ =

(
ξuiδ
ξviδ

)
in Ω, 0 ≤ i ≤ I,

eui+1
δ = 0 on Γ, 0 ≤ i ≤ I,

E1
δ =

(
u0 − u0

δ + τ0(v0 − v0
δ )

v0 − v0
δ

)
in Ω.

(24)

The two terms ξuiδ and ξviδ belongs to H−1(Ω) and are defined as

< ξuiδ, v >=
(uiδ −Πi+1

δ uiδ
τi

, v
)

< ξviδ, v >= − 1

τi

(uiδ −Πi+1
δ uiδ

τi
−
uiδ −Πi

δu
i−1
δ

τi−1
, v
)
−
(∂ui+1

δ

∂x
,
∂v

∂x

)
,

(25)

where < ·, · > is the duality product between H−1(Ω), and H1
0 (Ω). The bound of

the error estimate by the refinement spectral indicators is the subject of the following
proposition.

Proposition 3.3. The a posteriori error estimate between the solution (ui) of the
problem (3), and the solution (uiδ) of the problem (13)-(14) holds for all 1 ≤ i ≤ I−1

‖
(ui+1 − ui+1

δ )− (ui −Πi+1
δ uiδ)

τi
‖H−1(Ω) + ‖ ui+1 − ui+1

δ ‖

≤ C
( i∑
j=1

( K∑
k=1

(βkj )2
) 1

2 + ‖ u0 − u0
δ ‖ +τ0 ‖ v0 − v0

δ ‖
)
. (26)
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Proof. By using the inequality (6) applied to the residual problem (24), and knowing

that for any a ≥ 0, b ≥ 0, 1√
2
(a+ b) ≤

√
a2 + b2 ≤ a+ b, we obtain that

‖ evi+1
δ ‖H−1(Ω) + ‖ eui+1

δ ‖ ≤ C
(
‖ ev1

δ ‖H−1(Ω) + ‖ eu1
δ ‖

+

i∑
j=1

τj
(
‖ ξvj+1

δ ‖H−1(Ω) + ‖ ξuj+1
δ ‖

))
. (27)

Then, we have to bound the terms in the right hand side of inequality (27). The
bounds of ‖ eu1

δ ‖H−1(Ω), and ‖ ev1
δ ‖ are done using the last equation of the system

(24). From the definition of ξuiδ, we show that

‖ ξuj+1
δ ‖=‖

ujδ −Πj+1
δ ujδ

τj
‖= 1

τj

( K∑
k=1

‖ ujδ −Πj+1
δ ujδ ‖

2
L2(Λk)

) 1
2 .

Since,

‖ ξvj+1
δ ‖H−1(Ω)= sup

v∈H1
0 (Ω)

< ξviδ, v >

‖ ∇v ‖
,

and using the equality (14), we have for any v ∈ H1
0 (Ω) and vδ ∈ Xi

δ

‖ ξvj+1
δ ‖H−1(Ω)= −

1

τi

(ui+1
δ −Πi+1

δ uiδ
τi

−
uiδ −Πi

δu
i−1
δ

τi−1
, v − vδ

)
−
(∂uiδ
∂x

,
∂(v − vδ)

∂x

)
.

We consider for any function v ∈ H1
0 (Ω) the function

vδ =

K∑
k=1

π1,0
Nk−1

(
v − v(ak−1)ψk−1 − v(ak)ψk

)
+

K∑
k=1

v(ak)ψk,

where ψk are an affine functions on Λk equal to 1 on the node ak, and equal to 0 on
the other nodes al, l 6= k. π1,0

Nk−1 is the orthogonal projection operator from H1
0 (Λk)

into PNk(Λk) ∩H1
0 (Λk), we refer the reader to [8] for the properties of this operator.

The function vδ is in the space Xδ since v ∈ H1
0 (Ω). Then, we make an integration

by part we obtain that

‖ ξvj+1
δ ‖H−1(Ω)= −

1

τi

(ui+1
δ −Πi+1

δ uiδ
τi

−
uiδ −Πi

δu
i−1
δ

τi−1
, v − vδ

)
.

So, we conclude the result (26) using the Cauchy Schwarz inequality. �

The upper bound estimate of the spectral refinement indicators is subject of the
following proposition.

Proposition 3.4. The following estimate holds for the indicators βki , 1 ≤ i ≤ I,

βki ≤ C
( 1∑
j=0

(
‖

(ui+1−j − ui+1−j
δ )− (ui−j −Πi+1−j

δ ui−jδ )

τi−j
‖H−1(Λk)

+ ‖ ui+1−j − ui+1−j
δ ‖L2(Λk)

)
+ τi

(
‖

(ui+1 − ui+1
δ )− (ui −Πi+1

δ uiδ)

τi
‖L2(Λk)

+ ‖
∂(ui+1 − ui+1

δ )

∂x
‖L2(Λk)

))
,

(28)
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where C is a constant independent of τ and δ.

Proof. We bound successively the two terms in βki denoted by β1
k
i and β2

k
i . We have

from the first equation of the system (24)

eui+1
δ − euiδ
τi

− evi+1
δ = ξui+1

δ =
uiδ −Πi+1

δ uiδ
τi

.

Now, we make the L2 norm of this equation and we multiply by τi leads to

β1
k
i ≤

1∑
j=0

‖ ui+1−j − ui+1−j
δ ‖L2(Λk) +τi ‖

(ui+1 − ui+1
δ )− (ui −Πi+1

δ uiδ)

τi
‖L2(Λk) .

(29)

Let vδ be the function equal to
(
ui+1
δ −Πi+1

δ uiδ
τi

− uiδ−Πiδu
i−1
δ

τi−1

)
ψk on the interval Λk, and

equal to 0 on Λ\Λk, where ψk is an affine functions on Λk equal to 1 on the node ak,
and equal to 0 on the other nodes al, l 6= k. Then, we show by integration by part
that

< ξvi+1
δ , vδ >= − 1

τi
‖
(ui+1

δ −Πi+1
δ uiδ

τi
−
uiδ −Πi

δu
i−1
δ

τi−1

)
ψ

1
2

k ‖
2
L2(Λk) .

Thus, making the inner product of the second equation of the system (24) with −τivδ
gives

− 1

τi
‖
(ui+1

δ −Πi+1
δ uiδ

τi
−
uiδ −Πi

δu
i−1
δ

τi−1

)
ψ

1
2

k ‖
2
L2(Λk)

≤
( 1∑
j=0

‖
(ui+1−j − ui+1−j

δ )− (ui−j −Πi+1−j
δ ui−jδ )

τi−j
‖H−1(Λk)

+ ‖
∂(ui+1 − ui+1

δ )

∂x
‖L2(Λk)

)
‖ ∂vδ
∂x
‖L2(Λk) .

Now, we use the following two inverse inequality (see [8] and [9] for the proof). For
all ϕN ∈ PN (Λ), we have∫ 1

−1

(ϕ′N )2(ζ)(1− ζ2)2dζ ≤ c N2

∫ 1

−1

ϕ2
N (ζ)(1− ζ2)dζ,

and ∫ 1

−1

ϕ2
N (ζ)dζ ≤ c N2

∫ 1

−1

ϕ2
N (ζ)(1− ζ2)dζ.

Then, we combine all this inequality we conclude that there exists a constant C such
that

β2
k
i ≤ C

( 1∑
j=0

‖
(ui+1−j − ui+1−j

δ )− (ui−j −Πi+1−j
δ ui−jδ )

τi−j
‖H−1(Λk)

+ ‖
∂(ui+1 − ui+1

δ )

∂x
‖L2(Λk)

)
. (30)

Finally, from (29) and (30) we have the desired result (28). �
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Conclusion

For the discretization of the a partial differential equations the a posteriori analysis is
a very efficient tool for mesh adaptivity. We interested in this work to the a posteriori
analysis of the discretization of the second order wave equation by the spectral element
method. We constructed two residual kind of indicators and we proved their optimal
upper and lower error bounds. The algorithm of resolution and the implementation
of these results will be the subject of our future paper.
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