
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 51(2), 2024, Pages 382–397, DOI: 10.52846/ami.v51i2.1837
ISSN: 1223-6934

Direct Approximations of Szász-Beta-Schurer Operators using
Hermite Polynomial

Anshul Srivastava, Avinash Kumar Yadav, Brijesh Kumar Sinha, Md.
Heshamuddin, and Nadeem Rao

Abstract. The aim of present article is to introduce the Szász-Beta-Schurer operators in
terms of Hermite Polynomial. We calculate some estimates and then discuss convergence

theorems and order of approximation in terms of Korovkin theorem and first order modu-

lus of smoothness respectively. Next, we study pointwise approximation results in terms of
Peetre’s K-functional, second order modulus of smoothness, Lipschitz type space and rth or-

der Lipschitz type maximal function. Lastly, weighted approximation results and statistical
approximation theorems are proved.
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1. Introduction and Preliminaries

The approximation in operator theory is a significant area of mathematical analysis,
emerged in the 19th century and continues to be studied by mathematicians world-
wide. Its relevance extends beyond mathematics to various fields, including the basic
sciences and engineering. The primary objective of approximation theory is to rep-
resent a complex function using simpler functions with more elementary properties,
such as differentiability and integrability. It has applications in computational aspects
like describing the shapes of geometric objects as well as in applied and pure mathe-
matics, including fixed point theory and numerical analysis. Control nets and control
points are used to study parametric surfaces and curves, respectively. The theory has
widespread applications in other scientific branches, such as data structures, com-
puter graphics, computer algebra and numerical analysis. In 1885, Weierstrass [27]
gave an elegant result in approximation theory named as Weierstrass approximation
theorem. Several renowned mathematicians have worked on providing simpler and
more understandable proofs for this theorem.

In order to provide a succinct proof of the Weierstrass approximation theorem
using binomial distribution, Bernstein [4] invented a sequence of polynomials known
as Bernstein polynomials in 1912 as follows:

Bs(g; y) =

s∑
l=0

g

(
l

s

)(
s
l

)
yl(1− y)s−l, y ∈ [0, 1], (1)
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where g is a bounded function defined on [0, 1]. The approximation with the sequences
of operators given in (1) are restricted for bounded function on [0, 1]. To approximate
on [0,∞), Szász [23] gave modification of the sequences given in (1) which play an
important role in the development of operator theory as below:

Ss(g; y) = e−sy
∞∑
l=0

(sy)l

l!
g

(
l

s

)
, s ∈ N, (2)

where the real valued function g ∈ C[0,∞). The linear positive operators introduced
in (2) are restricted for the space of continuous functions only. To approximate in
longer class of functions, i.e., space of functions which are measurable in Lebesgue
sense, several integral versions of these sequences of operators are introduced, e.g.,
Szász-Kantorovich type and Szász-Durremeyer type operators etc. (see [20], [21]).
Many mathematicians, e.g., Acu et al. ([1], [2]), Mohiuddine et al. ([12], [13]) Mur-
saleen et al. ([14], [15]), Raiz et al.[18, 19], Khan et al. [10], Nasiruzzaman [16]
and Wafi et al. ([24], [25]) gave various generalizations for such type of sequences.
Grażyna [9] presented a class of sequence of operators Gαs (.; .), s ∈ N, α ≥ 0, given
by the formula

Gαs (g; y) = e−(sy+αy2)
∞∑
l=0

yl

l!
Hl(s, α)g

(
l

s

)
, y ∈ R+

0 , (3)

where Hl is the two variable Hermite polynomial (see [3]) given by

Hl(n, α) = l!

[ l2 ]∑
m=0

nl−2mαm

(l − 2m)!m!
. (4)

The operators (3) are linear and positive. Basic facts on positive linear operators,
their generalizations and applications can be found in [5].

The sequences of operators presented in (3) are restricted for continuous function
only. Motivated with the above development, we introduce a sequences of positive
linear operators to give approximations in bigger class of function, i.e., the space of
Lebesgue measurable functions which is named as Szász-Beta-Schurer operators in
view of Hermite Polynomial as:

Hα
s+p(g; y) =

∞∑
l=0

Pαs+p,l(y)

∞∫
0

Qs+p(v)g(v)dv, for y ∈ R+
0 , (5)

where

Pαs+p,l(y) = e−((s+p)y+αy2) y
l

l!
Hl((s+ p), α) and

Q(s+p)(v) =
1

β(l + 1, (s+ p))

[
vl

(1 + v)l+1+(s+p)

]
,

with β (Beta) function, β(l + 1, (s+ p)) =
∞∫
0

vl

(1+v)l+1+(s+p) dv.
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Lemma 1.1. Let Hα
(s+p)(.; .) be the sequence of operators given by (5) and ei(t) = ti,

i ∈ {0, 1, 2}. Then, one get

Hα
(s+p)(1; y) = 1,

Hα
(s+p)(e1; y) =

1

(s+ p)− 1
((s+ p)y + 2αy2 + 1); (s+ p) > 1,

Hα
(s+p)(e2; y) =

1

((s+ p)− 2)((s+ p)− 1)

[
(s+ p)2y2 + 4(s+ p)(αy3 + y)

+ 4α2y4 + 10αy2 + 2

]
; (s+ p) > 2.

for each y ∈ R+
0 .

Proof. From the Eq. (5), we have

Hα
(s+p)(ei; y) =

∞∑
l=0

Pα(s+p),l(y)

∞∫
0

Q(s+p)(v)tidv.

Now, for i = 0,

Hα
(s+p)(e0; y) = =

∞∑
l=0

Pα(s+p),l(y)
1

β(l + 1, (s+ p))

∞∫
0

vl

(1 + v)l+1+(s+p)
dv

=

∞∑
l=0

Pα(s+p),l(y)
1

β(l + 1, (s+ p))
β(l + 1, (s+ p))

= 1.

For i = 1,

Hα
(s+p)(e1; y) =

∞∑
l=0

Pα(s+p),l(y)
1

β(l + 1, (s+ p))

∞∫
0

vl+1

(1 + v)l+1+(s+p)
dv

=

∞∑
l=0

Pα(s+p),l(y)
1

β(l + 1, (s+ p))
β(l + 2, (s+ p)− 1)

=

∞∑
l=0

Pα(s+p),l(y)
(l + 1)

((s+ p)− 1)

=
(s+ p)

(s+ p)− 1

[
Gα(s+p)(e1; y) +

1

(s+ p)

]
=

1

(s+ p)− 1
((s+ p)y + 2αy2 + 1).

For i = 2,

Hα
(s+p)(e2; y) =

∞∑
l=0

Pα(s+p),l(y)
1

β(l + 1, (s+ p))

∞∫
0

vl+2

(1 + v)l+1+(s+p)
dv

=

∞∑
l=0

Pα(s+p),l(y)
1

β(l + 1, (s+ p))
β(l + 3, (s+ p)− 2)

=

∞∑
l=0

Pα(s+p),l(y)
(l + 2)

((s+ p)− 2)

(l + 1)

((s+ p)− 1)
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=
1

((s+ p)− 2)((s+ p)− 1)

[
(s+ p)2Gα(s+p)(e2; y) + 3(s+ p)Gα(s+p)(e1; y)

+2Gα(s+p)(e0; y)

]
=

1

((s+ p)− 2)((s+ p)− 1)

(
(s+ p)2y2 + 4(s+ p)(αy3 + y)

+4α2y4 + 10αy2 + 2

)
.

�

Lemma 1.2. Let Hα
(s+p)(.; .) be the operators given by (5) and central moments

ηi(t; y) = (t− y)i, i ∈ {0, 1, 2}. Then, one get

Hα
(s+p)(η0; y) = 1,

Hα
(s+p)(η1; y) = − 1

(s+ p)− 1
(2αy2 + y + 1), (s+ p) > 1,

Hα
(s+p)(η2; y) =

1

((s+ p)− 2)((s+ p)− 1)

[
(s+ p)(y2 + 2y) + 4α2y4

+2αy2(4y + 5) + 2(y + 1)2

]
, (s+ p) > 2,

Hα
(s+p)(η4; y) = O

(
1

(s+ p)2

)
, (s+ p) > 4,

for each y ∈ R+
0 .

Proof. Using the definition of Hα
(s+p)(.; .), we get for i = 0, it is obvious that

Hα
(s+p)(η0; y) = 1.

Now, we consider for i = 1, that is Hα
(s+p)(η1; y) as follows:

Hα
(s+p)(η1; y) =

∞∑
l=0

Pαs+p,l(y)
1

β(l + 1, s+ p)

∞∫
0

vl

(1 + v)l+1+s+p
(y − v)dv

= y

∞∑
l=0

Pαs+p,l(y)
1

β(l + 1, s+ p)

∞∫
0

vl

(1 + v)l+1+s+p
dv

−
∞∑
l=0

Pαs+p,l(y)
1

β(l + 1, s+ p)

∞∫
0

vl+1

(1 + v)l+1+s
dv

= yHα
s+p(e0; y)−Hα

s+p(e1; y)

= − 1

s+ p− 1
(2αy2 + y + 1).

Further, for i = 2, that is Hα
s+p(η2; y) as follows:

Hα
s+p(η2; y) =

∞∑
l=0

Pαs+p,l(y)
1

β(l + 1, s+ p)

∞∫
0

vl

(1 + v)l+1+s+p
(y − v)2dv

= y2Hα
s+p(e0; y)− 2yHα

s+p(e1; y) +Hα
s+p(e2; y)
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= y2 − 2y
1

s+ p− 1
((s+ p)y + 2αy2 + 1) +

1

(s+ p− 2)(s+ p− 1)

×
[
(s+ p)2y2 + 4(s+ p)(αy2 + y) + 4α2y4 + 10αy2 + 2

]
=

1

(s+ p− 2)(s+ p− 1)

[
(s+ p− 2)(s+ p− 1)y2 − 2y(s+ p− 2)(s+ py + 2αy2 + 1)

+(s+ p)2y2 + 4(s+ p)(αy2 + y) + 4α2y4 + 10αy2 + 2

]
=

1

(s+ p− 2)(s+ p− 1)

[
(s+ p){−4αy3 + y2(4α+ 1) + 2y}+ 4α2y4

+8αy3 + y2(10α+ 2) + 4y + 2

]
.

Similarly, we can prove the rest part of this Lemma. �

In subsequent sections, we deal with convergence rate of operators and order of
approximation. Fuhrer, direct results are discussed as locally and globally in different
spaces. In the last section, A-Statistical approximation results are investigated in
several functional spaces.

2. Convergence Rate and Approximation Order

Definition 2.1. Let g be a continuous function defined on positive semi-axes. Then
the modulus of smoothness is given by

ω(g; δ) = sup
|y1−y2|≤δ

|g(y1)− g(y2)|, y1, y2 ∈ [0,∞).

Theorem 2.1. Let Hα
s+p(.; .) be a sequence of operator introduced in Eq. (5). Then,

for all g ∈ CB [0,∞), Hα
s+p(g; y) ⇒ g on each closed and bounded subset of [0,∞)

where ⇒ represents uniform convergent.

Proof. In view of Korovkin type theorem which regard the uniform convergence of
the sequence of linear positive operators, it is enough to see that

lim
s→∞

Hα
s+p(t

i; y) = yi, i = 0, 1, 2,

uniformly on every closed and bounded subset of [0,∞). In the light of Lemma 1.1,
this result can easily be proved. �

In view of result given by Shisha et al. [22], we can prove the order of convergence
in terms of Ditzian-Totik the modulus of continuity.

Theorem 2.2. For g ∈ CB [0,∞) and the operators Hα
s+p(.; .) introduced in Eq. (5),

we have

|Hα
s+p(g; y)− g(y)| ≤ 2ω(g; δ),

where δ =
√
Hα
s+p((t− y)2; y).
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3. Locally Approximation Results

In this section, we think back to some functional spaces and functional relation as:
CB [0,∞): Represent a space of bounded and continuous real valued functions. Now,
Peetre’s K-functional is given by

K2(g, δ) = inf
h∈C2

B [0,∞)

{
‖g − h‖CB [0,∞) + δ‖h′′‖C2

B [0,∞)

}
,

where C2
B [0,∞) = {h ∈ CB [0,∞) : h′, h′′ ∈ CB [0,∞)} provided with the norm

‖g‖ = sup
0≤y<∞

|g(y)| and Ditzian-Totik modulus of smoothness of second order is given

by

ω2(g;
√
δ) = sup

0<k≤
√
δ

sup
y∈[0,∞)

|f(y + 2k)− 2f(y + k) + f(y)|.

We recall a relation from DeVore and Lorentz ([5] page no. 177, Theorem 2.4), as:

K2(g; δ) ≤ Cω2(g;
√
δ), (6)

where C is a constant absolute. Now in view to prove the further result, we take the
auxiliary operator as:

Ĥα
s+p(g; y) = Hα

s+p(g; y) + g(y)− g
(

(s+ p)y + 2αy2 + 1

s+ p− 1

)
(7)

where g ∈ CB [0,∞), y ≥ 0 and n > 2. From Eq. (7), one can yield

Ĥα
s+p(1; y) = 1, Ĥα

s+p(η1;x) = 0 and |Ĥα
s+p(g; y)| ≤ 3‖g‖. (8)

Lemma 3.1. For s+ p > 2 and y ≥ 0, one yield

|Ĥα
s+p(g; y)− g(y)| ≤ θ(y)‖g′′‖,

where g ∈ C2
B [0,∞) and θ(y) = Ĥα

s+p(η2; y) + (Ĥα
s+p(η1; y))2.

Proof. For g ∈ C2
B [0,∞) and in view of relation Taylor expansion , we get

g(t) = g(y) + (t− y)g′(y) +

t∫
y

(t− v)g′′(v)dv. (9)

Now, applying the auxiliary operators Ĥα
s+p(.; .) given in Eq.(7) on both the sides in

above Eq. (9), we get

Ĥα
(s+p)(g; y)− g(y) = g′(y)Ĥα

(s+p)(η1; y) + Ĥα
(s+p)

( t∫
y

(t− v)g′′(v)dv; y
)
.
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Using the Eqs. (8) and (9), we get

Ĥα
(s+p)(g; y)− g(y) = Ĥα

(s+p)

( t∫
y

(t− v)g′′(v)dv; y
)

= Hα
(s+p)

( t∫
y

(t− v)g′′(v)dv; y
)
−

(s+p)y+2αy2+1
(s+p)−1∫
y

(
(s+ p)y + 2αy2 + 1

(s+ p)− 1
− v
)
g′′(v)dv,

|Ĥα
(s+p)(g; y)− g(y)| ≤

∣∣∣∣∣Hα
(s+p)

( t∫
y

(t− v)g′′(v)dv; y
)∣∣∣∣∣

+

∣∣∣∣∣
(s+p)y+2αy2+1

(s+p)−1∫
y

(
(s+ p)y + 2αy2 + 1

(s+ p)− 1
− v

)
g′′(v)dv

∣∣∣∣∣. (10)

Since, ∣∣∣∣∣
t∫
y

(t− v)g′′(v)dv

∣∣∣∣∣ ≤ (t− y)2 ‖ g′′ ‖, (11)

then∣∣∣∣∣
(s+p)y+2αy2+1

(s+p)−1∫
y

(
(s+ p)y + 2αy2 + 1

(s+ p)− 1
− v

)
g′′(v)dv

∣∣∣∣∣ ≤
(

(s+ p)y + 2αy2 + 1

(s+ p)− 1
− y
)2

‖ g′′ ‖ .

(12)

In view of (10), (11) and (12), we find

|Ĥα
(s+p)(g; y)− g(y)| ≤

{
Ĥα

(s+p)(η2; y) +

(
(s+ p)y + 2αy2 + 1

(s+ p)− 1
− y

)2}
‖g′′‖

= θ(y)‖g′′‖.
Which proves the required result. �

Theorem 3.2. Let g ∈ C2
B [0,∞). Then, there corresponds a non-negative constant

C̃ > 0 such that

| Hα
(s+p)(g; y)− g(y) |≤ C̃ω2

(
g;
√
θ(y)

)
+ ω(g;Hα

(s+p)(η1; y)),

where θ(y) is given by in Lemma 3.1.

Proof. For g ∈ C2
B [0,∞) and g ∈ CB [0,∞) and with the definition of Ĥα

(s+p)(.; .), we
get

|Hα
(s+p)(g; y)− g(y)| ≤ |Ĥα

(s+p)(g − h; y)|+ |(g − h)(y)|+ |Ĥα
(s+p)(h; y)− h(y)|

+

∣∣∣∣∣g( (s+ p)y + 2αy2 + 1

((s+ p)− 1)

)
− g(y)

∣∣∣∣∣.
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In the light of Lemma 3.1 and inequalities in Eq. (8), one get

|Hα
(s+p)(g; y)−g(y)|≤4‖g−h‖+|Ĥα

(s+p)(h; y)−h(y)|+

∣∣∣∣∣g
(

(s+ p)y + 2αy2 + 1

(s+ p)− 1

)
−g(y)

∣∣∣∣∣
≤ 4‖g − h‖+ θ(y)‖h′′‖+ ω

(
g;Hα

(s+p)((t− y); y)
)
.

Using Eq. (6), we yield the desired result. �

Now, we discuss the next result in Lipschitz type space [17], which is given as:

Lipζ1,ζ2
M̃

(γ) :=
{
g ∈ CB [0,∞) : |g(t)−g(y)|≤M̃ |t−y|γ

(t+ζ1y+ζ2y2)
γ
2

: y, t∈(0,∞)
}
,

where M̃ > 0, 0 < γ ≤ 1 and ζ1, ζ2 > 0.

Theorem 3.3. For the sequence of positive linear operators (5) and g ∈ Lipζ1,ζ2M (γ),
one has

|Hα
(s+p)(g; y)− g(y)| ≤ M̃

(
λ(y)

ζ1y + ζ2y2

) γ
2

, (13)

where 0 < γ ≤ 1, ζ1, ζ2 ∈ (0,∞) and λ(y) = Hα
(s+p)(η2; y).

Proof. For γ = 1 and y ≥ 0, we get

|Hα
(s+p)(g; y)− g(y)| ≤ Hα

(s+p)(|g(t)− g(y)|; y)

≤ M̃Hα
(s+p)

(
|t− y|

(t+ ζ1y + ζ2y2)
1
2

; y

)
.

Since
1

t+ ζ1y + ζ2y2
<

1

ζ1y + ζ2y2
, for all y ∈ (0,∞), we yield

|Hα
(s+p)(g; y)− g(y)| ≤ M̃

(ζ1y + ζ2y2)
1
2

(Hα
(s+p)(η2; y))

1
2

≤ M̃

(
λ(y)

ζ1y + ζ2y2

) 1
2

,

which implies that Theorem 3.3 works for γ = 1. Next, we consider for γ ∈ (0, 1) and
in view of Hölder’s inequality using p = 2

γ and q = 2
2−γ , we have

|Hα
(s+p)(g; y)− g(y)| ≤

(
Hα

(s+p)(|g(t)− g(y)|
2
γ ; y)

) γ
2

≤ M̃

(
Hα

(s+p)

(
|t− y|2

(t+ ζ1y + ζ2y2)
; y

)) γ
2

.

Since
1

t+ ζ1y + ζ2y2
<

1

ζ1y + ζ2y2
, for all y ∈ (0,∞), one get

|Hα
(s+p)(g; y)− g(y)| ≤ M̃

(
Hα

(s+p)(|t− y|
2; y)

ζ1y + ζ2y2

) γ
2

≤ M̃
( λ(y)

ζ1y + ζ2y2

) γ
2

.

Hence, we yield the required result. �
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Next, we deal the approximation locally in view of rth order modulus of smoothness
then, Lipschitz-type maximal function which is introduced by Lenze [11] as:

ω̃r(g; y) = sup
t 6=y,t∈(0,∞)

|g(t)− g(y)|
|t− y|r

, y ∈ [0,∞) and r ∈ (0, 1]. (14)

Theorem 3.4. Let g ∈ CB [0,∞) and r ∈ (0, 1]. Then, for all y ∈ [0,∞), we have

|Hα
(s+p)(g; y)− g(y)| ≤ ω̃r(g; y)

(
λ(y)

) r
2

.

Proof. It is noted that

|Hα
(s+p)(g; y)− g(y)| ≤ Hα

(s+p)(|g(t)− g(y)|; y).

Using Eq. (14), one get

|Hα
(s+p)(g; y)− g(y)| ≤ ω̃(s+ p)(g; y)Hα

(s+p)(|t− y|
r; y).

Using Hölder’s inequality using p = 2
r and q = 2

2−r , we have

|Hα
(s+p)(g; y)− g(y)| ≤ ω̃r(g; y)

(
Hα

(s+p)(|t− y|
2; y)

) r
2 .

Hence, we completes the proof. �

4. Approximation Properties Globally

Suppose that ν(y) = 1 + y4, 0 ≤ y < ∞ be the weight function. Then, Bν [0,∞) =

{g(y) : |g(y)| ≤ M̃g(1 + y4), here M̃g is a constant based on g and Cν [0,∞) de-
notes space of continuous function in Bν [0,∞) equipped with the norm ‖g(y)‖ν =

sup
y∈[0,∞)

|g(y)|
ν(y) and C k̃ν [0,∞) = {g ∈ Cν [0,∞) : lim

y→∞
g(y)
ν(y) = k̃, where k̃ is a constant

depending on g}.
Ditzian-Totik modulus of continuity for the function g defined on the closed interval

[0, b] with b > 0 is defined by

ωb(g, δ) = sup
|t−y|≤δ

sup
y,t∈[0,b]

|g(t)− g(y)|. (15)

One can easily note that for any g ∈ Cν [0,∞), the modulus of smoothness given by
in the Eq. (15) approaches to zero.

Theorem 4.1. ([7], [8]) Suppose that the sequence of positive linear operators (Ls)s≥1

acting from Cν [0,∞) to Bν [0,∞) satisfies the conditions

lim
s→∞

||Ls(ei; .)− ei||ν = 0, where i = 0, 1, 2,

then, for g ∈ C k̃ν [0,∞), we have

lim
s→∞

||Lsg − g||ν = 0.

Theorem 4.2. Let g ∈ C k̃ν [0,∞). Then, we have

lim
s→∞

‖Hα
(s+p)(g; .)− g‖ν = 0.
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Proof. In order to prove Theorem 4.2, it is sufficient to check that

lim
s→∞

‖Hα
(s+p)(ei; .)− ei‖ν = 0, for i = 0, 1, 2.

In the light of Lemma 1.1, it is obvious ‖Hα
(s+p)(e0; .)− 1‖ν = 0, and

‖Hα
(s+p)(e1; .)− e1‖ν(y) = sup

y∈[0,∞)

1

ν(y)

∣∣∣∣ (s+ p)y + 2αy2 + 1

(s+ p)− 1
− y
∣∣∣∣

=
1

(s+ p)− 1
sup

y∈[0,∞)

2αy2

1 + y4
+

1

(s+ p)− 1
sup

y∈[0,∞)

2

1 + y4
.

For a large value of (s+ p), we get ‖Hα
(s+p)(e1; .)− e1‖ν → 0.

Also,

‖Hα
(s+p)(e2; .)− e2‖ν ≤

(
4α2

((s+ p)− 2)((s+ p)− 1)

)
sup

y∈[0,∞)

y4

1 + y4

+

(
4(s+ p)α

((s+ p)− 2)((s+ p)− 1)

)
sup

y∈[0,∞)

y3

1 + y4

+

(
10α+ 3(s+ p)− 2

((s+ p)− 2)((s+ p)− 1)

)
sup

y∈[0,∞)

y2

1 + y4

+

(
4(s+ p)y

((s+ p)− 2)((s+ p)− 1)

)
sup

y∈[0,∞)

y

1 + y4

+

(
2

((s+ p)− 2)((s+ p)− 1)

)
sup

y∈[0,∞)

1

1 + y4
.

Which implies that ‖Hα
(s+p)(e2; .) − e2‖ν → 0 as s → ∞. Hence, we completes the

proof of Theorem 4.2 �

Theorem 4.3. Let g ∈ C k̃ν [0,∞) and ζ > 0. Then, we have

lim
m→∞

sup
y∈[0,∞)

|Hα
(s+p)(g; y)− g(y)|

(1 + y4)1+ζ
= 0.

Proof. Since |g(y)| ≤ ‖g‖ν(1 + y4), for any real fixed number y0 > 0, we get

sup
y∈[0,∞)

|Hα
(s+p)(g; y)−g(y)|

(1 + y4)1+ζ
≤ sup
y≤y0

|Hα
(s+p)(g; y)−g(y)|

(1 + y4)1+ζ
+ sup
y≥y0

|Hα
(s+p)(g; y)−g(y)|

(1 + y4)1+ζ

≤ ‖Hα
(s+p)(g; .)− g|‖C[0,y0]

+ ‖g‖ν sup
y≥y0

|Hα
(s+p)(1 + t2; y)|
(1 + y4)1+ζ

+ sup
y≥y0

|g(y)|
(1 + y4)1+ζ

= T̃1 + T̃2 + T̃3, say. (16)

Now,

T̃3 = sup
y≥y0

|g(y)|
(1 + y4)1+ζ

≤ sup
y≥y0

‖g‖ν(1 + y4)

(1 + y4)1+ζ
≤ ‖g‖ν

(1 + y4
0)ζ

.
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In view of Lemma 1.1, it gives

lim
(s+p)→∞

sup
y∈[y0,∞)

Hα
(s+p)(1 + t2; y)

1 + y4
= 1.

Therefore, for any arbitrary ε > 0, there corresponds (s+ p)1 ∈ N with

sup
y∈[y0,∞)

Hα
(s+p)(1 + t2; y)

1 + y4
≤ (1 + y4

0)ζ

‖g‖ν
ε

3
+ 1, for all (s+ p) ≥ (s+ p)1.

Therefore

T̃2 = ||g||ν sup
y∈[y0,∞)

Hα
(s+p)(1 + t2; y)

(1 + y4)1+ζ
≤ ||g||ν

(1 + y4
0)ζ

+
ε

3
, for all (s+ p) ≥ (s+ p)1. (17)

Hence, we get

T̃2 + T̃3 < 2
‖g‖ν

(1 + y4)ζ
+
ε

3
.

If we take y0 to be so large that ‖g‖ν
(1+y4)ζ

< ε
6 , tnen, we have

T̃2 + T̃3 <
2ε

3
for all (s+ p) ≥ (s+ p)1. (18)

Now, from Theorem 2.1, there corresponds (s+ p)2 > (s+ p) with

T̃1 = ‖Hα
(s+p)(g; ·)− g‖C[0,y0] <

ε

3
for all (s+ p)2 ≥ (s+ p). (19)

Let (s+ p)3 = max((s+ p)1, (s+ p)2). Then, using the Eqs. (16), (18) and (19), we
get

sup
y∈[0,∞)

|Hα
(s+p)(g; y)− g(y)|

(1 + y4)1+ζ
< ε,

which, completes the proof. �

5. A-Statistical Approximation

In this section, we recall some notations from [6]. Suppose that A = (asµ) represents
non-negative infinite suitability matrix. Then, a sequence y := (yµ) is called to be
A-statistically convergent to L, that is (s+ p)tA − lim y = L, if for every ε > 0

lim
(s+p)

∑
µ:|yk−L|≥ε

a(s+p)µ = 0.

Let q = (q(s+ p)) be a sequence with following assertions holds

stA − lim
(s+p)

q(s+ p) = 1 and stA − lim
(s+p)

q(s+ p)(s+ p) = a, 0 ≤ a < 1. (20)

Theorem 5.1. Consider A = (a(s+p)µ) be a non-negative regular suitability matrix
and the sequence q = (q(s+ p)) with condition (20) with q(s+ p) ∈ (0, 1), (s+ p) ∈ N.

Then, for each g ∈ C0
ν [0,∞), stA − lim

(s+p)
‖Hα

(s+p)(g; y)− g‖ν = 0.
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Proof. By using Lemma 1.1, we have

stA − lim
(s+p)

‖Hα
(s+p)(e0; y)− e0‖ν = 0

, and

‖Hα
(s+p)(ei; .)− ei‖ν = sup

y∈[0,∞)

1

1 + y4

∣∣∣∣ (s+ p)y + 2αy2 + 1

(s+ p)− 1
− y
∣∣∣∣

=
1

1 + y4
sup

y∈[0,∞)

2αy2

(s+ p)− 1
+

1

1 + y4
sup

y∈[0,∞)

2

(s+ p)− 1
.

Now

Ĩ1 : =

{
(s+ p) : ‖Hα

(s+p)(e1; y)− y‖ ≥ ε

}
,

Ĩ2 : =

{
(s+ p) :

2α

(s+ p)− 1
≥ ε

2

}
,

Ĩ3 : =

{
(s+ p) :

2

(s+ p)− 1
≥ ε

2

}
.

Which implies that Ĩ1 ⊆ Ĩ2 ∪ Ĩ3, this shows that
∑
µ∈Ĩ1

a(s+p)µ ≤
∑
µ∈Ĩ2

a(s+p)µ +∑
µ∈Ĩ3

a(s+p)µ. Therefore, we get

stA − lim
(s+p)

‖Hα
(s+p)(e1; y)− y‖ν = 0. (21)

Now by using Lemma 1.1, we have

‖Hα
(s+p)(e2; .)− e2‖1+y4 ≤ sup

y∈[0,∞)

1

ν(y)

∣∣∣∣∣ 1

((s+ p)− 2)((s+ p)− 1)

{
(s+ p)2y2

+ 4(s+ p)(αy3 + y) + 4α2y4 + 10αy2 + 2

}
− y2

∣∣∣∣∣.
For a given ε > 0, we have the following sets

G̃1 : =

{
(s+ p) :

∥∥∥Hα
(s+p)(e2; y)− y2

∥∥∥
ν
≥ ε

}

G̃2 : =

{
(s+ p) :

4α2

((s+ p)− 2)((s+ p)− 1)
≥ ε

5

}

G̃3 : =

{
(s+ p) :

4(s+ p)α

((s+ p)− 2)((s+ p)− 1)
≥ ε

5

}

G̃4 : =

{
(s+ p) :

10α+ 3(s+ p)− 2

((s+ p)− 2)((s+ p)− 1)
≥ ε

5

}

G̃5 : =

{
(s+ p) :

4(s+ p)

((s+ p)− 2)((s+ p)− 1)
≥ ε

5

}
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G̃6 : =

{
(s+ p) :

2

((s+ p)− 2)((s+ p)− 1)
≥ ε

5

}
.

One can note that G̃1 ⊆ G̃2

⋃
G̃3

⋃
G̃4

⋃
G̃5

⋃
G̃6. Thus, we have∑

µ∈G̃1

amµ ≤
∑
µ∈G̃2

amµ +
∑
µ∈G̃3

a(s+p)µ +
∑
µ∈G̃4

a(s+p)µ +
∑
µ∈G̃5

a(s+p)µ +
∑
µ∈G̃6

a(s+p)µ.

As (s+ p)→∞, we have

stA − lim
n
‖Hα

(s+p)(e2; .)− e2‖ν = 0. (22)

Hence, we completes the proof of Theorem 5.1. �

Now, we discuss the rate of A-Statistical approximation convergence in view of the
Peetre’s K-functional for operators Hα

(s+p)(.; .).

Theorem 5.2. Let g ∈ C2
B [0,∞). Then,

stA − lim
(s+p)

‖Hα
(s+p)(g; ·)− f‖CB [0,∞) = 0.

Proof. In view of Taylor’s result, we get

g(t) = g(y) + g′(y)(t− y) +
1

2
g′′(η)(t− y)2,

where t ≤ η ≤ y. Operating Hα
(s+p)(.; .), both the sides in the above equation, we get

Hα
(s+p)(g; y)− g(y) = g′(y)Hα

(s+p)(η1; y) +
1

2
g′′(η)Hα

(s+p)(η2; y),

which yields that

‖Hα
(s+p)(g; ·)− g‖CB [0,∞) ≤‖g′‖CB [0,∞)‖Hα

(s+p)(e1−, .)‖CB [0,∞)

+ ‖g′′‖CB [0,∞)‖Hα
(s+p)(e1−, .)2‖CB [0,∞)

=W̃1 + W̃2, say. (23)

From the Eqs. (21) and (22), one has

lim
(s+p)

∑
µ∈N:W̃1≥ ε2

a(s+p)µ = 0,

lim
(s+p)

∑
µ∈N:W̃2≥ ε2

a(s+p)µ = 0.

From Eq. (23), we have

lim
(s+p)

∑
µ∈N:‖Hα

(s+p)
(g;·)−g‖CB [0,∞)≥ε

a(s+p)µ ≤ lim
(s+p)

∑
µ∈N:W̃1≥ ε2

a(s+p)µ + lim
(s+p)

∑
µ∈N :W̃2≥ ε2

a(s+p)µ.

Thus stA − lim
(s+p)

‖Hα
(s+p)(g; ·)− g‖CB [0,∞) → 0. as (s+ p)→∞.

Hence, we arrive the proof. �
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Theorem 5.3. Let g ∈ C2
B [0,∞). Then,

‖Hα
(s+p)(g; ·)− g‖CB [0,∞) ≤Mω2(g;

√
δ),

where δ = ‖Hα
(s+p)(e1 − ·; ·)‖CB [0,∞) + ‖Hα

(s+p)((e1 − ·)2; ·)‖CB [0,∞), and

‖g‖C2
B [0,∞) = ‖g‖CB [0,∞) + ‖g′‖CB [0,∞) + ‖g′′‖CB [0,∞).

Proof. Let h ∈ C2
B [0,∞). Using Eq. (23), one get

‖Hα
(s+p)(h)− h‖CB [0,∞) ≤‖h′‖CB [0,∞)‖Hα

(s+p)((e1 − ·); ·)‖CB [0,∞)

+
1

2
‖h′′‖CB [0,∞)H

α
(s+p)((e1 − ·)2; ·)‖CB [0,∞)

≤δ‖h‖C2
B [0,∞). (24)

For every g ∈ CB [0,∞) and h ∈ C2
B , from Eq. (24), we obtain

‖Hα
(s+p)(g; ·)− g‖CB [0,∞) ≤ ‖Hα

(s+p)(g; ·)−Hα
s (h; ·)‖CB [0,∞)

+ ‖Hα
(s+p)(h; ·)− h‖CB [0,∞) + ‖h− g‖CB [0,∞)

≤ 2‖h− g‖CB [0,∞) + ‖Hα
(s+p)(h; ·)− h‖CB [0,∞)

≤ 2‖h− g‖CB [0,∞) + δ‖h‖C2
B
.

In view of Peetre’s K-functional, one get

‖Hα
(s+p)(g; ·)− g‖CB [0,∞) ≤ 2K2(g; δ)

and

‖Hα
(s+p)(g; ·)− g‖CB [0,∞) ≤ M̃

{
ω2(g;

√
δ) + min(1, δ)‖g‖CB [0,∞)

}
.

Using Eq. (22), we obtain that

stA − lim
(s+p)

δ = 0, thus stA − lim
(s+p)

ω(g;
√
δ) = 0,

which completes the proof of required result. �

6. Conclusion

In this paper, we introduce a sequence of linear positive operators in integral form
via Hermite Polynomial to approximate the functions which belongs to Lebesgue
measurable space named as Szász-Beta type operators defined by (5). Further, we
calculate the some estimates which are used to prove convergence rate and approxi-
mation order. Moreover, the various approximation results, e.g., locally and globally
approximation results and A-Statistical approximation are investigated using these
sequences of operators to achieve better approximations in several functional spaces.
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d’Hermite, Gauthier-Villars, Paris, 1926.



396 A. SRIVASTAVA, A. K. YADAV, B. K. SINHA, MD. HESHAMUDDIN, AND N. RAO
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