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A binomial tree approach to stochastic volatility driven model
of the stock price
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Abstract. In this article we attempt to deal with the problem of finding option prices when

the volatility component of the price is stochastic. The model we use is: dSt = µStdt +
σ(Yt)StdWt, where Yt is a mean-reverting type process. First, we show how to estimate the

distribution of the volatility component, using an algorithm due to Del Moral, Jacod and
Protter [6]. Second, using this distributon we are able to construct a binomial tree model
which converges to the solution of the given equation. In order to price options on the stock,

we use the Monte Carlo method to sample from this tree, and obtain a smaller, recombing
tree easier to work with. Finally, we use this method to compute the price of European Call

Options on the SP500 index price in April. We use daily data and our method gives good
results that are proximate to the reported bid-ask spread.
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1. Introduction

We should not start an article about option valuation without quoting the most
celebrated article in the domain [2]. Despite significant development in the option
pricing theory, the Black-Scholes formula for an European call option remains the
most widely used application in Finance.

Nevertheless the above quoted formula has significant biases [16]. Its failure to
describe the structure of reported option prices is thought to arise from its constant
volatility assumption. But if the volatility is allowed to have a random component
it becomes stochastic. However, the process of accounting for stochastic volatility
within an option valuation formula is not an easy task. Hull and White[12], Chesney
and Scott [3], Stein and Stein [18], Heston [10], all have constructed various specific
stochastic volatility models. There are no simple formulas for the price of options
on stocks driven by such models. When some means of implicit or explicit equations
are found, the relations involved are cumbersome at best. Approximations have been
constructed to these and other specific volatility models and we will quote here the
works of Ritken and Trevor [15], and Hilliard and Schwartz [11].

When Binomial Tree approximation was developed by Sharpe [17], the option
pricing model became accesible to a wider audience. Cox, Ross and Rubinstein [4]
constructed a binomial model that converged weakly to the lognormal diffusion of
Blak-Scholes, and they also showed that the limit of the computed option value was
the same as the one given by Black-Scholes valuation. Later Cox and Rubinstein
[5] used the same approach to value the American style options on dividend paying
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stock, and they also relaxed some other assumptions of the Black and Scholes original
model.

In trying to implement a real world behaviour of the stock price model, one even-
tually reaches the ideea of stochastic volatility as the way to do so. There have been
attempts to find the option price analytically most notably in this respect see the
book by Fouque, Papanicolau, and Sircar [9]. In general though, if one hopes to find
any concrete results, one has to retort to numerical methods to solve this problem.
This is the path we follow in this article.

We assume that the price process St and the volatility driving process Yt solve the
equations:

{

dSt = µStdt+ σ(Yt)StdWt

dYt = α(ν − Yt)dt+ ψ(Yt)dZt

(1)

This model spans all the stochastic volatility models considered previously for different
specifications of the functions σ(x) and ψ(x). Here Wt and Zt are two independent
Brownian Motions. The case when they are correlated is an extension of our model,
but we wil not treat it here. We chose a mean-reverting type process to drive the
volatility because this seems to be the most reasonable choice from the practical point
of view.

When trying to implement a binomial tree algorithm to price an option on a stock
driven by this kind of model, one is faced with 2 problems: Modelling the volatility
component and Modelling the price itself. Modeling the volatility is a particularly
hard problem because the volatility cannot be observed directly from the market, only
the Stock price is going to be known.

This problem has been tackled before, most notably by Leisen [13] who uses the
same model as we do. He uses a binomial tree for the volatility and a so-called 8
successors tree for the price. The ideea used is similar with the one applied by Nelson
and Ramaswamy [14] for the case when the volatility is deterministic. However, that
ideea fails from a theoretical point of view when applied to Leisen’s case, since the
transfomation used to eliminate the volatility does not work with stochastic volatility.
Another article that may be interesting is [1] where the authors use a Markov Chain
for the volatility process, but their price tree is not recombining despite what is
claimed in the article.

Our method for estimating the volatility distribution uses an algorithm introduced
by Del Moral, Jacod and Protter [6] - an ideea taken from genomics. We will describe
this ideea in Section 3. For the Price Process we construct a two dimensional tree
(recombining in one direction) with all the possible (stock, volatility) pairs, and,
by using the Monte Carlo method to sample from it, we get smaller trees. These
elementary trees are somewhat recombining, and we use them to find the option
price in Section 4. Section 5 contains numerical results obtained when applying our
algorithm to SP500 option data.

2. The Model and theoretical results

We work under an equivalent martingale measure, and instead of the stock price
we work directly with the logarithm of the price (the return). We denote Xt = logSt.
Under this measure the system of equations (1) becomes:
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{

dXt =
(

r − σ2(Yt)
2

)

dt+ σ(Yt)dWt

dYt = α(ν − Yt)dt+ ψ(Yt)dZt

(2)

Here of course we used the same notations Wt and Zt for the corresponding Brownian
Motions under the equivalent martingale measure obtained by applying the Girsanov’s
theorem. We would like to obtain discrete versions of these two processes so that they
converge in distribution to the continuous processes (2). Using the fact that ex is a
continuous function, and that the price of the European Option can be written as
a conditional expection of a continuous function of the price, this is enough for the
convergence of the option price found using our discrete approximation to the real
price of the option.

To achieve this goal, we construct a Markov Chain, and using the theory in chapter
11 of the book by Stroock and Varadhan [19] (more precisely the section 11.2) we show
the convergence in distribution of this Markov Chain to the solution of the Diffusion
Equation (2). The same theory can also be found in the book by Ethier and Kurtz
[8], though in a slightly less general form.

In our case, everything is one dimensional, and the Markov Chain is time homoge-
nous and this fact allows us to apply the theory without any modification.

Let T be the maturity date of the option we are trying to price and n the number
of steps in our binomial tree. Let us denote the time increment by ∆t = T

n
= h.

Further, we assume that the martigale problem associated with the diffusion process
Xt in (2) has a unique solution starting from x = logSk, the last data point available.
This is equivalent with saying that the equation (2) has a unique solution in the weak
sense. In the next section we deal with the convergence issue of the approximating
process Y n

t to Yt.
Let us start with a discrete Markov Chain (x(ih),Fih) with transition probabilities

denoted pz
x of jumping from the point x to the point z. These transition probabilities

also depend on h, but for simplicity of notation we skip that subscript. For each h

let Ph
x be the probability measure on R characterized by:































(i) Ph
x (x(0) = x) = 1

(ii) Ph
x

(

x(t) = (i+1)h−t

h
x(ih) + t−ih

h
x((i+ 1)h)

, ih ≤ t < (i+ 1)h

)

= 1, ∀ i ≥ 0

(iii) Ph
x (x((i+ 1)h) = z|Fih) = pz

x, ∀ z ∈ R and ∀ i ≥ 0

(3)

Remark 2.1.

(1) It is easy to see that (i) and (iii) say that (x(ih),Fih), i ≥ 0 is time-homogenous
Markov Chain starting at x with transition probability pz

x under the probability
measure Ph

x .
(2) Condition (ii) assures us that the process x(t) is linear between x(ih) and x((i+

1)h). In turn, this will later guarantee that the process x(t) we construct is a
tree.

Conditional on being at x and on the Yt distribution, we construct the following
quantities:

bh(x) =
1

h
E

Y

[

∑

z successor of x

pz
x(z − x)

]
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ah(x) =
1

h
E

Y

[

∑

z successor of x

pz
x(z − x)2

]

Here the successor z is determined using both the predecessor x and the Y n process.
Similarly we define the following quantities corresponding to the infinitesimal gen-

erator of the equation (2):

b(x) = E
Y

[

r − σ2(Y )

2

]

a(x) = E
Y

[

σ2(Y )
]

We make the following assumptions: for any R > 0,

lim
hց0

sup
{|x|,|Y | and |Y n|≤R}

|bh(x) − b(x)| = 0 (4)

lim
hց0

sup
{|x|,|Y | and |Y n|≤R}

|ah(x) − a(x)| = 0 (5)

lim
hց0

max
z successor of x

|z − x| = 0 (6)

Theorem 2.1. Assume that the martigale problem associated with the diffusion process

Xt in (2) has a unique solution Px starting from x = logSk and that the functions

a(x, y) and b(x, y) are continuous. Then conditions (4), (5) and (6) are sufficient to

guarantee that Ph
x as defined in (3) converges to Px as hց 0 uniformly on compacts

in R. Or equivalently saying: x(ih) converges in distribution to Xt the unique solution

of the equation (2)

This is the Theorem 11.2.3 in [19] adapted to our particular problem. We must also
note that assumption (6), though implying condition (2.6) in the above cited book is
a much stronger assumption. However, since it is available to us we shall make use of
it.

Remark 2.2. Since in our case the functions a and b do not depend on time, and a

is stricly positive definite valued we can relax the assumptions (4) and (5) to a weaker

kind of convergence. We direct the reader to Theorem 11.4.2 which details exacly this

case.

3. Estimating the Volatility

In this section we describe the method used to find the transition distribution of
the volatility component.

We assume that the coefficients ν, α and the functions σ(y) and ψ(y) are known
or have been already estimated. We are using an algorithm due to [6] adapted to our
specific case. The ideea of the algorithm comes from genomics, where it has been used
under the name: “The Mutation-Selection Algorithm”. We adapt the algorithm for
our case, and we rename it Evolution-Selection. For a more general view including
proof of the convergence we refer the reader to the above cited article.

The data we work with is a sequence of returns: {x0 = logS0, x1 = logS1, . . . , xk =
logSk} read from the market. We need an initial distribution for the volatility process
Yt. For practical purposes, we use δ{ν} for this distribution. Here δ{x} is the Dirac
Delta function. The only condition we need is that the functions σ(x) and ψ(x) have
to be twice differentiable with bounded derivatives of all orders up to 2.
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Let us define the function:

φ(x) =

{

1 − |x| if −1 < x < 1

0 otherwise

In fact, any probability distribution with finite mean can be used for the function
φ(x). For n > 0 we define the contraction coresponding to φ(x) as:

φn(x) = 3
√
nφ(x 3

√
n) =

{

3
√
n (1 − |x 3

√
n|) if − 1

3
√

n
< x < 1

3
√

n

0 otherwise
(7)

First we choose m = mn an integer.
Step 1: We start with X0 = x0 and Y0 = y0 = ν

Evolution step: This part approximates a random variable with the same dis-
tribution as (X1, Y1) using the well known Euler scheme for the equation (2). More
precisely we set:

Y (m, y0)i+1
def
= Yi+1 = Yi +

1

m
α(ν − Yi) +

1√
m
ψ(Yi)Ui

X(m,x0)i+1
def
= Xi+1 = Xi +

1

m
(r − σ2(Yi)

2
) +

1√
m
σ(Yi)U

′
i (8)

Here Ui and U ′
i are iid Normal random variates with mean 0 and variance 1.

At the end of the first evolution step we obtain:

X1 = X(m,x0)m

Y1 = Y (m, y0)m (9)

Selection step: We repeat the evolution step n times to obtain n pairs: {(Xj
1 , Y

j
1 )}j=1,n

Now we introduce the discrete probability measure:

Φn
1 =

{

1
C

∑n
j=1 φn(Xj

1 − x1)δ{Y
j

1
} if C > 0

δ{0} otherwise
(10)

Here the constant C is choosen to make Φn
1 a probability measure, i.e. C =

∑n
j=1 φn(Xj

1 − x1). Basically, the ideea is to “select” only the values of Y1 which
corespond to values of X1 not far away from the realization x1.

We conclude the first Selection step by simulating n iid variables {Y ′j
1}j=1,n.

Steps 2 to k: For each step i = 2, k, first we apply the evolution step to each of the
variables selected at the end of the previous step, that is, starting with X0 = xi−1 and

Y0 = Y ′j
i−1 for each j = 1, n in (8). Thus, we obtain n pairs {(Xj

i , Y
j
i )}j=1,n. Then

we apply the selection step to these pairs. That is: we use them in the distribution
(10) instead of the {(Xj

1 , Y
j
1 )}j=1,n pairs and xi instead of x1.

At the end of each step i we obtain a discrete distribution Φn
i , and this is our

estimate for the transition probability of the process Yt. In our construction of the
binomial tree we use only the latest estimated transition probability, i.e., Φn

k .

Remark 3.1 (Results of the Approximation). With the choice mn = 3
√
n the mean

error of approximating Yi is of the order O
(

1
3
√

n

)

for each i = 1, k.

For exact estimates, including an estimate of the probability of deviation from the
continuous distribution, the reader is advised to consult Theorem 5.1 in [6]
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4. Constructing the tree

We assume that we have an option with maturity T . Our purpose in this section
is to construct a discrete binomial tree which serves to put a price on the given
option. The data we have is the stock price today S, together with a history of
earlier stock prices which are used to compute the discrete transition probability of
the approximating volatility process Y h, as we did in the previous section. We assume
that we have done that and we have obtained a discrete distribution {Y1, Y2, . . . , YK}
with respective probabilities {p̄1, p̄2, . . . , p̄K}.

Let us divide the interval [0, T ] into n subintervals each of length ∆t = T
n

= h. At
each of the points i∆t = ih the tree is branching. The knots on the tree represent
possible return values Xt = logSt.

Now, assume that we are at a point x. What are the possible successors of x?
In the following we refer to the Figure 1 on page 131.

p1

p2

−δ

( )iY tσ ∆

( )ij Y tσ ∆

2 ( 1) ( )ix j Y tσ= − ∆

1 ( 1) ( )ix j Y tσ= + ∆

x

Figure 1. The basic successors for a given volatility value

For any choice of the volatility, we have two respective successors. In total we have
2K for any starting x. Although not specifically stated, we can think of each of the
points of the tree as coresponding to a pair (Xt, Yt).

Let us see what are the successors for a specific value of the volatility process Yi

with corresponding probability p̄i. We consider a grid of points of the form l σ(Yi)
√

∆t
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with l taking integer values. In this grid let j be the odd integer that corresponds to
the point nearest to x. Mathematically j is the point that attains:

inf
{l∈N;l≡1(mod2)}

∣

∣

∣
x− l σ(Yi)

√
∆t

∣

∣

∣

Let us also denote δ = x − j σ(Yi)
√

∆t. Note that δ is negative in the Figure 1.
That is why we represented the distance by the number −δ. The situation when δ is
positive is going to give us the same results.

One of the assumptions we need to verify is the assumption (4), which asks that
the mean of the increment needs to converge to the drift of the Xt process in (2).
In order to simplify this requirement we simply add the drift quantity to each of the
successors. This trick modifies the assumption to ask now the convergence of the
mean increment to zero. This clever ideea has been used by Leisen in his article as
well as by Nelson & Ramaswamy.

Explicitly we take the 2 successors to be:






x1 = (j + 1)σ(Yi)
√

∆t+
(

r − σ2(Yi)
2

)

∆t

x2 = (j − 1)σ(Yi)
√

∆t+
(

r − σ2(Yi)
2

)

∆t
(11)

First notice that condition (6) is trivially satisfied by this choice of successors.
What we hope for is to match the mean condition (4) exacltly (i.e. to set bh(x, Y ) =
b(x, Y )), and use this condition to find the joint probabilities p1 and p2. Then we
must verify the assumption about the variance (5). If everything is accurate we will
obtain our convergence result.

Algebrically we write: j σ(Yi)
√

∆t = x − δ, and using this we obtain that the
increments over the perion ∆t are:







x1 − x = σ(Yi)
√

∆t− δ +
(

r − σ2(Yi)
2

)

∆t

x2 − x = −σ(Yi)
√

∆t− δ +
(

r − σ2(Yi)
2

)

∆t
(12)

The condition (4) translates here as:

E[∆x|Yi] =

(

r − σ2(Yi)

2

)

∆t

, where by ∆x we denoted the increment over the period ∆t.
We will solve the following system of equations with respect to p1 and p2:

{

(

σ(Yi)
√

∆t− δ
)

p1

p1+p2

+
(

−σ(Yi)
√

∆t− δ
)

p2

p1+p2

= 0

p1 + p2 = p̄i

(13)

The first equation in the system becomes:

σ(Yi)
√

∆t
p1 − p2

p̄
− δ = 0

or:

p1 − p2 =
p̄ δ

σ(Yi)
√

∆t
(14)

And now it is very easy to see that (14) together with the second equation in (13)
give the following solution:
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





p1 = p̄i

2

(

1 + δ

σ(Yi)
√

∆t

)

p2 = p̄i

2

(

1 − δ

σ(Yi)
√

∆t

) (15)

Remark 4.1. By construction −σ(Yi)
√

∆t < δ < σ(Yi)
√

∆t

Using the Remark 4.1 it is easy to see that p1 and p2 are guaranteed to be numbers
between 0 and 1.

Remark 4.2. The assumptions (4) and (5) will be satisfied by our choice of x1, x2, p1

and p2

5. Using the Bootstrap Method to construct a manageable tree

One potential drawback of the method described in the previous section is that
the constructed binomial tree is quite difficult to work with. For example assuming
that the volatility has k levels, every point on the tree has 2k successors. Even with
our construction, which insures that inside the same volatility level the points on the
tree are recombining this tree becomes quickly unmanageable.

In fact, it is very difficult to draw the tree even for small values of n.
Therefore to make this problem manageable we select an n sized bootstrap sample

from the discrete volatility distribution, and construct a much smaller tree only for
those volatility levels. More precisely, say {Y1, Y2, . . . , Yn} is a sample drawn with
replacement from the discrete distribution Y - a bootstrap sample. We start with
the initial value x0. Then we compute the successors of x0 according to the method
in Section 4 but only for the volatility Y1. Note that we do not have conditional
distribution anymore, Y1 behaves as if it were the volatility value. In other words,
p̄i is replaced by 1 in all the formulas in Section 4. After this, for each one of the 2
successors we compute their respective successors for the volatility equal with Y2.

And we continue like this for every step from 1 to n until we construct a price tree.
We can see some examples of the ” bootstrap trees” in Figure 2 on page 133. They
are n = 8 steps trees.

0.00 0.02 0.04 0.06 0.08

6.
8

6.
9

7.
0

7.
1

7.
2

time.coord.plot

tr
ee

.c
oo

rd

(a) Tree 1
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(b) Tree 2
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(c) Tree 3

Figure 2. Example of trees

Once we have the price tree constructed we compute the option value at the termi-
nal nodes then work backwards on the tree to find the value at the first node on the
tree as the expected value of the terminal nodes as in the usual binomial tree method.
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Consequently our estimated option price is the average of the computed values for
each bootstrap sample.

The convergence of this estimated price to the option price value given by the
complete tree is assured by the general Bootstrap theory. For example, see [7].

Remark 5.1. ¿From the above cited book a good choice for the number of bootstrap

samples is between 20 and 200.

6. Real world example: Working with SP500 option data

In this section we present results obtained using Standard & Poor 500 companies
stock index data from April 2004. We are using daily data from Jan 1st 1999 to
April 21 2004 to compute the discrete volatility distribution according to the method
described in Section 3. Figure 3 represents the evolution of the S&P500 stock price
over the time period mentioned above.

0 200 400 600 800 1000 1200

80
0

10
00

12
00

14
00

Time

S
to

ck

Figure 3. The S&P500 stock price over time

We are working with the Hull-White model in (2) with φ(y) = αy and σ(y) =
√

|y|,
using as parameters for the volatility equation α = .1, m = .12 and r = .05 for the
price. The parameters have been estimated from the data. However, a discussion
about the method used is beyond the scope of the present article.

We estimate the discrete volatility distribution using the Del Moral& all. method
presented in Section 3. A plot of this distribution can bee seen in Figure 4(a).

To compare our method we also estimate the implied volatility on April 21 for
a range of strike prices from the option data available that day. We use a simple
bisection method to do so. Figure 4(b) shows the implied volatility’s behaviour for
various strike prices.

Using the stock price for the next day, April 22, we compute our estimates of the
Call option prices for that day. Tables 1 and 2 present our results. Each row in the
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(a) Estimated discrete Volatility Distribution
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(b) Implied Volatility

Figure 4. Estimates from historical data

table corresponds to a price for a specific strike value. Columns 3 and 4 show the
bid-ask spread read from the market for each corresponding strike price.

Columns 5 and 6 present the estimated price computed with the Cox-Ross-Rubinstein
binomial tree respectively with the Black-scholes formula for a fixed volatility value
of 0.12 which is the median for the implied volatility values.

Columns 7 and 8 present the estimated price computed with the same methods
but using the previous day volatility from the second column.

Finally the last column presents the estimated price obtained with our method.
Remarkably, our method calculates option prices that are much closer to the bid-

ask interval than the other traditional methods. Sometimes our estimated price falls
inside the interval.

To illustrate better how the various methods perform we separate the options in
groups depending on the range of the strike prices (out of the money, at the money,
and in the money) and plotted the estimated prices given by the various methods.

We can see the estimated prices for the 29 day Maturity date in the Figures 5, 6
and 7 and
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Figure 5. Estimated 29 day option prices: Deep in the money
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Figure 6. Estimated 29 day option prices: At the money

Table 1. Results for 29 day SP500 Call Option on April 22
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Figure 7. Estimated 29 day option prices: Deep out of the money
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Figure 8. Estimated 58 day option prices: Deep in the money
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continued on next page
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Figure 9. Estimated 58 day option prices: At the money
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Figure 10. Estimated 58 day option prices: Deep out of the money

continued from previous page

Strike
Price

Implied
Volatility

Bid-Ask Spread Binomial tree
and Black Sc-
holes formula
vol = 0.12

Binomial tree
and Black Sc-
holes formula
vol = prev. day

Our
Method

750 0.99999994 386 388 394.00 393.00 402.09 400.48 392.07
continued on next page
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continued from previous page

Strike
Price

Implied
Volatility

Bid-Ask Spread Binomial tree
and Black Sc-
holes formula
vol = 0.12

Binomial tree
and Black Sc-
holes formula
vol = prev. day

Our
Method

800 0.99999994 336 338 344.00 343.00 357.46 356.03 342.63
825 0.99999994 311.1 313.1 319.00 318.00 336.01 334.66 317.36
850 0.99999994 286.1 288.1 294.00 293.00 315.14 313.91 291.85
875 0.99999994 261.1 263.1 269.00 268.00 295.10 293.85 267.45
900 0.99999994 236.2 238.2 244.00 243.00 275.59 274.51 241.61
925 0.99999994 211.3 213.3 219.00 219.00 257.05 255.93 217.40
950 0.99999994 186.4 188.4 194.00 194.00 239.14 238.13 190.94
975 0.99999994 161.5 163.5 169.00 169.00 222.11 221.15 166.28
995 0.99999994 141.7 143.7 149.47 148.88 209.21 208.16 146.93
1005 0.99999994 131.9 133.9 139.47 138.92 202.76 201.86 137.48
1025 0.99999994 112.2 114.2 119.47 119.00 190.36 189.67 117.21
1035 0.99999994 102.5 104.5 109.48 109.05 184.67 183.77 105.55
1040 0.99999994 97.6 99.6 104.49 104.08 181.83 180.87 102.73
1050 0.99999994 88 90 94.53 94.16 176.15 175.17 91.56
1060 0.99999994 78.5 80.5 84.62 84.28 170.46 169.61 81.55
1070 0.99999994 69.1 71.1 74.79 74.50 164.78 164.17 72.06
1075 0.99999994 64.5 66.5 69.94 69.66 161.93 161.50 66.45
1080 0.08534008 59.9 61.9 65.12 64.87 64.54 64.28 62.03
1090 0.10675174 51 53 55.74 55.51 55.21 54.99 53.65
1100 0.11239082 42.4 44.4 46.73 46.54 46.27 46.08 43.92
1110 0.11785072 34.3 36.3 38.25 38.12 38.06 37.94 36.59
1115 0.11562651 30.4 32.4 34.31 34.16 33.91 33.76 32.90
1120 0.11560673 26.7 28.7 30.55 30.41 30.09 29.96 27.86
1125 0.11706859 24 24.7 26.95 26.87 26.61 26.54 25.55
1130 0.11411554 20.5 22 23.67 23.56 22.98 22.86 23.73
1135 0.11454815 17.1 18.6 20.61 20.49 19.92 19.82 16.70
1140 0.11247212 14.3 15.8 17.71 17.68 16.76 16.72 15.95
1145 0.11145037 12.2 13.3 15.21 15.12 14.10 14.03 11.65
1150 0.10943896 9.8 10.8 12.89 12.82 11.55 11.48 11.62
1155 0.10980803 7.8 8.8 10.79 10.77 9.54 9.51 8.86
1160 0.10793394 6 7 9.03 8.96 7.56 7.54 8.96
1165 0.10959452 4.7 5.4 7.42 7.39 6.28 6.23 7.89
1170 0.10715657 3.5 4 6.05 6.03 4.75 4.72 3.83
1175 0.1066758 2.7 3 4.92 4.88 3.63 3.65 3.34
1180 0.10621303 1.9 2.4 3.90 3.90 2.78 2.77 4.34
1185 0.10705012 1.3 1.8 3.11 3.09 2.17 2.16 1.92
1190 0.11137563 1 1.35 2.44 2.42 1.87 1.87 2.05
1200 0.11297244 0.5 0.8 1.45 1.44 1.10 1.12 1.90
1210 0.11875373 0.4 0.5 0.82 0.83 0.77 0.78 1.01
1215 0.12618941 0.25 0.4 0.61 0.61 0.78 0.80 0.27

continued on next page
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continued from previous page

Strike
Price

Implied
Volatility

Bid-Ask Spread Binomial tree
and Black Sc-
holes formula
vol = 0.12

Binomial tree
and Black Sc-
holes formula
vol = prev. day

Our
Method

1225 0.12638921 0.15 0.2 0.33 0.33 0.44 0.45 0.36

Table 2. Results for 58 day SP500 Call Option on April 22

Strike
Price

Implied
Volatility

Bid-Ask Spread Binomial tree
and Black Sc-
holes formula
vol = 0.12

Binomial tree
and Black Sc-
holes formula
vol = prev. day

Our
Method

400 0.9999999 734.6 736.6 749.02 743.10 749.34 743.43 743.66
500 0.9999999 634.8 636.8 649.02 643.89 650.99 645.86 645.20
550 0.9999999 584.9 586.9 599.02 594.28 602.90 598.19 595.56
600 0.9999999 535 537 549.02 544.68 555.95 551.68 543.62
650 0.9999999 485.1 487.1 499.02 495.07 510.54 506.66 494.37
700 0.9999999 435.2 437.2 449.02 445.47 467.00 463.42 445.19
750 0.9999999 385.4 387.4 399.02 395.87 425.62 422.24 394.21
775 0.9999999 360.4 362.4 374.02 371.06 405.65 402.48 368.18
800 0.9999999 335.5 337.5 349.02 346.26 386.54 383.31 343.11
825 0.9999999 310.7 312.7 324.02 321.46 367.44 364.75 318.41
850 0.9999999 285.8 287.8 299.02 296.66 349.73 346.80 293.97
875 0.9999999 261 263 274.02 271.85 332.27 329.47 267.41
900 0.9999999 236.2 238.2 249.02 247.05 315.00 312.78 244.15
925 0.9999999 211.6 213.6 224.02 222.25 299.36 296.71 218.77
950 0.9999999 187 189 199.02 197.45 283.72 281.28 195.00
975 0.9999999 162.7 164.7 174.03 172.65 268.33 266.48 169.60
995 0.9999999 143.4 145.4 154.04 152.82 257.37 255.09 149.16
1005 0.9999999 133.8 135.8 144.06 142.92 251.89 249.54 139.23
1025 0.9999999 114.9 116.9 124.16 123.19 240.94 238.74 117.54
1050 0.9999999 91.9 93.9 99.63 98.84 227.24 225.77 93.21
1075 0.1064617 70 72 76.00 75.40 75.19 74.61 70.69
1085 0.1138119 61.6 63.6 67.02 66.50 66.53 65.99 62.68
1100 0.1189136 49.6 51.6 54.33 53.88 54.20 53.75 49.69
1110 0.1200046 42.2 44.2 46.47 46.09 46.47 46.09 42.31
1115 0.1180641 38.6 40.6 42.77 42.40 42.49 42.12 38.24
1120 0.1204317 35.2 37.2 39.19 38.87 39.26 38.94 37.11
1125 0.1205274 31.9 33.9 35.83 35.51 35.92 35.59 29.68
1130 0.1201625 28.7 29.9 32.55 32.31 32.57 32.34 27.63
1140 0.1194584 22.9 24.9 26.59 26.44 26.50 26.34 24.58
1150 0.1183253 18 19.5 21.42 21.28 21.11 20.98 19.63
1160 0.1168272 13.6 15.1 16.98 16.84 16.39 16.27 14.09

continued on next page
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continued from previous page

Strike
Price

Implied
Volatility

Bid-Ask Spread Binomial tree
and Black Sc-
holes formula
vol = 0.12

Binomial tree
and Black Sc-
holes formula
vol = prev. day

Our
Method

1170 0.1158288 10 11.5 13.22 13.10 12.49 12.39 13.65
1175 0.1139731 8.5 9 11.56 11.47 10.59 10.49 8.03
1200 0.1107671 3.2 3.8 5.57 5.52 4.45 4.42 3.57
1215 0.1131049 1.65 2.15 3.39 3.36 2.73 2.74 1.71
1225 0.1126395 0.95 1.3 2.38 2.36 1.81 1.83 1.68
1250 0.1181863 0.25 0.65 0.90 0.90 0.82 0.82 0.45
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