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Bifurcations and asymptotics for singular elliptic problems

MARIUS GHERGU

ABSTRACT. We consider a class of singular elliptic problems in bounded domains. The main
feature here is the presence of the singular and a sublinear nonlinearities combined with a sub-
quadratic convection term. We establish existence, nonexistence, bifurcation and asymptotic
behavior of the solution. We also describe the decay rate of the solution as well as a blow-up
result around the bifurcation point.
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Singular elliptic problems have been intensively studied in the last decades. Prob-
lems of this type arise in the study of non-Newtonian fluids, chemical heterogenous
catalysts, in the theory of heat conduction in electrically conducting materials. For
instance, problems of this type characterize some reaction-diffusion processes where
the condition v > 0 is viewed as the density of a reactant and the region where v = 0
is called the dead core, where no reaction takes place (see [1] for the study of a single,
irreversible steady-state reaction).

Nonlinear singular elliptic equations are also encountered in glacial advance, in
transport of coal slurries down conveyor belts and in several other geophysical and
industrial contents (see [4] for the case of the incompressible flow of a uniform stream
past a semi-infinite flat plate at zero incidence). For more details we also refer to
[6, 4, 14, 16] and the references therein.

We are first concerned with a sublinear singular elliptic problems with two para-
meters

—Au+ K(z)g(u) = Af(z,u) + ph(x) in Q,
u>0 in Q, (Py..)
u=20 on 0f).

where Q@ ¢ RY (N > 2) is a smooth bounded domain, K,h € C%7(Q), with h > 0
on  and \, u are positive real numbers. We suppose that f : Q x [0,00) — [0, 00) is
a Holder continuous function which is positive on Q x (0, 00). We also assume that f
is nondecreasing with respect to the second variable and is sublinear, that is,

(f1) the mapping (0,00) 3 s — M is nonincreasing for all = € €;
s
(f2) lii% CIL)) =400 and lim iG] =0, uniformly for z € Q.
s S S§— 00 S

We assume that g € C%7(0,00) is a nonnegative and nonincreasing function satisfying
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1 li = ;
(91) 31{]%9(5) +00;
(92) there exist C,09 > 0 and « € (0,1) such that g(s) < Cs™ for all
ENS (0, 50)

Obviously, hypothesis (g2) implies the following Keller-Osserman type condition
around the origin

—1/2

(93) /01 (/Otg(s)ds> dt < .

As proved by Bénilan, Brezis and Crandall [2], condition (g3) is equivalent to the
property of compact support, that is, for every h € L'(RY) with compact support,
there exists a unique u € WH1(RY) with compact support such that Au € L*(RY)
and

~Au+g(u)=h  ae inRY,

Due to the singular character of (P ,), we can not expect to find solutions in
C%(Q). However, under the above assumptions we will show that (P ;) has at least
one solution in the class £ := {u € C*(Q); Au € L'(Q)} for A\, u belonging to a
certain range.

A fundamental role will be played in our analysis by the numbers

K* =max K(z), K. = min K(z).
€N e

Our main results are the following.
Theorem 1. Assume that K, > 0, f satisfies (f1) — (f2) and g satisfy (g1).
1
If/ g(s)ds = 400, then (Py ) has no solution in € for any A, > 0.
0

Theorem 2. Assume that K. > 0, [ satisfies (f1) — (f2) and g satisfies (g1) — (g2).
Then there exist Ay, e > 0 such that

(Py,.) has at least one solution in € if X > A\, or 1> 1.

(Px,) has no solution in € if X < Ay and p < fi,.

Moreover, if X > A\, or pu > p, then (Py,) has a mazimal solution in € which is
increasing with respect to A and p.

Theorem 3. Assume that K* <0, f satisfies (f1) — (f2) and g satisfies (g1) — (92).
Then (Py,,) has a unique solution uy, € &€ for any A, u > 0. Moreover, uy, is
increasing with respect to A and .

Theorems 2 and 3 also show the role played by the sublinear term f and the sign
of K(z). Indeed, if f becomes linear then the situation changes radically. First, by
the results in [8], the problem

—Au—u*=u inQ,
u >0 in ,
u=20 on 02

has a solution, for any « > 0. Next, as showed in [3], the problem

“Au+u*=u inQ,
u>0 in Q,
u=0 on Of)
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At least one solution

[P TR IR U TR IS

No solution

(0,0) Ax A
FiGUurE 1. The dependence on A and p in Theorem 2.

has no solution, provided 0 < a < 1 and Ay > 1 (that is, if Q is “small”), where \;
denotes the first eigenvalue of (—A) in H{ ().

As it was pointed out in [5], problems related to multiplicity or to uniqueness
become difficult even in simple cases. In this sense we also refer to [17], where it is
studied the existence of radial symmetric solutions of the problem

Au+Aw? —u™*) =0 in By,
u >0 in Bl, (1)
u=0 on JBq,

where 0 < a,p < 1, A > 0 and Bj is the unit ball in RY. Using a bifurcation theorem
of Crandall and Rabinowitz, it has been shown in [17] that there exist Ay > Ag > 0
such that (1) has no solutions for A < )y, one solution for A = A\g or A > Ay, two
solutions for Ay > A > Ag.

We are next concerned with the following singular elliptic problem

— Au = Af(u) + a(x)g(u) in 9,
u>0 in Q, (P))
u=20 on 092,

where O C RY (N > 2) is a bounded domain and A € R is a real parameter. We

suppose here that 0 < f € C%7[0,00) is nondecreasing on (0,00) while f(s)/s is

nonincreasing for s > 0; and 0 < g € C%7(0,00) (0 < 8 < 1) fulfills the hypotheses

(g91), (92). We first observe that there exists

1)
s

m = lim

[0, 0).

This number plays a crucial role in our analysis. More precisely, the existence of the

solutions to (Py) will be separately discussed for m > 0 and m = 0. Let a, = mina(x).
€N
Our first result is
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Theorem 4. Assume (g1), (92) and m = 0. If a, > 0 (resp., a. = 0), then (Py) has
a unique solution uy € ENCY1=%(Q) for all \ € R (resp., X > 0) with the properties:
(i) wuy is strictly increasing with respect to .
(i) there exist two positive constant c1,co > 0 depending on A\ such that cid(x) <
uy < cad(x) in Q.

The bifurcation diagram in the “sublinear” case m = 0 is depicted in Figure 2.

u

FIGURE 2. The “sublinear” case m = 0.

We now consider the case m > 0. The results in this case are different from those
presented in Theorem 4. A careful examination of (Py) reveals the fact that the singu-
lar term g(u) is not significant. Actually, the conclusions are close to those established
in [15, Theorem A], where an elliptic problem associated to an asymptotically linear
function is studied.

A
Let A; be the first Dirichlet eigenvalue of (—A) in © and A\* = Z=. Our result in
m

this case is the following.

Theorem 5. Assume (gl), (g2) and m > 0. Then the following hold.
(i) If A > X*, then (Py\) has no solutions in &.

(i) If ax >0 (resp. a, = 0) then (Py) has a unique solution uy € €N CH1=2(Q) for
all =00 < A < A* (resp. 0 < A < A*) with the properties:
(iil) wy is strictly increasing with respect to A;

(ii2) there exists two positive constants c1,co > 0 depending on A such that

crd(z) < uy < ead(z) in Q;

(ii3) /\h/n;\l uy = +oo, uniformly on compact subsets of €.

The bifurcation diagram in the “linear” case m > 0 is depicted in Figure 3.

The proofs rely on the sub and super-solution method and can be found in [7, 10, 9].
One of the difficulty in the treatment of (P ,) or (Py) is the lack of the usual maximal
principle. The following result which is due to Shi and Yao [21] gives a comparison
principle that applies to singular elliptic equations.

Lemma 1. Let F : Q x [0,00) — R be a continuous function such that the mapping

(0,00) 35 — E@9) s strictly decreasing at each x € Q. Assume v, w € C?(Q)NC(Q)
and

S
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FIGURE 3. The “linear” case m > 0.

(a) Aw+ F(z,w) <0< Av+ F(z,v) in
() v,w>01inQ and v < w on O
() Ave LY(Q).

Then v < w in Q.

We next consider the following singular elliptic problem (see [11, 12])

—Au = g(u) + \|Vul|P + pf(z,u) inQ,

u>0 in €, (2)

u=0 on 0},
where 0 < p < 2 and A\, u > 0. As remarked in [13], the requirement that the
nonlinearity grows at most quadratically in |Vu| is natural in order to apply the
maximum principle.

We suppose that g : (0,00) — (0,00) is a Holder continuous function which is
nonincreasing and lims« o g(s) = +o0o. We assume that f : Q x [0,00) — [0,00) is a
Holder continuous function which is nondecreasing with respect to the second variable
and is positive on Q x (0,00). We also need the following assumptions on f
(A1) there exists ¢ > 0 such that f(s) > cs for all s € Q;

f(s)

(A2) the mapping (0,00) 5 s — is nondecreasing;

s
(A3) the mapping (0,00) 5 s — @ is nonincreasing;
s
(A4)  lim )
s—oo 8

Problems of this type arise in the study of guided modes of an electromagnetic field
in a nonlinear medium, satisfying adequate constitutive hypotheses. The following
two examples illustrate situations of this type: (i) if f(u) = u®(1+yu?)~! (v > 0) then
problem (2) describes the variation of the dielectric constant of gas vapors where a
laser beam propagates (see [18, 19]); (ii) nonlinearities of the type f(u) = (1—6*7"2)u
arise in the context of laser beams in plasmas (see [20]).

By the monotony of g, there exists

a = lim g(s) € [0,00).

§— 00
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The first result concerns the case A = 1 and 1 < p < 2. In the statement of the
following result we do not need assumptions (A1) — (A4); we just require that f is a
Holder continuous function which is nondecreasing with respect to the second variable
and is positive on Q x (0, 00).

Theorem 6. Assume A=1and 1 <p < 2.

(i) Ifp=2 and a > Ay, then (2) has no solutions;

(ii) Ifp=2anda < Ay orl <p <2, then there exists u* > 0 such that (2) has at
least one classical solution for p < p* and no solutions exist if > p*.

If A=1and 0 < p <1, the study of existence is closely related to the asymptotic
behavior of the nonlinear term f(z,w). In this case we prove

Theorem 7. Assume A=1and 0 < p < 1.

(i) If f satisfies (A1) or (A2), then there exists p* > 0 such that (2) has at least one
classical solution for p < p* and no solutions exist if > p*;

(ii) If 0 <p <1 and f satisfies (f3) — (f4), then (2) has at least one solution for
all p > 0.

Next we are concerned with the case p = 1. Our result is the following

Theorem 8. Assume p = 1 and f satisfies assumptions (A3) and (A4). Then the
following properties hold true.
(i) If 0 <p <1, then (2) has at least one classical solution for all X > 0;
(i) If 1 <p <2, then there exists \* € (0,00] such that (2) has at least one classical
solution for A < X* and no solution exists if A > X*. Moreover, if 1 < p < 2, then
A* is finite.
Related to the above result we raise the following open problem: if p = 1 and
p =1, is A\* a finite number? Theorem 8 shows the importance of the convection
term A|VulP in (2). Indeed, according to Theorem 3 ( see [9, Theorem 1.3]) and for
any p > 0, the boundary value problem
—Au=u"+ \VulP + puf  in Q,
u>0 in €, (3)
u=20 on 02,

has a unique solution, provided A = 0 and «, 8 € (0,1). The above theorem shows
that if A is not necessarily 0, then the following situations may occur : (i) problem (3)
has solutions if p € (0,1) and for all A > 0; (ii) if p € (1,2) then there exists \* > 0
such that problem (3) has a solution for any A < A* and no solution exists if A > \*.

To see the dependence between A and p in (2), we consider the special case f =1
and p = 2. In this case we can say more about the problem (2). More precisely we
have

Theorem 9. Assume that p =2 and f = 1. Then the following properties hold.
(i) The problem (2) has a solution if and only if AM(a + p) < A1;

A
(ii) Assume p > 0 is fized, g is decreasing and let \* = !

. Then (2) has a unique

solution uy for every X < X* and the sequence (ux)x<x~ is increasing with respect to
A
Moreover, if limsup s®g(s) < 400, for some o € (0, 1), then the sequence of solutions
sN\0
(ux)o<r<r+ has the following properties
(iil) For all 0 < A\ < A* there exist two positive constants ¢y, ca depending on
A such that ¢y dist(z, 0Q) < uy < co dist(z, Q) in O
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(ii2) uy € CH1=2(Q) N C?(Q);
(ii3) uy — +o00 as A 7 A*, uniformly on compact subsets of ).
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