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Bifurcations and asymptotics for singular elliptic problems

Marius Ghergu

Abstract. We consider a class of singular elliptic problems in bounded domains. The main

feature here is the presence of the singular and a sublinear nonlinearities combined with a sub-
quadratic convection term. We establish existence, nonexistence, bifurcation and asymptotic
behavior of the solution. We also describe the decay rate of the solution as well as a blow-up

result around the bifurcation point.
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Singular elliptic problems have been intensively studied in the last decades. Prob-
lems of this type arise in the study of non-Newtonian fluids, chemical heterogenous
catalysts, in the theory of heat conduction in electrically conducting materials. For
instance, problems of this type characterize some reaction-diffusion processes where
the condition u ≥ 0 is viewed as the density of a reactant and the region where u = 0
is called the dead core, where no reaction takes place (see [1] for the study of a single,
irreversible steady-state reaction).

Nonlinear singular elliptic equations are also encountered in glacial advance, in
transport of coal slurries down conveyor belts and in several other geophysical and
industrial contents (see [4] for the case of the incompressible flow of a uniform stream
past a semi-infinite flat plate at zero incidence). For more details we also refer to
[6, 4, 14, 16] and the references therein.

We are first concerned with a sublinear singular elliptic problems with two para-
meters







−∆u + K(x)g(u) = λf(x, u) + µh(x) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(Pλ,µ)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain, K,h ∈ C0,γ(Ω), with h > 0
on Ω and λ, µ are positive real numbers. We suppose that f : Ω × [0,∞) → [0,∞) is
a Hölder continuous function which is positive on Ω× (0,∞). We also assume that f
is nondecreasing with respect to the second variable and is sublinear, that is,

(f1) the mapping (0,∞) ∋ s 7−→
f(x, s)

s
is nonincreasing for all x ∈ Ω;

(f2) lim
sց0

f(x, s)

s
= +∞ and lim

s→∞

f(x, s)

s
= 0, uniformly for x ∈ Ω.

We assume that g ∈ C0,γ(0,∞) is a nonnegative and nonincreasing function satisfying
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(g1) lim
sց0

g(s) = +∞;

(g2) there exist C, δ0 > 0 and α ∈ (0, 1) such that g(s) ≤ Cs−α for all
s ∈ (0, δ0).

Obviously, hypothesis (g2) implies the following Keller-Osserman type condition
around the origin

(g3)

∫ 1

0

(
∫ t

0

g(s)ds

)−1/2

dt < ∞.

As proved by Bénilan, Brezis and Crandall [2], condition (g3) is equivalent to the
property of compact support, that is, for every h ∈ L1(RN ) with compact support,
there exists a unique u ∈ W 1,1(RN ) with compact support such that ∆u ∈ L1(RN )
and

−∆u + g(u) = h a.e. in RN .

Due to the singular character of (Pλ,µ), we can not expect to find solutions in

C2(Ω). However, under the above assumptions we will show that (Pλ,µ) has at least

one solution in the class E := {u ∈ C2(Ω); ∆u ∈ L1(Ω)} for λ, µ belonging to a
certain range.

A fundamental role will be played in our analysis by the numbers

K∗ = max
x∈Ω

K(x), K∗ = min
x∈Ω

K(x).

Our main results are the following.

Theorem 1. Assume that K∗ > 0, f satisfies (f1) − (f2) and g satisfy (g1).

If

∫ 1

0

g(s)ds = +∞, then (Pλ,µ) has no solution in E for any λ, µ > 0.

Theorem 2. Assume that K∗ > 0, f satisfies (f1)− (f2) and g satisfies (g1)− (g2).
Then there exist λ∗, µ∗ > 0 such that

(Pλ,µ) has at least one solution in E if λ > λ∗ or µ > µ∗.
(Pλ,µ) has no solution in E if λ < λ∗ and µ < µ∗.
Moreover, if λ > λ∗ or µ > µ∗, then (Pλ,µ) has a maximal solution in E which is

increasing with respect to λ and µ.

Theorem 3. Assume that K∗ ≤ 0, f satisfies (f1)− (f2) and g satisfies (g1)− (g2).
Then (Pλ,µ) has a unique solution uλ,µ ∈ E for any λ, µ > 0. Moreover, uλ,µ is
increasing with respect to λ and µ.

Theorems 2 and 3 also show the role played by the sublinear term f and the sign
of K(x). Indeed, if f becomes linear then the situation changes radically. First, by
the results in [8], the problem







−∆u − u−α = u in Ω,
u > 0 in Ω,
u = 0 on ∂Ω

has a solution, for any α > 0. Next, as showed in [3], the problem






−∆u + u−α = u in Ω,
u > 0 in Ω,
u = 0 on ∂Ω
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Figure 1. The dependence on λ and µ in Theorem 2.

has no solution, provided 0 < α < 1 and λ1 ≥ 1 (that is, if Ω is “small”), where λ1

denotes the first eigenvalue of (−∆) in H1
0 (Ω).

As it was pointed out in [5], problems related to multiplicity or to uniqueness
become difficult even in simple cases. In this sense we also refer to [17], where it is
studied the existence of radial symmetric solutions of the problem







∆u + λ(up − u−α) = 0 in B1,
u > 0 in B1,
u = 0 on ∂B1,

(1)

where 0 < α, p < 1, λ > 0 and B1 is the unit ball in RN . Using a bifurcation theorem
of Crandall and Rabinowitz, it has been shown in [17] that there exist λ1 > λ0 > 0
such that (1) has no solutions for λ < λ0, one solution for λ = λ0 or λ > λ1, two
solutions for λ1 ≥ λ > λ0.

We are next concerned with the following singular elliptic problem











− ∆u = λf(u) + a(x)g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Pλ)

where Ω ⊂ RN (N ≥ 2) is a bounded domain and λ ∈ R is a real parameter. We
suppose here that 0 < f ∈ C0,γ [0,∞) is nondecreasing on (0,∞) while f(s)/s is
nonincreasing for s > 0; and 0 ≤ g ∈ C0,γ(0,∞) (0 < β < 1) fulfills the hypotheses
(g1), (g2). We first observe that there exists

m := lim
s→∞

f(s)

s
∈ [0,∞).

This number plays a crucial role in our analysis. More precisely, the existence of the
solutions to (Pλ) will be separately discussed for m > 0 and m = 0. Let a∗ = min

x∈Ω
a(x).

Our first result is
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Theorem 4. Assume (g1), (g2) and m = 0. If a∗ > 0 (resp., a∗ = 0), then (Pλ) has
a unique solution uλ ∈ E ∩C1,1−α(Ω) for all λ ∈ R (resp., λ ≥ 0) with the properties:
(i) uλ is strictly increasing with respect to λ.
(ii) there exist two positive constant c1, c2 > 0 depending on λ such that c1d(x) ≤

uλ ≤ c2d(x) in Ω.

The bifurcation diagram in the “sublinear” case m = 0 is depicted in Figure 2.

λ

u

Figure 2. The “sublinear” case m = 0.

We now consider the case m > 0. The results in this case are different from those
presented in Theorem 4. A careful examination of (Pλ) reveals the fact that the singu-
lar term g(u) is not significant. Actually, the conclusions are close to those established
in [15, Theorem A], where an elliptic problem associated to an asymptotically linear
function is studied.

Let λ1 be the first Dirichlet eigenvalue of (−∆) in Ω and λ∗ =
λ1

m
. Our result in

this case is the following.

Theorem 5. Assume (g1), (g2) and m > 0. Then the following hold.
(i) If λ ≥ λ∗, then (Pλ) has no solutions in E.
(ii) If a∗ > 0 (resp. a∗ = 0) then (Pλ) has a unique solution uλ ∈ E ∩C1,1−α(Ω) for

all −∞ < λ < λ∗ (resp. 0 < λ < λ∗) with the properties:
(ii1) uλ is strictly increasing with respect to λ;
(ii2) there exists two positive constants c1, c2 > 0 depending on λ such that
c1d(x) ≤ uλ ≤ c2d(x) in Ω;
(ii3) lim

λրλ∗

uλ = +∞, uniformly on compact subsets of Ω.

The bifurcation diagram in the “linear” case m > 0 is depicted in Figure 3.

The proofs rely on the sub and super-solution method and can be found in [7, 10, 9].
One of the difficulty in the treatment of (Pλ,µ) or (Pλ) is the lack of the usual maximal
principle. The following result which is due to Shi and Yao [21] gives a comparison
principle that applies to singular elliptic equations.

Lemma 1. Let F : Ω × [0,∞) → R be a continuous function such that the mapping

(0,∞) ∋ s → F (x,s)
s is strictly decreasing at each x ∈ Ω. Assume v, w ∈ C2(Ω)∩C(Ω)

and
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Figure 3. The “linear” case m > 0.

(a) ∆w + F (x,w) ≤ 0 ≤ ∆v + F (x, v) in Ω;
(b) v, w > 0 in Ω and v ≤ w on ∂Ω;
(c) ∆v ∈ L1(Ω).

Then v ≤ w in Ω.

We next consider the following singular elliptic problem (see [11, 12])







−∆u = g(u) + λ|∇u|p + µf(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(2)

where 0 < p ≤ 2 and λ, µ ≥ 0. As remarked in [13], the requirement that the
nonlinearity grows at most quadratically in |∇u| is natural in order to apply the
maximum principle.

We suppose that g : (0,∞) → (0,∞) is a Hölder continuous function which is
nonincreasing and limsց0 g(s) = +∞. We assume that f : Ω × [0,∞) → [0,∞) is a
Hölder continuous function which is nondecreasing with respect to the second variable
and is positive on Ω × (0,∞). We also need the following assumptions on f
(A1) there exists c > 0 such that f(s) ≥ cs for all s ∈ Ω;

(A2) the mapping (0,∞) ∋ s 7−→
f(s)

s
is nondecreasing;

(A3) the mapping (0,∞) ∋ s 7−→
f(s)

s
is nonincreasing;

(A4) lim
s→∞

f(s)

s
= 0.

Problems of this type arise in the study of guided modes of an electromagnetic field
in a nonlinear medium, satisfying adequate constitutive hypotheses. The following
two examples illustrate situations of this type: (i) if f(u) = u3(1+γu2)−1 (γ > 0) then
problem (2) describes the variation of the dielectric constant of gas vapors where a

laser beam propagates (see [18, 19]); (ii) nonlinearities of the type f(u) = (1−e−γu2

)u
arise in the context of laser beams in plasmas (see [20]).

By the monotony of g, there exists

a = lim
s→∞

g(s) ∈ [0,∞).
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The first result concerns the case λ = 1 and 1 < p ≤ 2. In the statement of the
following result we do not need assumptions (A1) − (A4); we just require that f is a
Hölder continuous function which is nondecreasing with respect to the second variable
and is positive on Ω × (0,∞).

Theorem 6. Assume λ = 1 and 1 < p ≤ 2.
(i) If p = 2 and a ≥ λ1, then (2) has no solutions;
(ii) If p = 2 and a < λ1 or 1 < p < 2, then there exists µ∗ > 0 such that (2) has at
least one classical solution for µ < µ∗ and no solutions exist if µ > µ∗.

If λ = 1 and 0 < p ≤ 1, the study of existence is closely related to the asymptotic
behavior of the nonlinear term f(x, u). In this case we prove

Theorem 7. Assume λ = 1 and 0 < p ≤ 1.
(i) If f satisfies (A1) or (A2), then there exists µ∗ > 0 such that (2) has at least one
classical solution for µ < µ∗ and no solutions exist if µ > µ∗;
(ii) If 0 < p < 1 and f satisfies (f3) − (f4), then (2) has at least one solution for
all µ ≥ 0.

Next we are concerned with the case µ = 1. Our result is the following

Theorem 8. Assume µ = 1 and f satisfies assumptions (A3) and (A4). Then the
following properties hold true.
(i) If 0 < p < 1, then (2) has at least one classical solution for all λ ≥ 0;
(ii) If 1 ≤ p ≤ 2, then there exists λ∗ ∈ (0,∞] such that (2) has at least one classical
solution for λ < λ∗ and no solution exists if λ > λ∗. Moreover, if 1 < p ≤ 2, then
λ∗ is finite.

Related to the above result we raise the following open problem: if p = 1 and
µ = 1, is λ∗ a finite number? Theorem 8 shows the importance of the convection
term λ|∇u|p in (2). Indeed, according to Theorem 3 ( see [9, Theorem 1.3]) and for
any µ > 0, the boundary value problem







−∆u = u−α + λ|∇u|p + µuβ in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(3)

has a unique solution, provided λ = 0 and α, β ∈ (0, 1). The above theorem shows
that if λ is not necessarily 0, then the following situations may occur : (i) problem (3)
has solutions if p ∈ (0, 1) and for all λ ≥ 0; (ii) if p ∈ (1, 2) then there exists λ∗ > 0
such that problem (3) has a solution for any λ < λ∗ and no solution exists if λ > λ∗.

To see the dependence between λ and µ in (2), we consider the special case f ≡ 1
and p = 2. In this case we can say more about the problem (2). More precisely we
have

Theorem 9. Assume that p = 2 and f ≡ 1. Then the following properties hold.
(i) The problem (2) has a solution if and only if λ(a + µ) < λ1;

(ii) Assume µ > 0 is fixed, g is decreasing and let λ∗ =
λ1

a + µ
. Then (2) has a unique

solution uλ for every λ < λ∗ and the sequence (uλ)λ<λ∗ is increasing with respect to
λ.
Moreover, if lim sup

sց0
sαg(s) < +∞, for some α ∈ (0, 1), then the sequence of solutions

(uλ)0<λ<λ∗ has the following properties
(ii1) For all 0 < λ < λ∗ there exist two positive constants c1, c2 depending on

λ such that c1 dist(x, ∂Ω) ≤ uλ ≤ c2 dist(x, ∂Ω) in Ω;
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(ii2) uλ ∈ C1,1−α(Ω) ∩ C2(Ω);
(ii3) uλ −→ +∞ as λ ր λ∗, uniformly on compact subsets of Ω.
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[7] F.-C. Ĉırstea, M. Ghergu and V. Rădulescu, Combined effects of asymptotically linear and

singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pures

Appl., 84, 493-508 (2005).
[8] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular non-

linearity, Comm. Partial Differential Equations, 2, 193-222 (1997).
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