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Abstract. In this paper, we formulate optimality conditions for a multiobjective control
problem under generalized invexity assumptions. Hereby, we extend the results obtained by

Preda in [8].
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1. Introduction

The problem of optimal control with equality and inequality restrictions was con-
sidered by many authors: Mond and Smart [6], Bhatia and Kumar [1], Nahak and
Nanda [7], or, more recently, Zhian and Qingkai [11] and Chen [4].

In Mond and Hanson [5], some duality theorems for control problems are given
under convexity assumptions. Mond and Smart [6] have defined some invexity condi-
tions and established duality and sufficiency results based on these invexity conditions.
Preda [8] has generalized the results of Mond and Smart under generalized ρ-invexity
assumptions for scalar control problems.

Bhatia and Kumar have studied in [1] multiobjective control problems under ρ-
pseudoinvexity, ρ-strictly pseudoinvexity, ρ-quasiinvexity, ρ-strictly quasiinvexity as-
sumptions. Nahak and Nanda have studied in [7] the efficiency and duality for mul-
tiobjective control problems under (F − ρ) convexity.

Zhian and Qingkai have considered in [11] the duality for similar multiobjective
control problems as in [1], but using the invexity defined in [6].

Chen has generalized in [4] some of the results obtained by Mond and Smart in [6].
In this paper, we consider a control problem similar to the one considered in [11].

For this problem, we define the mixed dual problem that can be particularized to dual
problems of both Wolfe and Mond-Weir types. Details on this constructions can be
found in [10].

2. Preliminaries

Consider I = [a, b]. Let:

fi : I × IRn × IRm → IR, i = 1, p

gj : I × IRn × IRm → IR, j = 1, l

hk : I × IRn × IRm → IR, k = 1, n
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be continuously differentiable functions.
Denote by X the space of piecewise smooth functions x : I → IRn with norm

‖x‖ = ‖x‖∞ + ‖Dx‖∞, where the differentiation operator D is given by:

u = Dx ⇐⇒ x(t) =

∫ t

a

u(s)ds.

Denote by U the space of piecewise continuous control functions u : I → IRm, with
norm ‖.‖∞.

Consider the following multiobjective control problem (see [1, 10, 11]), denoted by
(VCP):

min

∫ b

a

f(t, x, u)dt = min

(

∫ b

a

f1(t, x, u), . . . ,

∫ b

a

fp(t, x, u)

)

,

with restrictions:

u(a) = a0, u(b) = b0 (1)

ẋ = h(t, x, u), t ∈ I (2)

g(t, x, u)≤0, t ∈ I (3)

Denote by S the set of feasible solutions of (VCP), i.e.:

S = {(x, u) | x ∈ X,u ∈ U verifying (1), (2), (3)}

Remark 2.1. If p = 1, the problem (VCP) is the control problem studied in [8].

Definition 2.1. A feasible solution (x∗, u∗) of the problem (VCP) is called an ef-

ficient solution of (VCP) iff for all feasible solutions (x, u) of (VCP) such that
:

∫ b

a

f(t, x, u)dt≤

∫ b

a

f(t, x∗, u∗)dt,

we have
∫ b

a

f(t, x, u)dt =

∫ b

a

f(t, x∗, u∗)dt.

The following definitions introduce the concept of ρ-invexity and generalized ρ-
invexity for the functional φ : X ×X × U → IR,

φ(x, ẋ, u) =

∫ b

a

Φ(t, x, ẋ, u)dt

where Φ : I ×X ×X × U → IR.

3. Necessary optimality conditions

In this section, we write necessary optimality conditions for the multiobjective
control problem (VCP), using the relationship between the efficient solution of the
problem (VCP) and the optimal solution of the associated scalar control problem.
The method was used by Bhatia and Mehra in [2] for a multiobjective continuous
programming problem.

First, we write necessary optimality conditions for a scalar control problem.
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Theorem 3.1 (Kuhn-Tucker conditions). Let (x◦, y◦) be a normal optimal solution
of the scalar control problem (CP):

min

∫ b

a

f(t, x, u)dt,

with restrictions:
ẋ = h(t, x, u)
g(t, x, u)≤0

If the Fréchet derivative [D−Hx(x◦, y◦)] is surjective, then there exist the piecewise
smooth functions µ◦ : I → IRl and γ◦ : I → IRn that satisfy the following conditions:

fx(t, x◦, u◦) + µ◦(t)T gx(t, x◦, u◦) + γ◦(t)Thx(t, x◦, u◦) + γ̇◦(t) = 0

fu(t, x◦, u◦) + µ◦(t)T gu(t, x◦, u◦) + γ◦(t)Thu(t, x◦, u◦) = 0

µ◦(t)T g(t, x◦, u◦) = 0

µ◦(t)≥0

The following theorem makes an association between the multiobjective control
problem (VCP) and a set of p scalar control problems and it establishes the connection
between the efficient solution of the multiobjective control problem (VCP) and the
optimal solution of the associated scalar control problems.

Theorem 3.2 ([3]). (x◦, y◦) is the efficient solution of the problem (VCP) if and
only if (x◦, y◦) is the optimal solution of the scalar control problems Pk(x◦, y◦), for
any k = 1, p, where Pk(x◦, y◦) is defined by:

min

∫ b

a

fk(t, x, u)dt,

with restrictions:
x(a) = a0, x(b) = b0
ẋ = h(t, x, u)
g(t, x, u)≤0
∫ b

a

fj(t, x, u)dt ≤

∫ b

a

fj(t, x
◦, u◦)dt, ∀j = 1, p, j 6= k.

Using Theorems 3.1 and 3.2, we can write now the necessary optimality conditions
for the problem (VCP).

Theorem 3.3. Let (x∗, u∗) ∈ S be a proper efficient solution of the problem (VCP)
that is a normal solution of the problem Pk(x∗, u∗), for any k = 1, p. Then, there
exist λ∗ ∈ IRp and the piecewise smooth functions µ∗ : I → IRl and ν∗ : I → IRn that
satisfy the conditions:

λ∗T fx(t, x∗, u∗) + µ∗(t)T gx(t, x∗, u∗) + ν∗(t)Thx(t, x∗, u∗) + ν̇∗(t) = 0

λ∗T fu(t, x∗, u∗) + µ∗(t)T gu(t, x∗, u∗) + ν∗(t)Thu(t, x∗, u∗) = 0

µ∗(t)T g(t, x∗, u∗) = 0,∀t ∈ I

µ∗(t)≥0,∀t ∈ I

λ∗≥0

Proof. As a proper efficient solution of the problem (VCP), (x∗, u∗) is also an
efficient solution and from Theorem 3.2, it is an optimal solution of the scalar problem
Pk(x∗, u∗), for any k = 1, p. Since (x∗, u∗) is also a normal solution of Pk(x∗, u∗),
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for any k = 1, p, it follows that the conditions from Theorem 3.1 hold. This implies
that for any k = 1, p, there exist λ1k, . . . , λpk, with λkk = 1 and the piecewise smooth
functions µk and νk such that :

fkx(t, x∗, u∗) +

p
∑

i=1,i 6=k

λT
ikfix(t, x∗, u∗) + µk(t)T gx(t, x∗, u∗) +

+νk(t)Thx(t, x∗, u∗) + ν̇k(t) = 0

fku(t, x∗, u∗) +

p
∑

i=1,i 6=k

λT
ikfiu(t, x∗, u∗) + µk(t)T gu(t, x∗, u∗) +

+νk(t)Thu(t, x∗, u∗) = 0

µk(t)T g(t, x∗, u∗) = 0,∀t ∈ I

µk(t)≥0,∀t ∈ I

λik≥0,∀i = 1, p, i 6= k

By the addition of the above relations over k = 1, p and by taking

λ∗i =

p
∑

k=1

λik, i = 1, p

µ∗(t) =

p
∑

k=1

µk(t)

ν∗(t) =

p
∑

k=1

νk(t)

we obtain the conclusion of the theorem.
⊓⊔

3.1. Sufficient optimality conditions.

In this section, we establish a series of efficient conditions for the problem (VCP),
by using generalized ρ-invexity on the related functions f , g and h.

The following definitions are similar to those from [9] and generalize the definitions
given in Section 2.

Let φ : I ×X ×X × U → IRp be a vector function and let ψ : X ×X × U → IRp

be a real number such that

ψ(x, ẋ, u) =

∫ b

a

φ(t, x(t), ẋ(t), u(t))dt.

Definition 3.1. Consider x ∈ X, u ∈ U and ρ ∈ IRp.
a) If there exist η(t, x(t), ẋ(t), u(t), x∗(t), ẋ∗(t), u∗(t)) ∈ IRn with η = 0 for x(t) =

x∗(t), t ∈ I and ξ(t, x(t), ẋ(t), u(t), x∗(t), ẋ∗(t), u∗(t)) ∈ IRm, θ : X×U×X×U →
Rs such that for any (x, u) 6= (x∗, u∗):

ψ(x, ẋ, u) − ψ(x∗, ẋ∗, u∗)≥

∫ b

a

[φx(t, x∗, ẋ∗, u∗)η +

+φẋ(t, x∗, ẋ∗, u∗)(Dη) + φu(t, x∗, ẋ∗, u∗)ξ] dt+ ρ‖θ(x, u;x∗, u∗)‖2,

then ψ is called ρ-invex in (x∗, ẋ∗, u∗) with respect to η, ξ and θ.
a′) If the above inequality takes place with > instead of ≥, we say that ψ is ρ-strictly

invex in (x∗, ẋ∗, u∗) with respect to η, ξ and θ.
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a′′) If the above inequality takes place with ≥ instead of ≥, we say that ψ is strong

ρ-invex in (x∗, ẋ∗, u∗) with respect to η, ξ and θ.
b) If there exist η, ξ and θ such that for any (x, u) 6= (x∗, u∗):

ψ(x, ẋ, u) ≤ ψ(x∗, ẋ∗, u∗) ⇒

∫ b

a

[φx(t, x∗, ẋ∗, u∗)η +

+φẋ(t, x∗, ẋ∗, u∗)(Dη)+φu(t, x∗, ẋ∗, u∗ξ] dt<−ρ‖θ(x, y, z;u, v, w)‖2

then ψ is called weak ρ-strictly pseudoinvex in (x∗, ẋ∗, u∗) with respect to η,
ξ and θ.

c) If

ψ(x, ẋ, u) ≤ ψ(x∗, ẋ∗, u∗) ⇒

∫ b

a

[φx(t, x∗, ẋ∗, u∗)η +

+φẋ(t, x∗, ẋ∗, u∗)(Dη)+φu(t, x∗, ẋ∗, u∗)ξ] dt≤−ρ‖θ(x, y, z;u, v, w)‖2

then ψ is called strong ρ-pseudoinvex in (x∗, ẋ∗, u∗) with respect to η, ξ and
θ.

d) If

ψ(x, ẋ, u)≤ψ(x∗, ẋ∗, u∗) ⇒

∫ b

a

[φx(t, x∗, ẋ∗, u∗)η +

+φẋ(t, x∗, ẋ∗, u∗)(Dη)+φu(t, x∗, ẋ∗, u∗)ξ] dt≤− ρ‖θ(x, y, z;u, v, w)‖2

then ψ is called weak ρ-quasiinvex in (x∗, ẋ∗, u∗) with respect to η, ξ and θ.
e) If

ψ(x, ẋ, u)≤ψ(x∗, ẋ∗, u∗) ⇒

∫ b

a

[φx(t, x∗, ẋ∗, u∗)η +

+φẋ(t, x∗, ẋ∗, u∗)(Dη)+φu(t, x∗, ẋ∗, u∗)ξ] dt≤−ρ‖θ(x, y, z;u, v, w)‖2

then ψ is called ρ-substrictly pseudoinvex in (x∗, ẋ∗, u∗) with respect to η, ξ
and θ.

Theorem 3.4. Let (x∗, u∗) be a feasible solution of the problem (VCP), let λ∗ ∈ IRp

be a real number and let µ∗ : I → IRl and ν∗ : I → IRn be the piecewise smooth
functions given by Theorem 3.3.

If λ∗ > 0 and:

i1)

∫ b

a

f(t, x, u)dt strong ρ-pseudoinvex in (x∗, u∗) with respect to η, ξ and θ.

i2)

∫ b

a

µ∗(t)T g(t, x, u)dt weak α-quasiinvex in (x∗, u∗) with respect to η, ξ and θ.

i3)

∫ b

a

ν∗(t)T [h(t, x, u)− ẋ]dt weak β-quasiinvex in (x∗, u∗) with respect to η, ξ and

θ.
i4) λ

∗T ρ+ α+ β≥0
then (x∗, u∗) is an efficient solution of the problem (VCP).

Proof. Suppose toward a contradiction that (x∗, u∗) is not an efficient solution.
Then, there exists (x, u) a feasible solution of (VCP) such that :

∫ b

a

f(t, x, u)dt ≤

∫ b

a

f(t, x∗, u∗)dt
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From condition i1) and definition, we have:
∫ b

a

[fx(t, x∗, u∗)η + fu(t, x∗, u∗)ξ]dt ≤ −ρ‖θ(x, x∗, u, u∗)‖2 (4)

On the other hand, µ∗(t)≥0, g(t, x, u)≤0, with (x, u) a feasible solution of (VCP),
hence:

∫ b

a

µ∗(t)T g(t, x, u)dt≤

∫ b

a

µ∗(t)T g(t, x∗, u∗)dt = 0 (5)

Using condition i2), it follows:
∫ b

a

[µ∗(t)T gx(t, x∗, u∗)η + µ∗(t)T gu(t, x∗, u∗)ξ]dt ≤ −α‖θ(x, x∗, u, u∗)‖2 (6)

Since (x, u) and (x∗, u∗) are feasible solutions of the problem (VCP), we have
ẋ = h(t, x, u), respectively ẋ∗ = h(t, x∗, u∗), thus:

∫ b

a

ν∗(t)T [h(t, x, u) − ẋ]dt =

∫ b

a

ν∗(t)T [h(t, x∗, u∗) − ẋ∗]dt

Condition i3) leads us to:
∫ b

a

[ν∗(t)Thx(t, x∗, u∗)η + ν∗(t)Thu(t, x∗, u∗)ξ]dt−

∫ b

a

ν∗(t)TEn×n(Dη) ≤

≤ −β‖θ(x, x∗, u, u∗)‖2

Using the initial conditions, the above relation becomes:
∫ b

a

{[ν∗(t)Thx(t, x∗, u∗) + ν̇∗(t)]η + ν∗(t)Thu(t, x∗, u∗)ξ}dt ≤

≤ −β‖θ(x, x∗, u, u∗)‖2

(7)

Multiplying the relation (4) by λ∗T > 0 and then adding it to the relations (6) and
(7), we obtain:

∫ b

a

{[λ∗T fx(t, x∗, u∗) + µ∗(t)T gx(t, x∗, u∗) + ν∗(t)Thx(t, x∗, u∗) + ν̇∗(t)]η+

+[λ∗T fu(t, x∗, u∗) + µ∗(t)T gu(t, x∗, u∗) + ν∗(t)Thu(t, x∗, u∗)ξ]}dt ≤

≤ −(λ∗T ρ+ α+ β)‖θ(x, x∗, u, u∗)‖2

(8)

Finally, using the first two relations from Theorem 3.3, we obtain a contradiction
with hypothesis i4).

⊓⊔
The condition λ∗ > 0 is absolutely necessary in the above proof. In the following

theorem, we replace this condition with a weaker one, λ∗ ≥ 0; while strengthening
the invexity hypothesis on the objective function.

Theorem 3.5. Let (x∗, u∗), λ∗ ∈ IRp, µ∗ and ν∗ be like in Theorem 3.4. If λ∗ ≥ 0
and:

j1)

∫ b

a

f(t, x, u)dt weak ρ-strictly pseudoinvex in (x∗, u∗) with respect to η, ξ and θ.

j2)

∫ b

a

µ∗(t)T g(t, x, u)dt weak α-quasiinvex in (x∗, u∗) with respect to η, ξ and θ.

j3)

∫ b

a

ν∗(t)T [h(t, x, u)− ẋ]dt weak β-quasiinvex in (x∗, u∗) with respect to η, ξ and

θ.
j4) λ

∗T ρ+ α+ β≥0
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then (x∗, u∗) is an efficient solution of the problem (VCP).

Proof. Suppose toward a contradiction that (x∗, u∗) is not an efficient soltuion.
By using condition j1), we obtain:

∫ b

a

[fx(t, x∗, u∗)η + fu(t, x∗, u∗)ξ]dt < −ρ‖θ(x, x∗, u, u∗)‖2 (9)

Then, like in the proof of Theorem 3.4, we obtain relations (6) and (7). Multiplying
the relation (4) by λ∗T ≥ 0 and adding it to relations (6) and (7), we obtain the
relation (8), from which we obtain the contradiction with hypothesis j4).

⊓⊔

Theorem 3.6. Let (x∗, u∗), λ∗ ∈ IRp, µ∗ and ν∗ be like in Theorem 3.4. If λ∗ ≥ 0
and:

k1)

∫ b

a

f(t, x, u)dt weak ρ-quasiinvex in (x∗, u∗) with respect to η, ξ and θ.

k2) One of the functionals

∫ b

a

µ∗(t)T g(t, x, u)dt or

∫ b

a

ν∗(t)T [h(t, x, u)− ẋ]dt is weak

α-quasiinvex, and the other one is β-substrictly pseudoinvex in (x∗, u∗) with re-
spect to η, ξ and θ.

k3) λ
∗T ρ+ α+ β≥0

then (x∗, u∗) is an efficient solution of (VCP).

Proof. Suppose toward a contradicition that (x∗, u∗) is not an efficient solution.
By using condition k1), we obtain:

∫ b

a

[fx(t, x∗, u∗)η + fu(t, x∗, u∗)ξ]dt≤− ρ‖θ(x, x∗, u, u∗)‖2

hence, multiplying by λ∗ ≥ 0, it follows:
∫ b

a

[λ∗T fx(t, x∗, u∗)η + λ∗T fu(t, x∗, u∗)ξ]dt≤− λ∗T ρ‖θ(x, x∗, u, u∗)‖2

Hypothesis k2) leads us to the following inequalities:
∫ b

a

[µ∗(t)T gx(t, x∗, u∗)η + µ∗(t)T gu(t, x∗, u∗)ξ]dt ≤ −α‖θ(x, x∗, u, u∗)‖2

and
∫ b

a

[ν∗(t)Thx(t, x∗, u∗)η + ν∗(t)Thu(t, x∗, u∗)ξ]dt−

∫ b

a

ν∗(t)TEn×n(Dη)≤

≤− β‖θ(x, x∗, u, u∗)‖2,

respectively (or viceversa).
By adding the above relations, we obtain the inequality (8), which leads us to a

contradiction with hypothesis k3). ⊓⊔
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