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ABSTRACT. Let ¢ : (Mag,d,9) — (Napr,d',h) be a smooth map between almost anti-
paraHermitian manifolds. The map 1 induces the tangent map ¥ : (T'M, gB5) — (T'N, hB5).
In this paper, we deal with the harmonicity of a tangent map ¥ and the biharmonicity of the
identity map in the case where the tangent bundles TM, TN are endowed with the Berger
type deformed Sasaki metric gZ5, hBS.
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1. Introduction

Let M be a 2k-dimensional Riemannian manifold with a Riemannian metric g. Through-
out the paper, manifolds, tensor fields and connections are always assumed to be
differentiable of class C'*°.

An almost paracomplex manifold is an almost product manifold (May, ¢), ¢? = id,
such that the two eigenbundles TtM and T~ M associated to the two eigenvalues
41 and —1 of ¢, respectively, have the same rank. The integrability of an almost
paracomplex structure is equivalent to the vanishing of the Nijenhuis tensor:

Ny(X,Y) = [¢X,9Y] — ¢[oX, Y] — ¢[X, Y] + [X,Y]

A paracomplex structure is an integrable almost paracomplex structure.
Let (Mag, ¢) be an almost paracomplex manifold. A Riemannian metric g is said
to be an anti-paraHermitian metric if

9(¢X,9Y) = g(X,Y)
or equivalently

9(X,0Y) = g(¢X,Y)
for any vector fields X , Y on M. If (Mag, @) is an almost paracomplex manifold
with an anti-paraHermitian metric g, then the triple (Mag, ¢, g) is said to be an almost
anti-paraHermitian manifold. Moreover,(May, ¢, g) is said to be anti-paraKéahler if ¢
is parallel with respect to the Levi-Civita connection V9 of g. As is well known,
the anti-paraKéahler condition (VI¢ = 0) is equivalent to paraholomorphicity of the
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anti-paralermitian metric g, that is,®,g9 = 0, where ®, is the Tachibana operator
[25].

In [1], the authors defined a new metric, which is called a Berger type deformed
Sasaki metric, on the tangent bundle over an anti-paraKéhler manifold. They stud-
ied the geodesics and curvature properties of the tangent bundle with Berger type
deformed Sasaki metric and gave the conditions for some almost anti-paraHermitian
structures to be anti-paraKahler and quasi-anti-paraKéhler on this setting.

Motivated by the results presented in [2], we think up the paper. Clearly, in the
present paper, we again consider the tangent bundle with the Berger type deformed
Sasaki metric g% and the paracomplex structure 5 First, we study the map ¥ :
(TM, 5, gB%) — (T'N,h®) and find conditions under which it is totally geodesic and
we also study the biharmonicity of the identity map I : (T M, g°) — (T'M, ®, gP%).
In the second part we give the conditions for the map ¥ : (T'N, h%) — (T M, 5, gB%)
to be totally geodesic and we also study the biharmonicity of the identity map I :
(TM, 5, gB%) — (TM, ¢%). And finally we take ¢ : (Mo, ¢, g) — (Nog, @', h) to
be a smooth map between almost anti-paraHermitian manifolds. The map 1 induces
the tangent map W : (TM, gP%) — (TN, hB%) between the tangent bundles of M
and N. The motivation of this final part of the paper is to study the harmonicity of
the tangent map U : (T M, gB%) — (TN, hB%).

1.1. Harmonic maps. Consider a smooth map ¢ : (M™,g) — (N™, h) between
two Riemannian manifolds,then the energy functional is defined by

B0 =5 [ 1o, 1)

(or over any compact subsetK C M).

A map is called harmonic if it is a critical point of the energy functional E (or E(K)

for all compact subsets K C M). For any smooth variation {¢}ic; of ¢ with ¢ = ¢
dy

= = h
and V p |t=0, we have
d
GE@ima =~ [ h(r(6),V)d, @
M
where

7(¢) = tryVde (3)
is the tension field of ¢. Then we have

Theorem 1.1. A smooth map ¢ : (M™,g) — (N™, h) is harmonic if and only if
m(¢) =0 (4)

If (mi)lgigm and (y*)1<a<n denote local coordinates on M and N respectively then
equation 4 takes the form

o le% 7] ](\1, ad)ﬁ 8¢’y o
7(¢)* = (A¢™ + ¢ I'g, Do %) =0 (5)
D™ N
where A¢® = \/II? aii (v ‘9|g”%) is the Laplace operator on (M™, g) and I'§. are

the Christoffel symbols on N.
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1.2. Biharmonic maps.

Definition 1.1. A map ¢ : (M, g) — (N, h) between Riemannian manifolds is called
biharmonic if is a critical point of bienergy functional

Es(@) =+ [ |r(&)Pde? (6)

2 m
we have

2 Ba(du)lmo = - /M h(ra(6), V), (7)

The Euler-Lagrange equation attached to bienergy is given by the vanishing of the
bitension field

a(p) = —Jo(7(9)) = —(A?7(9) + tryRY (7(9), dd)dg) (8)
where Jy is the jacobi operator defined by
Jy:T(@ Y (IN)) — T(¢”'(TN)) (9)

Vo AV 4 tr,RN(V,dp)de

The biharmonic map introduced by Eelles and Sampson in 1964, which is a gener-
alization of harmonic maps. One can refer to [19], [21] and [25] for background on
harmonic and biharmonic maps.

2. The Berger type deformed Sasaki metric on the tangent bundle

Let (M, g) be an n-dimensional Riemannian manifold and (T'M, 7, M) be its tangent
bundle. A local chart (U, x%);=1. ,, on M induces a local chart (m=*(U), %, 4");=1.., on
T M. Denote by Ffj the Christoffel symbols of g and by V the Levi-Civita connection
of g. We have two complementary distributions on T'M, the vertical distribution V
and the horizontal distribution #, defined by

V(Lu) = ker(dﬂ'(r’u))
9 ,
= {a'o—  ad' €R}
0 o 0 ,
Hizw)y = . — I TF, — ;at € R},
() {0 e TG (o) J

where (z,u) € TM, such that T, )yTM = Hzw) © Vizw)-
Let X = X* aii be a local vector field on M. The vertical and the horizontal lifts of
X are defined by

0

XV =x"__ 10
ayz7 ( )
) 0 , 0
XH _ xi .:Xl{—.— JF’?—}. 11
St ori i Oyk (11)
For consequences, we have (azi)H = 521. and (aZi)V = a?/?v then (521, azi)i:L.n is a

local adapted frame in TT M.

Definition 2.1. The Sasaki metric ¢° on the tangent bundle TM of M is given by
(1) g°(X7TYH) = g(X,Y)om.

(2) g5 (X7, YY) =0,
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(3) (XY, YY) = g(X,Y)om
for all vector fields X, Y € T'(TM).

Proposition 2.1. ([20]). Let (M, g) be a Riemannian manifold and V be the levi-
Civita connection of the tangent bundle (T'M, ¢g°) equipped with the Sasaki metric.
Then

OxnY )y = (V) — 2 (Re(X, V)",
OxrY oy = (VXY + 5 (Relw V)X),
Oy = 5 (Ralw X1,
VxvY)w = 0,

for all vector fields X,Y € I'(T'M) and (z,u) € TM.

Definition 2.2. Let (Mag, ¢, g) be an almost anti-paraHermitian manifold and 7'M
be its tangent bundle.The Berger type deformed Sasaki metric on T'M is defined by
(1) gBS(XH7 YH) = g(X, Y)7

(2) gBS(XH,YV) =0,

(3) ¢P3 (XY, YY) = g(X,Y) + 8%g(X, pu)g(Y, du),
for all vector fields X,Y € I'(TM), where § is some constant. If § = 0 then g9 is
called the Sasaki metric.

A direct consequence of usual calculations using the Koszul formula gives the fol-
lowing result

Proposition 2.2. ([1]) Let (Mag, ¢, g) be an anti-paraKahler manifold and TM be
its tangent bundle. The Levi-Civita connection of the Berger type deformed Sasaki
metric gB% on TM satisfies the following properties:

~ 1
(VXHYH)(z,u) = (VXY)fi,u) - §(Rz(X7 Y)U)Vv
~ 1

(VXHYV>(z’u) = (VXY)XE,“) + §<R$(U,Y)X')H7

~ 1
(Vv Y™y = i(Rm(u,X)Y)H,

2

(VoY) o = 159X 0V )(0w)",

where V is the Levi-Civita connection, R is its Riemannian curvature tensor and
a = g(u,u).

Definition 2.1. Let (M, g) be a Riemannian manifold and F : TM — TTM be a
smooth bundle endomorphism of the tangent bundle T'M. Then we define the vertical
and horizontal lifts FV : TM — TTM, FH:.:TM — TTM of F by

FV(n) = ZmF(az')V

and

P ) = 3" F(90)"
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where Y1 | n;0i € m~1(V) is a local representation of n € C>(T'M)
From Definition 2.1 and Theorem 7.1, we have

Proposition 2.1. Let (Msg, ¢, g) be an anti-paraKdahler manifold and TM be its
tangent bundle equipped with the Berger type deformed Sasaki metric gB5 and the
paracomplex structure ¢. If F € TH(M) is a tensor of type (1,1), then we have

(ﬁXHHF)(%u) = (VxF

)(gru)
(VxuVF)(gu = (VXF)(lu)
(VxvHF) sy = (FOO)u + 5 (Ralu, Xo)F(w)".
(TxrVF) ) = (FON Yy + 1o (X, 0P (1)) (00

where (z,u) € TM and X € T(TM).
Using Proposition 2.1 and formula of curvature, we have

Theorem 2.2. (May, ¢,g) be an anti-paraKdhler manifold and TM be its tangent
bundle equipped with the Berger type deformed Sasaki metric gB% and the paracomplex
structure ¢. Then the corresponding Riemannian curvature tensor R is given by

RXH yHyzH = [R(X,Y)ZJr§R(u,R(X,Y)u)Z}H

R(xH yH)yz"V = [ Zgzg(R(X,Y)u,gbZ)(qﬁu]v

R(XH yVyzH = E VxR) uY)Z}H

RXT yVYZzY = o.

RxV,yV)zH = §{4}2(}( Y)Z + 3R(u, X)R(u,Y)Z — 3R(u,Y)R(u,X)Z} "
RV Y27 = (105 ) o wa(¥:02) - oY, wa(X, 62)] (6u)".

3. Harmonicity of the map ¥ : (T'M, 5, gB%) — (TN, h%)

In the section, we denote (May, ¢, g) be an anti-paraKihler manifold and (7'M, ¢, g&%)
its tangent bundle equipped with the Berger type deformed Sasaki metric g% and
the paracomplex structure ¢, (N", g) be an n-dimensional Riemannian manifold and
(T M, h®) its tangent bundle equipped with the Sasaki metric h°.

Lemma 3.1. ([15]). Let ¢ : (M, g) — (N, h) be a smooth map between Riemannian
manifolds. The map 1) induces the tangent map ¥ = dv) : TM — T'N. For all vector
field X € I'(T' M), we have

dv ((X)V)
aw (X))

| |

—~
U U

= =
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= =
& <
+
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Theorem 3.1. Let ¥ : (T M, gZ, gP%) — (TN, h%) be a the tangent map of the map
Y (Mag, ¢, g) — (N™, h), then the tension field 7(¥) of ¢ is given by

() = [T(LZJ)+tthN(d1/)(u),Vd1/J(u,*))dw(*)]H+[div(de)(u)
62

T an (trgg(*, P(*)) — ﬁg(u, ¢u)d¢(¢(u)))} v

Proof. Let (¢(z), d(u)) € TN and let {e;}2¥,, such that e; = ﬁ is an orthonormal
u

1
basis of TM at z. Then {eH, ————(d(e1))V, (d(e;))V, 5 = Zn} is an orthonor-
VT +ad? !

mal basis of T, ) TM at (z,u) such that (V.
have:

;i) = 0. Then by summing over i, we

i

T(U) =V2id¥(efl) — d¥(Vonel) + VY

1 v
md)(el)vd‘l’(\/ﬁ(ﬁ(el) )

& 1 vy Sv v
— d\I/(v\/ﬁcb(el)v \/ﬁ(b(el) ) + V¢(e])vd\11¢(e])
— dU(Vye,vole;)")

=V e 1+ ey (A0(ed) ! + Vdip(u, e;)") — dip(V, mell)

S 1 —~
+V_1 o)y ———=d¥ VY £ ¥ gaiore vy dWo(e;)
Tm ) AT a2 (¢e)”) au(g(e;)) AV P(e;)
= 1 ~
_ d‘l’(v 1 ¢(€1)V) _ dq](v¢(ej)"¢(ej)v),

Tz T as2
from Proposition 2.2, we have

7(¥) =(Va(en (€)™ + (Vay(e) Vau (u, €:))”
+ (R(dp(w), Vi (u, e5))d(e:)) ! = dp(V,e) "
- (ﬁ)zg(aﬁ(el), po(er))dv(p(u)Y — g(d(e;), dple;))dp(d(w)) .
O

Theorem 3.2. Let ¥ : (T'M, ;5, gP%) — (TN, h®) be a the tangent map of the map
¥ (Mag, ¢, g) — (N™, h), then ¥ is harmonic if and only if the following conditions
are verified

(W) =0, try RN (dy(u), Vdip(u, *))d(x) =0,  div(Vdy)(u) =0,
2
- mg(ua du)dip(p(u)) = 0.

Corollary 3.1. Let ¥ : (T'M, %, gB%) — (TN, h®) be a the tangent map of the map
Y (Mag, ¢, 9) — (N™, h), if ¢ is totally geodesic then ¥ is harmonic if and only if
52

- 1+a52g

trgg(*v B(*))

tT‘gg(*,(b(*)) (ua ¢u)

Lemma 3.2. Let U : (TM, ¢, g%%) — (TN, hS) be a the tangent map of the map
U (Mag, ¢, 9) — (N™, h), then the then the energy density associated to ¥ is given
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by

2
(8) = 2e(w) + St (Vap(u ) — s —lap(ew). (12)

2(1 + ad?)

Proof. Let (z,u) € TM and let {e;}?*,, such that e; =
1
V14 ad?

basis of T(, .,y T'M at (x,u) such that (V.,e;), = 0. Then by summing over i, we have:
Lrs
(W) s(w.t0e) =5 | (10) oo (2 (), AW ()

1
mhfw(z),dw(z)) (d¥(p(e1)V), d¥(d(er)"))

+ hfw(x),cw(z)) (d‘I’(QS(ej)V)v d‘l’(¢(€j)v))}

:é (15 (@(en) ™, dv(en)™) + 1S (Vai(u, )", Vdib(u,e:)") )

s h(de(9(e)” db(6(er))

(A (9(e))Y , du(ole;)))]
=5 [2600) + IV, + b)), duo(en)
B (dpo(e), di(9(e))) — W (@ (dler)), b (6(e1)))

=5 [4600) + V0 0 + (9w, dvo()

ﬁ is an orthonormal basis
U

of TM at x. Then {ef{, (d(en)V, (d(e;)V, 5 = 2n} is an orthonormal

+

~ Lh(d(6(u), db (o))
O

Theorem 3.3. Let TM be a compact tangent bundle and ¥ : (T'M, , g% —
(TN,h%) be a the tangent map of the map 9 : (Mag, #,9) — (N™,h), then ¥ is
harmonic if and only if 1 is totally geodesic and

52

trag(*, ¢(*)) = T+ as2?

(u, du).
Proof. If ¢ is totally geodesic and tryg(*, ¢(*)) = H_‘s%g(u, ¢u), from Corollary3.1,
we deduce that ¥ is harmonic. Inversely.
Let w: I x M — N be a smooth map satisfying for all ¢t € I = (—¢,€),e > 0 and all
reM

w(t,z) = Pu(z) = (1 + (),
and

w(0,2) = Y(z).

The variation vector field v € T'(¢p"1T'N) associated to the variation {1 }cs is given
for all x € M by

=)
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From Lemma 3.2, we have
(1+1¢)? 62(1+1¢)?
2(1 + ad?)

If W is a critical point of the energy functional, from equation (2), we have

e(We) = 2(1+t)%e(vr) + tri| (Ve (u, ))|* ~ |dbe (6 ().

a E(¢t)i=0 = 0
— 82 2 —
- /TM Ae() + ol (Ve o, )? — g (9(u) s =0,
If ¥ is harmonic hence Vdy = 0. (]

4. Biharmonic identity map I : (TM, ¢, g%5) — (T M, ¢%)

Proposition 4.1. Let (Mag, ¢, g) be an anti-paraK&hler manifold and T'M its tan-
gent bundle equipped with the Berger type deformed Sasaki metric g% and the
paracomplex structure 5 Suppose that I : (T'M, 5, gB%) — (T'M, g°) is the identity
map. Then the tension field 7(I) of I is given by

54 v 52 v
(1) = G g o) 6w)Y = 1 omtr (9060 6(w)Y)  (13)
Proof. Let (z,u) € TM and let {e;}?%,, such that e; = ﬁ is an orthonormal basis

1
of TM at x. Then {€H7 ——(g(e1))V, (d(e)V,j = 2n} is an orthonormal
VT +as? !

basis of T(, .,y T'M at (x,u) such that (V.,e;), = 0. Then by summing over i, we have:
(1) =ViadI(efl) + Vi v dl (¢(e)”) + Vg, dI((8(e;))")
— 1 _ _
—dI(V me]' + 72v(¢(51))v(¢(61))v + V(¢(ej))V(¢(€j))V)
1+ ad
From Theorem 7.1, we have

(1) =gy (szgten, len)) + gl ole) ) (6(u))”

_52 _ 52
1 +iaz 1 ﬁl(szg(“’ o(u)) + gles, d(e) ) (6(u)”

O

Theorem 4.1. Let (Mag, ¢, g) be an anti-paraKéhler manifold and TM its tangent
bundle equipped with the Berger type deformed Sasaki metric g S and the paracom-
plex structure QS Suppose that I : (TM, <;S, gB%) — (T'M, g°) is the identity map.
Then the bitension field m5(I) of I is given by

oDy ={ A} ir,{ R, V(1) + )

(2,u)
where A(7(1)) = try(V27(1)).

H

(rc,u)
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Proof. Let (z,u) € TM and let {e;}?%,, such that e; =

1
\/ﬁ(¢(el))v7 (

basis of T(, .,)T'M at (x,u) such that (V.,e;), = 0. Then by summing over i, we have:

1
1 (V27 (1)) 0) :{vgfvgiHT(I)}(I ot W{v{¢(el))vvg¢(el))VT(I)}

I I I
+ {v(d’(ea‘))vvw(ey‘))vT(I)}(x,u) - {Vgc{{eiHT(I)}(a:,u)

ﬁ is an orthonormal basis
u

of TM at x. Then {ef, d(e;)V,j = 2n} is an orthonormal

(zu)

1 I
__ - [yL I }
1+ 762 {Vv(da(em"(d’(el))vT( ) (zu)

_I{vL
{VV<¢<ej>>v (¢(€j))vT(I)}(z,u)
By using the Levi-Civita connection of Sasaki metric see [20] , we have

1 14
1195 (V27 (1)) (000 :{veive;(n — SR, R(um(I))ei)u}

(z,u)

n %{R(u, Ve.r(I))ei + Ve, R(u, T(I))ei}H

By using the Riemannian curvature tensor of Sasaki metric see [20] , we have

trgs(R(T(I),dI)dI)(m,u) :(R(T(I),ef)ef)(w,u) = f(R(eH T(I))ef)@u)

]

1 1 v
:{ — ZR(R(U,T(I))@i,ei)u - §R(6i’ei)7(1)}

(1‘771)

(zu)

H

[~ S (Ve R)wr(D)e:}

Considering the formula 9, we deduce

o(Dey ={ Ve, Verr(D) }

(z,u)

14 H

+ {R(u, ve;u))ei}

(z,u) (z,u)

d

Theorem 4.2. Let (May, ¢, g) be an anti-paraKahler manifold and T'M its tangent
bundle equipped with the Berger type deformed Sasaki metric g% and the paracom-
plex structure 5 Suppose that I : (T'M, ;5, gP%) — (T'M, g°) is the identity map.
Then I is biharmonic if and only if

A(T(I))=0 and try(R(u, V.r(I))*) = 0.
Corollary 4.1. Let (Mag, ¢, g) be an anti-paraKéhler manifold and 7'M its tangent

bundle equipped with the Berger type deformed Sasaki metric ¢%° and the paracom-
plex structure ¢. If 7(I) is a parallel tension field then I is biharmonic.

5. Harmonicity of the map V¥ : (T'N,h%) — (T M, ¢7, g%

In the section, we denote (N™,¢g) be an n-dimensional Riemannian manifold and
(T M, h%) its tangent bundle equipped with the Sasaki metric b, (Myy, ¢,g) be an
anti-paraKéhler manifold and (T'M, ¢, g®?) its tangent bundle equipped with the
Berger type deformed Sasaki metric g% and the paracomplex structure 5
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Theorem 5.1. Let ¥ : (T'N,h%) — (T M, ¢7, gP%) be a the tangent map of the map
Y (N™, h) — (Mag, ¢, g), then the tension field 7(¥) of ¢ is given by

T(U) = {T(w)+trgRN(dw(u),de/J(u,*))dw(*)}H+[div(de)(u)

sty (o(Vaw(a,), 6, ) + g(di (), 66())) ) b))
Proof. Let (¥(x),dv(y)) € TN, and {ef, f¥}™, be a local orthonormal frame on
TM such that (V,e;), = 0 then by summing over i, we have
T(U) =Viad¥(ef') — d¥(V nel) + VidU(e) ) — d¥(V, ve])
=Vap(emd¥(ef!) = dV(Venel!) + Vag(er)d¥(el) - d¥(V,ye)).
From Proposition 2.1 and Proposition 2.2 , we have
(W) =Vag(en s +(ap(uen [0 + (Vi (u, )]+ Vay(ev dib(es)”
=(Vay(end(en)™ + (R(dyp(u), Vo (u, e:))dip(eq)) ™ — (dp(Ve, )"
+ (Vay(en Vi (u, ;)" = (Vo (u, Ve, e:)”

% [9(Vd(u, e), SV (u, e))ddis(u) + gldir(ea), b (e:) b (w)]

= [70) + (R(do(u). V(. e)der))]” — [div(va)
52
1+ 0%«

+

b (oo, e0), 6V . €0)) + g(dv(e). D) da(w)]

O

Theorem 5.2. Let U : (TN, h%) — (TM, ¢, g%5) be a the tangent map of the map
Y (N™ h) — (Mag, ¢, g), then ¥ is harmonic if and only if the following conditions
are verified

0= 7(x) + trp RN (dip(u), Vdib(u, %)) dep (%),
0 = div(Vdy)(u) + trg (g(de(w *), oV (u, %)) + g(dip(x), ¢d¢<*))))¢dw<u)~

Corollary 5.1. Let ¥ : (T'N,h®%) — (TM, 5, g%%) be a the tangent map of the map
P (N™ h) — (Mag, ¢, g), if ¢ is totally geodesic then ¥ is harmonic if and only if

trgg(dip(x), ¢dip(x)) = 0.

Lemma 5.1. Let ¥ : (TN, h°) — (TM, 5, g5%) be a the tangent map of the map
Y (N" h) — (Mag, ¢, g), then the then the energy density associated to ¥ is given
by
1 52
e(V) = 2e(¥) + Strg[Vdy (u, *)|* + g(gz(de(uy x), ¢dip(u)) + g% (i (%), i (u))).
(14)

Proof. Let (z,u) € TM and let {e;}?%,, such that e; = is an orthonormal basis

]
[[ul

of TM at x. Then {ef{, eZV,i = ln} is an orthonormal basis of T(, ,)T'N at (z,u)
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such that (V,,e;), = 0. Then by summing over i, we have:

e(0) =5 [¢75 (@W(el), aw(el)) + g7 (dw(e)), dv(e)))

1
2
:% [ng(dw(ei)H, dp(e)™) + gP% (Vdip(u, )V, Vdip(u, e;)V)
+ g5 (d(e:), dw(ei)v)] .

From Definition 2.2, we have
2

() = 26() + 1t V() + % (67 (Vb e1), () + g2 ), i ().
]

Theorem 5.3. Let TN be a compact tangent bundle and ¥ : (T'N, h®) — (T M, (Z, g?9)
be a the tangent map of the map 1 : (N", h) —: (Mag, ¢, g), then ¥ is harmonic if
and only if 7 is totally geodesic and

trgg(dip(x), ¢dip()) = 0.

Proof. If 1 is totally geodesic and tryg(di(*), ¢di(x)) = 0 from Corollary5.1, we
deduce that ¥ is harmonic. Inversely.

Let w: I x N — M be a smooth map satisfying for all t € I = (—e¢,€),e > 0 and all
rEeN

w(t,z) =Pe(x) = (1 +)(x),
and
w(0,z) = Y(x).

The variation vector field v € T'(¢y T M) associated to the variation {1, };c; is given
for all x € N by

d
’U(l’) = d(O@)‘”(%)a
From Lemma 5.1, we have
2 2 2
e(Wy) = 2e(h) + a —;t) try|Vdib(u, *)|* + @(92(Vd1/1(u, e;), pdip(u))

+ (14 1) (di(es), i (u))).-
If ¥ is a critical point of the energy functional, from equation 2, we have

d
EE(ébt)t:o =0
2
= /TN 2e() + trg|Vdy(u, *)|* + %(QQ(de(m ei), pdip(u))
+ g (di(e), pdip(u))) = 0.

If ¥ is harmonic hence Vdiy = 0. O
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6. Biharmonic identity map I : (TM, g%) — (T'M, %, ")

Now we investigate the harmonicity of the Berger type deformed Sasaki metric g%
and the Sasaki metric g° with respect to each other. By using the Levi-Civita con-
nection of these metrics we state the following two propositions (for the Levi-Civita
connection of the Sasaki metric see [20]).

Proposition 6.1. Let (Mag, ¢, g) be an anti-paraK&hler manifold and TM its tan-
gent bundle equipped with the Berger type deformed Sasaki metric ¢®% and the
paracomplex structure 5 Suppose that I : (T M, g°) — (T M, 5, gB%) is the identity
map. Then the tension field 7(I) of I is given by

62
1+ a52g

(1) = try( (5, 6(9) (6(w)" ) (15)
Theorem 6.1. Let (May, ¢, g) be an anti-paraKahler manifold and T'M its tangent
bundle equipped with the Berger type deformed Sasaki metric ¢%° and the paracom-
plex structure ¢. Suppose that T'M is a compact tangent bundle, then the identity
map I : (TM,g%) — (TM, ¢, gP%) is biharmonic if and only if is hrarmonic.

Proof. Let I; be a compactly supported variation of 7(I) defined by 7(I;) = (1+¢)7(I).

Ea(r(D)) = [ I ssv,
1 2

=5 [otr@. @y, + 5 [ ottt otwe,

B [atrrtme, + S [t

then

0= %E2(T(I)t)t:0 :/Q(T(I)aT(I)))Ug + /(9(7(1)’¢(u))2v9

then, we have

Theorem 6.2. Let (Mag, ¢, g) be an anti-paraKéhler manifold and T'M its tangent
bundle equipped with the Berger type deformed Sasaki metric ¢P% and the paracom-
plex structure ¢. Then the bitension field m»(I) of T is given by

H

(1) ey ={ trg ( - g(V*R)(u,T(I)) b (a6

(‘T)u)

. (%)Z(T(z),m(*,¢<*>>¢<u>)}

1%
("];7/11‘)

where A(7(1)) = try(V27(1)).
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Proof. Let (z,u) € TM and {ef,ef}2?*, be a local orthonormal frame on TM such
that (Ve,e;), = 0. Then by summing over i, we have:

trys (V27 (D) o) ={ Vi vgﬂru)}( . {viyvirn)}

- {Vlvleeng(I)}(m’u) - {Vlvjivei”(f)}

(I7u)

(,u)

From Theorem 7.1, we have

14
tr s (V22(1)) o) :{veiven(l)} o)
+(12m) {otenstrigteno)

On the other hand, we have
t?“gs (E(T(I)v dI)dI)(x,u) :R(T(I)v e{{) )(:c u) + R( ( )’ Y)ey)(x,u)

From Theorem 2.2, we have

trys (R(r(1), d1)dD) .0y ={ - %(VeiR)(u,T(I))e,;}

H

(a"’u)

+ (%)2{@(7(1),u)g(emwi))

14
—g(ei,u)g(r(I), ¢(62)))¢(u)}(m,u)

Considering the formula (9), we deduce

2D ey ={ — 5 (Ve 7(D)er}

H(122m) s g en sle)sm}

H

+{atm)

(zu)
%

(wlu)

From Theorem 5.3, we have

Theorem 6.3. Let (TM, (E, g%%) be a anti-paraKihler manifold. Then the identity
map I : (TM, g%) — (TM, ¢,gP%) is biharmonic if and only if
52

) alr(D), w)ge, o)) = 0.

A() +

7. Harmonicity of the map V¥ : (T M, 5, gB%) — (TN, (EZ hB9)

In the section, we denote (May, ¢, g) be an anti-paraKéahler manifold and (T'M, 5, BS)
its tangent bundle equipped with the Berger type deformed Sasaki metric g% and the
paracomplex structure gb, (Nays, @', h) be an anti-paraK&hler manifold and (T'N, (j)’ hB%)
its tangent bundle equipped with the Berger type deformed Sasaki metric h?° and
the paracomplex structure & .
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Theorem 7.1. Let ¥ : (TM, (E, gP%) — (TN,qZ’,hBS) be a the tangent map of the
map

¥ (Mag, ¢, g) —: (Nogr, @', h), then the tension field 7(¥) of v is given by
T(¥) = [T(’l/)) + trp RN (dip(w), Vdip(u, *))dw(*)} "
52 v
T agap oo () (9(w)
trah(dp((x)), &' (di(x))

+ [div(Vd) (u) -

5/2 0552
1+ a2 [1 + B5?

— b h(V b, %), o (Vo *>>>¢'(dw<u>>v} .

Proof. Let (¢(x),dy(u)) € TN and let {e;}2%,, such that e; = ” I is an orthonormal
1
basis of TM at x. Then {eZH, _ v, Viji=2. n} is an orthonor-
mal basis of T, ,)TM at (z,u) such that (V¢,e;), = 0. Then by summing over i, we
have:
T(0) =VYdU(e) — d¥(V, wel )+ VY L lell(#(b(el)v)
o Vi TN 1 ad?

- 1
—AdU(V
(Ve V1t ao?

— d‘II(V¢ )V¢(6J) ).

From Proposition 2.2 , we have

$le)”) + Vg(ej)vd‘IW(ej)V)

=) :[dew(ei) + R(d(u), Vdy(u, ei))dw(ei)}H

5 v
T g e d(e) v (o)

trih(di(¢(e;)), ¢’ (di(e;))

+ [div(Vd)(u) -
6/2 2
1+ 82 [1 + B5?

— (V. e0), ¢ (T (u, )6 (d ()]

O

Theorem 7.2. Let ¥ : (T M, é, gP%) — (TN,QA;/,hBS) be a the tangent map of the
map

Y (Mag,d,9) —>: (Nogs, @', h), then ¥ is harmonic if and only if the following
conditions are verified

0 =7(1) + trp RN (dip(u), Vdip(u, %)) dip (%),
0 = div(Vdy)(u) + treg(x, ¢(x)),
ad?

0= 1+ﬁ52trhh(d¢(¢>( )); &' (A () — trah(Vdi (u, x), ¢ (Vi (u, x))).



412 A. MEDJADJ, H. EL HENDI, AND L. BELARBI

Corollary 7.1. Let ¥ : (TM, ¢~>, gP%) — (TN,(E’,hBS) be a the tangent map of the
map ¢ : (Mo, ¢,9) —: (Nogr, @', h), if ¢ is totally geodesic then ¥ is harmonic if
and only if

trag(x, ¢(x)) = trah(dy(o()), ¢/ (dv(x)) =
Lemma 7.1. Let (TM, 5, gB%) — (TN,Q?’,hBS) be a the tangent map of the map
¥ (Nagr, @', h) — (Mag, ¢, g), then the energy density associated to U is given by
1
() =5 [26() + try IV u, )| + (Btry (Vb (u, ), &' dup(w))?

+ trg||d (d(+))||2 + 62 trnh? (dip(p(%)), ¢ dep(u))
2
- e (AP + 1260, 6w

Proof. Let (z,u) € TM and let {e;}?%,, such that e; = ﬁ is an orthonormal basis
u
1
of TM at x. Then { 12 e1))V, ; V, | = 2. n} is an orthonormal

basis of T, .,yT'M at (x,u) such that (Ve,€i)s = 0. Then by summing over i, we have:

e(W) (p(x),dis(2)) Z%[(h(d‘l’(e- ), d¥(ef"))) + Hﬁh(d‘l’@(@ﬁv)»d‘I’(¢(€1)V))

+Zh AW ((e;)V), dU(d(e )V))}

[(Zh dip(en)™ dib(en) ™) + h(Vdy(u,e)V, Vdi(u.e;)"))
1

+1+ ad? (dw(sﬁ( )) ad¢(¢(61))v)

h(dy(9(e;))V, dip(e(e;))")

=5 [ (v (e, dv(en) + h(Tdb(u, e, Vv u, )

2
+ OV, ), 6B (w)? + 1 h(d(Ble)), d(0(e1))

(n(
(5h

52

g [@(6(en). 0 dbw) + 3 hldib(6(e;). dib(9(e;))

+ (0h(dip(9(ey)), qb’dw(u)))?}
:% [26(1/)) + tthde('Lh *)H2 + (5h(Vd’(/J(u, ei)7 ¢/d¢(u)))2

+ s (M (Blen)), d(B(e))) + (Bh(du(o(er)), ¢ dbw))?)
o+ h(d((er)), di(6(e:))) — hldib(@(en)), di(6(e1)))
+ O22(dip((e:)), o' dib(w)) — O22(dib((er)), o duo(w))]
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:% [2€(¢) + trg|[Vdip(u, #)||* + (Sh(Vdip(u, e;), ¢’ dip(u)))?

+[ldy(d(ei))|]* + 82h? (dp(d(ei)), @' dip(w))

52
- g (MW + H d(6(w). o di(w) ).

O

Theorem 7.3. Let TN be a compact tangent bundle and ¥ : (T M, (E, g% —
(TN, ¢',hP%) be a the tangent map of the map ¢ : (Mo, ¢, g) —> (Nan, @', h), then
¥ is harmonic if and only if v is totally geodesic and

trog(dip(+), i (+)) = trph(d((+)), ¢'(dep(x))) = 0.

Proof. If 1 is totally geodesic and tryg(diy (), ¢dy(x)) = 0 from Corollary 7.1, we
deduce that ¥ is harmonic. Inversely:

Let w: I x M — N be a smooth map satisfying for all ¢t € I = (—¢,€),e > 0 and all
reM

w(t,z) = Pu(z) = (1 + (),
and
w(0,z) = Y(x).

The variation vector field v € T'(¢y "1T'N) associated to the variation {1 };cs is given
for all x € N by

d
U(QL') = d(O,m)w(a)a

From Lemma 7.1, we have
(W) = [26(8) + (1 12try] [V (u, #)|[2 + (14 1) trgh (Vb %), &' ()’
+ (L)t |dip (S (+))[[* + 0% (1 + 1) *trgh? (dup(6(x)), ¢ dip (w))

§2(1 +t)? y /
= 27 ag U (G@IP + W2 (@ (o)), o (w)) ).

If ¥ is a critical point of the energy functional, from equation (2), we have

© B(6e)imo = 0

- /T 1[26(1@ 2ty ||V (u, %) + 2ty (Sh(Vdi(u, %), &' dip(u)))?

M2

+ 2tr||dip (¢ (+))||* + 672trh* (dip(6 (%)), ¢’ dip(w))

2
o (IO + 200, 600w s =0

If ¥ is harmonic hence Vdiy = 0. (|
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8. Conclusion

In this research we studied the harmonicity of the map ¥ : (T'M, 5, gB%) — (TN, h5)
and find conditions under which it is totally geodesic and we get the following results.
Firstly the identity map I : (T'M,g°%) — (T M, 5, gP%) is biharmonic if and only if
is harmonic. Secondly the identity map I : (T M, o, gB%) — (T M, g°) is biharmonic
if and only if

A(r(I)) =0 and try(R(u, V.r(I))*) = 0.
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