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Abstract. In this paper, we introduce a new notion of stability, namely generalized practical
h−stability. Both generalized practical h−stability and generalized input-to-state practical

h−stability are considered. Under Lyapunov techniques, some sufficient conditions are given

which guarantee generalized practical h−stability of fuzzy differential equations. The gener-
alized practical h−stability analysis is also accomplished with the help of the scalar h−stable

functions.
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1. Introduction

In the mathematical modeling theory of real world phenomena, we essentially en-
counter two inconveniences. The first is due to the excessive complexity of the model.
As for the second is du to the indeterminacy caused by our inability to differentiate
events in a real situation exactly, and therefore to define instrumental notions in pre-
cise form. The development of new fields such as robotics, general systems theory,
language theory and artificial intelligence, force us to engage in the specification of
imprecise notions. One of the tools which makes it possible to describe vague notions
and manipulations with them is the modified set theory known as fuzzy set theory,
which is initiated in 1965 by L. A. Zadeh. In this context, we recall that the theory
of fuzzy sets is simple and natural. A fuzzy set is simply a function of a set in a
lattice or as a special case, into the interval [0, 1]. Using this theory, mathematicians
are able to model the meaning of vague notions and also certain types of human rea-
soning. Since the 1970s, fuzzy set theory and its applications have been developed
very intensively and there are several papers and books that deal with these aspects.
In this context, we recall that fuzzy differential equations are very powerful tools for
modeling uncertainties and for processing vague or subjective information in many
mathematical models. In addition they have been applied to a huge variety of real-
world problems, for example, the engineering applications [8], quantum optics and
gravity [7] , medicine [1] and golden mean [3].

In the recent years, the theory of practical stability has been developed very inten-
sively and attracts much attention. The first who proposed the concept of practical
stability are LaSalle and Lefschetz in 1961 [16]. In this context, Lakshmikantham et al.
presented a systematic study of practical stability in 1990. Since 1987, many authors
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have initiated the study of fuzzy differential equations [3, 6, 11, 12, 14, 15, 23, 26, 27].
In [23], sufficient conditions, in terms of Lyapunov-Like functions are given to guaran-
tee the practical stability, the boundedness and Lagrange stability of fuzzy differential
systems which unifies the Lyapunov’s second method. Moreover, in [26] practical sta-
bility of fuzzy differential equations with the second type of Hukuhara derivative are
considered. The practical stability of a class of uncertain T-S fuzzy systems is also
investigated in [27]. Sufficient condition for practical stability of dynamic systems is
presented and a controller design method for uncertain T-S fuzzy systems is derived.

Recently, the problem of practical h−stability [9], which in turn, is a generalization
of the concept of h−stability [18], has been thoroughly investigated. This notion of
stability is introduced with the intention of obtaining results about practical stability
for a weakly practically stable system under some perturbations. In addition, it
generalizes several types of known stabilities, namely practical stability, practical
Lipschitz stability, practical exponential stability and practical asymptotic stability
(see [9]).

On the other hand, we recall that the problems of practical asymptotic stability
and input to state practical stability of nonlinear time varying systems attracted
the attention of several well-known and famous authors [4, 5, 10, 17, 19, 20, 21], in
particular Andrew R. Teel and Laurent Praly [22]. In the work [22] an interesting fact
about functions of type KL is proved. More precisely, they proved a lemma involving
KL functions which does not seem to have been noticed in the literature, and which
is of independent interest.

Motivated by the existing literature on practical asymptotic stability, practical
h−stability and input-to-state practical stability, the main contribution of the paper
is to introduce and study a new notion of practical stability called generalized prac-
tical h−stability. That is, we will extend the study of practical asymptotic stability
and input-to-state practical stability to a variety of reasonable systems when sta-
bilities weaker than those given by practical asymptotic stability and input-to-state
practical stability. For this purpose, we use Lyapunov theory to obtain necessary con-
ditions to ensure the generalized practical h−stability and generalized input-to state
practical h−stability of nonlinear fuzzy systems with control. Another approach to
study generalized practical h−stability analysis is accomplished with the help of the
scalar h−stable functions which generalizes the notion of scalar stable functions in-
troduced by [25]. The remainder of this paper is organized as follows: In section 2,
basic definitions and some preliminary results about practical asymptotic stability
and input-to-state practical stability are presented. In subsection 3.1 of section 3,
some sufficient conditions are given, to prove the main theorem about the generalized
practical h−stability of nonlinear fuzzy system with u ≡ 0. However, in subsection
3.2 of section 3 we establishes the problems of generalized input-to-state practical
h−stability analysis and generalized integral input-to-state practical h−stability for
nonlinear fuzzy system with control u ∈ Ln∞(R+) not necessarily zero. Finally, in
section 4 the conclusion is given.
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2. Definitions, notations and hypotheses

Let x ∈ Rn and A a nonempty subset of the space Rn. The distance d(x,A) from x
to A is defined by the following formula

d(x,A) = inf{‖x− a‖, a ∈ A}

with ‖.‖ denotes a norm in Rn. Now, for two nonempty subsets A and B of Rn, we
define the Hausdorff separation of B from A given the formula

dH [A,B] = sup{d(a,B), a ∈ A}.

In general, dH [A,B] 6= dH [B,A].
Throughout this paper Kc(R

n) denote the family of all nonempty, compact, convex
subsets of Rn. Let D[A,B] be the Hausdorff distance between the sets A,B ∈ Kc(R

n)

D[A,B] = max{dH [A,B], dH [B,A]}.

Let I = [t0, t0+a], t0 ∈ R+ and a > 0 and En be the set of all functions ũ : Rn → [0.1]
such that ũ satisfies the following properties

i): ũ is normal, that is, there exists an x0 ∈ Rn such that ũ(x0) = 1;
ii): ũ is fuzzy convex, that is, for x, y ∈ Rn and 0 ≤ λ ≤ 1;

ũ(λx+ (1− λ)y ≥ min{ũ(x), ũ(y)};

iii): u is upper semicontinuous;

iv): [ũ]0 = {x ∈ Rn; ũ(x) > 0} is compact.
For 0 < α ≤ 1, we denote [ũ]α = {x ∈ Rn; ũ(x) ≥ α}. Taking into account the
conditions i)-iv), the α−sets [ũ]α ∈ Kc(R

n) for α ∈ [0, 1]. For addition and scalar
multiplication in fuzzy set space En,we have

[ũ+ ṽ]α = [ũ]α + [ṽ]α and [λũ]α = λ[ũ]α, ũ, ṽ ∈ En, λ ∈ R and α ∈ [0, 1].

According to the definition of the Hausdorff distance between the sets A,B ∈
Kc(R

n), we define the metric function D0 : En × En → R+ by

D0[ũ, ṽ] = sup
0≤α≤1

D[[ũ]α, [ṽ]α].

It follows that (En, D0) is a complete metric space. We recall that the metric D0

satisfies the following properties
(P1): D0[ũ+ w̃, ṽ + w̃] = D0[ũ, ṽ] and D0[ũ, ṽ] = D0[ṽ, ũ], for all ũ, ṽ, w̃ ∈ En.
(P2): D0[λũ, λṽ] = |λ|D0[ũ, ṽ], for all ũ, ṽ ∈ En and λ ∈ R.
(P3): D0[ũ, ṽ] ≤ D0[ũ, w̃] +D0[w̃, ṽ], for all ũ, ṽ, w̃ ∈ En.

Let ũ, ṽ, w̃ ∈ En. If the relation ũ = ṽ + w̃ is satisfies, then w̃ is called the Hukuhara
difference of ũ and ṽ and is denoted by ũ	 ṽ. Generally, we have ũ	 ṽ 6= ũ+ (−1)ṽ

Definition 2.1. A mapping F : I → En is differentiable at t ∈ I, if there exists a
DHF (t) ∈ En such that the limits

lim
h→0+

F (t+ h)	 F (t)

h
and lim

h→0+

F (t)	 F (t− h)

h
(1)

exist and are equal to DHF (t). The above limits are taken in the metric space
(En, D0) and at the boundary points we consider only the one-sided derivatives.
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Consider the following non-linear time-varying fuzzy system

DHx(t) = f(t, x(t), u) (2)

where f ∈ C(R+ ×En ×Ep, En), x ∈ En the state and u ∈ Ep is the control. Along

this paper, we define the function 0̂ ∈ En as follows

0̂(s) =

{
1, if s = 0Rn

0, if s 6= 0Rn

Notation. Throughout this paper, we use the following notation
(1) The solution of system (2) passing through the point (t0, x0) ∈ R+ × En, is de-

noted by x(t, t0, x0) or simply x(t) which satisfies x(t0, t0, x0) = x0. We suppose
that for all initial condition (t0, x0) there exists a unique solution x(t, t0, x0) of
(2) and defined for all t ≥ t0.

(2) If ξ : R+ → En, we use

‖ξ‖[t0,t] = sup
τ∈[t0,t]

D0[ξ(τ), 0̂]

to denote the truncation of the norm of ξ at t.
(3) we denote

Ln∞(R+) =
{
ξ : R+ → En; sup

τ∈R+

D0[ξ(τ), 0̂] <∞
}
.

(4) PC[R+,R] the set of all piecewise continuous function from R+ to R.
(5) C(R+ × En,R+) the set of all continuous functions from R+ × En to R+.

(6) HCB+ =
{
h : R+ −→ R∗+;h is a continuous, bounded and positive function

}
(7) For δ ≥ 0, Bδ denotes the closed ball of En centered at zero, i.e.,

Bδ :=
{
ũ ∈ En : D0[ũ, 0̂] ≤ δ

}
.

For readers convenience, some definitions are given in the following.

Definition 2.2. Consider a continuous function V : R+×En −→ R+. The function
V is said to be globally Lipschitzian with respect to variable x if there exists L > 0
such that

|V (t, x)− V (t, y)| ≤ LD0[x, y] for all t ∈ R+ and x, y ∈ En.

Definition 2.3. Let V ∈ C(R+ × En,R+) be a Lyapunov-like function.
(1) The fuzzy Dini derivative D+V(2)(t, x) of V is defined as follows

D+V(2)(t, x) = lim sup
δ−→0+

1

δ

[
V (t+ δ, x+ δf(t, x, u)))− V (t, x)

]
, (t, x) ∈ R+ × En.

If u ≡ 0, the fuzzy Dini derivative D+V(2)(t, x) is denoted D+V(2)(t, x)
∣∣∣
u≡0

.

(2) If x(t) is a solution of (2), we define the upper right-hand derivative of V (t, x(t))
we denote by D+V (t, x(t)) , i.e.,

D+V(2)(t, x(t)) = lim sup
δ−→0+

1

δ

[
V (t+ δ, x(t+ δ))− V (t, x(t))

]
. (3)

If x(t) is a solution of (2) with u ≡ 0, the upper right-hand derivative of V (t, x(t))
is denote by

D+V(2)(t, x(t))
∣∣∣
u≡0

.
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Note that if V (t, x) is a Lipschitzian function with respect to x, then we have

D+V (t, x(t)) ≤ D+V(2)(t, x). (4)

Definition 2.4. [13] A scalar continuous function α : [0, a) → R+ is said to be of
class K (α ∈ K) if it is strictly increasing and α(0) = 0. It is said to belong to class
K∞ (α ∈ K∞) if it defined for all r ≥ 0 and α(r)→ +∞ as r → +∞.

Definition 2.5. [13] A scalar continuous function β : [0, a) ×R+ → R+ is said to
belong to class KL (β ∈ KL) if, for each s ≥ 0 the mapping β(r, s) belongs to class K
with respect to r and, for each fixed r, the mapping β(r, s) is decreasing with respect
to s and β(r, s)→ 0 as s→ +∞.

We begin by recalling the definition of the notion of practical asymptotic stability of
the fuzzy system (2).

Definition 2.6. [5] The non-linear time-varying fuzzy system (2) is said to be
(1) uniformly practically asymptotically stable (UPAS ) if there exist β ∈ K∞, a

positive constant c, independent of t0 and δ ≥ 0, such that with the control
u = 0,

D0[x(t), 0̂] ≤ β
(
D0[x(t0), 0̂], t− t0

)
+ δ, ∀ t ≥ t0, ∀D0[x(t0), 0̂] ≤ c. (5)

If δ = 0, the system (2) is said uniformly asymptotically stable (UAS )(see [13]).
(2) globally uniformly practically asymptotically stable (GUPAS ) if and only if in-

equality (5) is satisfied for any initial state x(t0) ∈ En. If δ = 0, the system (2)
is said globally uniformly asymptotically stable (GUAS ) (see [13]).

Now, let’s recall the notion of input-to-state practical stability of the fuzzy system
(2).

Definition 2.7. [17] The non-linear time-varying fuzzy system (2) is said to be
(1) input-to-state practically stable (ISPS ) if there exist α, σ, γ ∈ K∞ such that, for

any bounded input u ∈ Ln∞(R+)

D0[x(t), 0̂] ≤ β
(
D0[x(t0), 0̂], t− t0

)
+ γ(‖u‖[t0,t]) + δ. (6)

If δ = 0, the system (2) is said input-to-state stable (ISS ) (see [20]).
(2) integral input-to-state practically stable (iISPS ) if there exist α, σ, γ1, γ2 ∈ K∞

such that,

D0[x(t), 0̂] ≤ β
(
D0[x(t0), 0̂], t− t0

)
+ γ1

(∫ t

t0

γ2(D0[u(s), 0̂])ds
)

+ δ. (7)

If δ = 0, the system (2) is said integral input-to-state stable (iISS ) (see [21]).

In this article, the main objective is to generalize the notions of practical asymptotic
stability and input to state practical stability. More precisely, we will introduce other
types of stabilities in order to obtain results on the stability of a weakly PAS system
and a weakly ISPS system. The origin of this generalization is due to the following
lemma.

Lemma 2.1. [22] For each class−KL function β and each number λ > 0, there exist
functions α̃1 ∈ K∞ and α̃2 ∈ K∞ such that α̃1 is locally Lipschitz and

α̃1(β(r, s)) ≤ α̃2(r)e−λs ∀ (r, s) ∈ R+ ×R+. (8)
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The result given by Lemma 2.1 shows that any class−KL function β(r, s) can always

be upper bounded by a continuous class−KL function of the form α̃−11

(
α̃2(r)e−λs

)
even if we assume minimal continuity properties for the function β.

Remark 2.1. By Lemma 2.1, it should be noted that for each class−KL function β
and each number λ > 0, there exist functions α̃1, α̃2 ∈ K∞ and a continuous, bounded
function h0 : R+ −→ R∗+ such that

β
(
D0[x(t0), 0̂], t− t0

)
≤ α̃−11

(
α̃2(D0[x(t0), 0̂])h0(t)h−10 (t0)

)
, t ≥ t0 ≥ 0, x(t0) ∈ En

(9)
where h0(s) = e−λs, s ∈ R+.

On the basis of the last inequality (9), we introduce a new notion of stability which
generalizes those cited above of this paper. For this fact let consider a continuous,
bounded and positive function h ∈ HCB+. We beginning by defining the notion of
generalized practical h−stability.

Definition 2.8. The non-linear time-varying fuzzy system (2) is said to be
(1) generalized practically h−stable (gPhS ) if there exist α, σ, γ ∈ K∞ such that,

with the control u = 0, for all t ≥ t0 ≥ 0

D0[x(t), 0̂] ≤ α
(
K(t0)σ(D0[x(t0), 0̂])h(t)h(t0)−1

)
+ δ

where K(t0) ≥ 1. If δ = 0, the system (2) is said generalized h−stable (ghS). If
there exist a constant M > 0 such that α(r) ≤ Mr and σ(r) ≤ Mr, the system
(2) is said practically h−stable (PhS)(see [9] ).

(2) generalized practically uniformly h−stable (gPUhS) if there exist α, σ, γ ∈ K∞
such that, with the control u = 0,

D0[x(t), 0̂] ≤ α
(
σ(D0[x(t0), 0̂])h(t)h(t0)−1

)
+ δ.

If δ = 0, the system (2) is said generalized uniformly h−stable. If there exist a
constant M > 0 such that α(r) ≤ Mr and σ(r) ≤ Mr, the system (2) is said
uniformly practically h−stable (see [9] ).

Now, we define the notion of generalized input-to-state practical h−stability.

Definition 2.9. The non-linear time-varying fuzzy system (2) is said to be
(1) generalized input-to-state practically h−stable (gISPhS) if there exist α, σ, γ ∈
K∞ such that, for any u ∈ Ln∞(R+)

D0[x(t), 0̂] ≤ α
(
K(t0)σ(D0[x(t0), 0̂])h(t)h(t0)−1

)
+ δ + γ(‖u‖[t0,t])

where K(t0) ≥ 1. If δ = 0, the system (2) is said generalized input-to-state
h−stable (gIShS). If there exist a constant M > 0 such that α(r) ≤ Mr and
σ(r) ≤Mr, the system (2) is said input-to-state practically h−stable (ISPhS).

(2) generalized input-to-state uniformly practically h−stable (gISUPhS) if there ex-
ist α, σ, γ ∈ K∞ such that, for any u ∈ Ln∞(R+)

D0[x(t), 0̂] ≤ α
(
σ(D0[x(t0), 0̂])h(t)h(t0)−1

)
+ δ + γ(‖u‖[t0,t]).
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If δ = 0, the system (2) is said generalized input-to-state uniformly h−stable
(gISUhS). If there exist a constant M > 0 such that α(r) ≤Mr and σ(r) ≤Mr,
the system (2) is said input-to-state uniformly practically h−stable (ISUPhS).

Definition 2.10. The non-linear time-varying fuzzy system (2) is said to be
(1) generalized integral input-to-state practically h−stable (giISPhS) if there exist

α, σ, γ1, γ2 ∈ K∞ such that, for any u ∈ Ln∞(R+)

D0[x(t), 0̂] ≤ α
(
K(t0)σ(D0[x(t0), 0̂])h(t)h(t0)−1

)
+ δ + γ1

(∫ t

t0

γ2(D0[u(s), 0̂])ds
)

where K(t0) ≥ 1. If δ = 0, the system (2) is said generalized integral input-to-
state h−stable (giIShS). If there exist a constant M > 0 such that α(r) ≤ Mr
and σ(r) ≤Mr, the system (2) is said integral input-to-state practically h−stable
(iISPhS).

(2) generalized integral input-to-state uniformly practically h−stable (giISUPhS) if
there exist α, σ, γ1, γ2 ∈ K∞ such that, for any u ∈ Ln∞(R+)

D0[x(t), 0̂] ≤ α
(
σ(D0[x(t0), 0̂])h(t)h(t0)−1

)
+ δ + γ1

(∫ t

t0

γ2(D0[u(s), 0̂])ds
)
.

If δ = 0, the system (2) is said generalized integral input-to-state uniformly
h−stable (giISUhS). If there exist a constant M > 0 such that α(r) ≤ Mr and
σ(r) ≤ Mr, the system (2) is said integral input-to-state uniformly practically
h−stable (iISUPhS).

Remark 2.2. Note that, if the system (2) is PAS (resp; ISPS, iISPS ) then it is gPhS
(resp; gISPhS, giISPhS ). However, the converse is false and this leads us to extend
the notion of practical asymptotic stability (resp; input-to-state practical stability) to
a variety of reasonable systems with stabilities weaker than those given by practical
asymptotic stability. Hence, the notion of generalized practical h−stability (resp;
generalized input-to-state practical h−stability) is of significant practical importance
but never investigated.

Next, we introduce the concept of h−stable functions which generalizes the notion
of stable function introduced by [24].

Consider the following scalar linear time-varying (LTV) system:

ω̇(t) = µ(t)ω(t) (10)

where ω : R+ −→ R is the state variable and µ ∈ PC[R+,R]. The general solution
of system (10) is of the form

ω(t) = ω(t0)Ψ(t, t0), t ≥ t0 ≥ 0

with Ψ(t, t0) is state transition matrix for system (10) given by

Ψ(t, t0) = exp
(∫ t

t0

µ(s)ds
)
, t ≥ t0 ≥ 0. (11)

Definition 2.11. The scalar function µ is said to be
(1) h−stable if the scalar (LTV) system (10) is h−stable, namely, for all t0 ≥ 0 there

exist constant k(t0) ≥ 1 such that

|ω(t)| ≤ k(t0)|ω(t0)|h(t)h−1(t0), t ≥ t0 ≥ 0 (12)
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(2) uniformly h−stable if the scalar (LTV) system (10) is uniformly h−stable, namely,
the constant k(t0) ≥ 1 in (12) is independent of t0.

Remark 2.3. In Definition 2.11, for some special cases of h, the notion of h−stable
functions coincides with the notion of stable functions. More precisely,

i): if h(t) = e−λt for positive constant λ, then the scalar function µ is exponentially
stable (see [24]).

ii): if h(t) is a strictly decreasing function such that lim
t−→+∞

h(t) = 0+, then the

scalar function µ is asymptotically stable (see [24]).

The following proposition gives a characterization of the h−stability of a scalar
function µ ∈ PC[R+,R], whose the proof is obvious.

Proposition 2.2. The scalar function µ ∈ PC[R+,R] is
i): h−stable if and only if for all t0 ≥ 0, there exists ζ(t0) ∈ R+ such that∫ t

t0

µ(s)ds ≤ ln(h(t))− ln(h(t0)) + ζ(t0), t ≥ t0 ≥ 0. (13)

ii): uniformly h−stable if and only if (13) is satisfied, where ζ(t0) = ζ is indepen-
dent of t0.

Remark 2.4. The h−stability characterization given by Proposition 2.2 is a gener-
alization of that given by Lemma 1, [25]

i): if h(t) = e−λt for positive constant λ, then (13) becomes∫ t

t0

µ(s)ds ≤ −λ(t− t0) + ζ(t0), t ≥ t0 ≥ 0

and we obtain the necessary and sufficient condition of exponential stability of
the scalar function µ (see [24], [25]).

ii): if h(t) is a strictly decreasing function such that lim
t−→+∞

h(t) = 0+, then from

(13) we get

lim
t−→+∞

∫ t

t0

µ(s)ds = −∞

which is equivalent to saying that the scalar function µ is asymptotically stable
(see [24], [25]).

The following lemmas will also be required in the investigations of our results of
the paper.

Lemma 2.3. [13] Consider the scalar differential equation

ż = ϕ(t, z), z(t0) = z0 (14)

where ϕ(t, z) is continuous in t and locally Lipschitz in z, for all t ≥ 0 and all
z ∈ J ⊂ R. Let [t0, T ) (T could be infinity) be the maximal interval of existence of
the solution z(t), and suppose z(t) ∈ J for all t ∈ [t0, T ). Let v(t) be a continuous
function whose upper right-hand derivative D+v(t) satisfies the differential inequality

D+v(t) ≤ ϕ(t, v(t)), v(t0) ≤ z0
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with v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ z(t) for all t ∈ [t0, T ). In particular,
if ϕ(t, z) = p(t)z + q(t) where p(t) and q(t) are two continuous functions, then the
function v satisfies the inequality

v(t) ≤ z(t) = v(t0)e
∫ t
t0
p(s)ds

+

∫ t

t0

e
∫ t
s
p(τ)dτq(s)ds, t ≥ t0.

Lemma 2.4. Let a, b ≥ 0. Then, we have the following inequalities:

a): For all p ≥ 1, (a+ b)
1
p ≤ a

1
p + b

1
p .

b): For all p ≥ 1, (a+ b)p ≤ 2p−1(ap + bp) .

Lemma 2.5. If α ∈ K∞, then for all a, b ≥ 0, we have

α(a+ b) ≤ α(2a) + α(2b).

3. Main results

In this section, we assume that h ∈ HCB+ is a differentiable function on R+.

3.1. Sufficient conditions for generalized practical h−stability. In this sec-
tion, we give some sufficient conditions to ensure the practical h−stability of fuzzy
system (2) by using Lyapunov’s second method. First, we start by investigating the
generalized practical h−stability of the system (2) with the input control u ≡ 0.

Theorem 3.1. Suppose there are a Lyapunov-Like function V ∈ C(R+ × En,R+),
δ ∈ R+ and two class K∞ functions α1, α2 satisfying the following properties:

i): α1(D0[x, 0̂]) ≤ V (t, x) ≤ α2(D0[x, 0̂]) + δ, (t, x) ∈ R+ × En,

ii): D+V(2)(t, x(t))
∣∣∣
u≡0
≤ h′(t)

h(t)

(
V (t, x(t))− δ

)
, t ∈ R+.

Then, the fuzzy system (2) with the control u = 0, is generalized practically uniformly
h−stable. Moreover, if δ = 0 the fuzzy system (2) with the control u = 0, is generalized
uniformly h−stable.

Proof. Let x(t) = x(t, t0, x0) be the solution of system (2) through (t0, x0) ∈ R+×En.
By condition ii), we have

D+V(2)(t, x(t))
∣∣∣
u≡0
≤ ϕ(t, x(t)), t ∈ R+

where

ϕ(t, z) =
h′(t)

h(t)

(
z − δ

)
:= p(t)z + q(t) with p(t) =

h′(t)

h(t)
, q(t) = −δ h

′(t)

h(t)
.

Then, by Lemma 2.3, we obtain

V (t, x(t)) ≤V (t0, x(t0))e
∫ t
0
h′(τ)
h(τ)

dτ − δh(t)h−1(t0) + δ

=(V (t0, x(t0))− δ)h(t)h−1(t0) + δ

≤α2(D0[x(t0), 0̂])h(t)h−1(t0) + δ.

By condition i), we get, for all t ≥ t0
α1(D0[x(t), 0̂]) ≤ V (t, x(t))

≤ α2(D0[x(t0), 0̂])h(t)h−1(t0) + δ.
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Consequently, by using Lemma 2.5, the solution x(t) of system (2) satisfies

D0[x(t), 0̂] ≤α−11

(
α2(D0[x(t0), 0̂])h(t)h−1(t0) + δ

)
≤α−11

(
2α2(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11 (2δ).

Then, the fuzzy system (2) with the control u = 0 is generalized uniformly practically
h−stable. If δ = 0, the solution x(t) satisfies

D0[x(t), 0̂] ≤ α−11

(
2α2(D0[x(t0), 0̂])h(t)h−1(t0)

)
.

Then, the fuzzy system (2) with the control u = 0, is generalized uniformly h−stable.
�

Remark 3.1. In Theorem 3.1, if
(1) α1(r) = c1r

p, α2(r) = c2r
p where c1, c2, p ∈ R∗+, then the system (2) is practi-

cally h
1
p−stable (see [9]).

(2) h(t) = c, for a positive constant c, then the system (2) is practically stable (see
[9], [2]).

(3) h(t) = e−λt, for positive constant λ and α1(r) = c1r
p, α2(r) = c2r

p where
c1, c2, p ∈ R∗+, then the system (2) is practically exponentially stable (see [9],
[2]).

(4) h(t) is a strictly decreasing function such that lim
t−→+∞

h(t) = 0, then the ball

Bα−1
1 (2δ) is uniformly asymptotically stable on Br. More precisely, the solutions

of system (2) converge to the ball Bα−1
1 (2δ) of radius α−11 (2δ)

(i.e., lim sup
t−→+∞

D0[x(t, t0, x0), 0̂] ≤ α−11 (2δ), for x0 ∈ Br) (see [9]).

With the help of the notion of h−stable functions, we obtain the stability result
given by the following corollary.

Corollary 3.2. Suppose there are a Lyapunov-Like function V ∈ C(R+ × En,R+),
δ ∈ R+, two class K∞ functions α1, α2 and a scalar function µ ∈ PC[R+,R] satisfy-
ing the following properties:

i): α1(D0[x, 0̂]) ≤ V (t, x) ≤ α2(D0[x, 0̂]) + δ, (t, x) ∈ R+ × En,

ii): D+V(2)(t, x(t))
∣∣∣
u≡0
≤ µ(t)

(
V (t, x(t))− δ

)
, t ∈ R+.

(1) If the scalar function µ is h−stable, then the fuzzy system (2) with the control
u = 0, is generalized practically h−stable.

(2) If the scalar function µ is uniformly h−stable, then the fuzzy system (2) with the
control u = 0, is generalized uniformly practically h−stable.

Proof. The proof is the same as that of Theorem 3.1. If we take, ~(t) = e
∫ t
0
µ(s)ds,

then condition ii) of Corollary 3.2 becomes

D+V(2)(t, x(t))
∣∣∣
u≡0
≤ ~′(t)

~(t)

(
V (t, x(t))− δ

)
, t ∈ R+. (15)

Equation (15) is similar to that ii) of Theorem 3.1. Then, we deduce directly that we
have

D0[x(t), 0̂] ≤ α−11

(
2α2(D0[x(t0), 0̂])e

∫ t
t0
µ(s)ds

)
+ α−11 (2δ). (16)
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• If the scalar function µ is h−stable, then by (13), we have

~(t)~−1(t0) = e
∫ t
t0
µ(s)ds ≤ h(t)h−1(t0)eζ(t0)

and by equation (16), we obtain

D0[x(t), 0̂] ≤ α−11

(
2K(t0)α2(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11 (2δ)

where K(t0) = eξ(t0). Consequently, the fuzzy system (2) with the control u = 0,
is generalized practically h−stable.

• In the same way, if the scalar function µ is uniformly h−stable, then through
(13) and (16), we obtain

D0[x(t), 0̂] ≤ α−11

(
2eξα2(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11 (2δ)

which means that system (2) with the control u = 0, is generalized uniformly
practically h−stable.

�

3.2. Input-to-state practical h−stability analysis. In this part, we consider
the system (2) with a control u ∈ Ln∞(R+) not necessarily zero. We start by giv-
ing sufficient conditions to guarantee the generalized input-to-state uniform practical
h−stability of the system (2).

Theorem 3.3. Suppose there are a Lyapunov-Like function V (t, x) ∈ C(R+×En,R+),
δ ∈ R+, a class-K function ρ and two class K∞ functions α1, α2 satisfying the fol-
lowing properties:

i): α1(D0[x, 0̂]) ≤ V (t, x) ≤ α2(D0[x, 0̂]) + δ, (t, x) ∈ R+ × En,

ii): D+V(2)(t, x(t)) ≤ h′(t)
h(t)

(
V (t, x(t)) − δ

)
if V (t, x(t)) ≥ h(t)ρ(D[u(t), 0̂]) + δ,

t ∈ R+.
Then, the non-linear time-varying fuzzy system (2) is generalized input-to-state uni-
formly practically h−stable.

Proof. Let consider the Lyapunov-Like function

W (t, x) = V (t, x)e−
∫ t
0
h′(s)
h(s)

ds = h(0)h−1(t)V (t, x).

The upper right-hand derivative of W (t, x) along the trajectories of system (2) satisfies

D+W(2)(t, x(t)) ≤
[
D+V(2)(t, x(t))− h′(t)

h(t)
V (t, x(t))

]
h(0)h−1(t),

≤− δh(0)
h′(t)

h2(t)
.

It follows that

D+W(2)(t, x(t)) ≤ ϕ(t,W (t, x(t))) with ϕ(t, z) = −δh(0)
h′(t)

h2(t)
. (17)

Now, let consider the following inequality

V (τ, x(τ)) ≥ h(τ)ρ(D[u(τ), 0̂]) + δ. (18)

Two cases arise :
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i): If the inequality (18) is true for all τ ∈ [t0, t], then it follows from (17) and
Lemma 2.3, that

W (t, x(t)) ≤W (t0, x(t0))− δh(0)

∫ t

t0

h′(s)

h2(s)
ds = W (t0, x(t0)) + δh(0)

( 1

h(t)
− 1

h(t0)

)
.

Then,

h(0)h−1(t)V (t, x(t)) ≤ h(0)h−1(t0)V (t0, x(t0)) + δh(0)
( 1

h(t)
− 1

h(t0)

)
.

Consequently, we obtain

V (t, x(t)) ≤ α2(D0[x(t0), 0̂])h(t)h−1(t0) + δ, t ≥ t0, x(t0) ∈ En.
ii): If (18) does not hold true for almost all τ ∈ [t0, t], then the set

Γ :=
{
τ ∈ [t0, t], V (τ, x(τ)) ≤ h(τ)ρ(D[u(τ), 0̂]) + δ

}
is non-empty. Denote τ? = sup Γ.
• If τ? = t, it follows that

V (t, x(t)) = V (τ?, x(τ?)),

≤ h(τ∗)ρ(D[u(τ?), 0̂]) + δ,

≤ sup
s∈[t0,t]

{h(s)}ρ( sup
s∈[t0,t]

{D[u(s), 0̂]}) + δ,

≤ ‖h‖∞ρ(‖u‖[t0,t]) + δ.

• If τ? < t, then V (τ, x(τ)) ≥ h(τ)ρ(D[u(τ), 0̂]) + δ for all τ ∈ [τ?, t]. It
follows from condition ii), that

D+V(2)(τ, x(τ)) ≤ h′(τ)

h(τ)

(
V (τ, x(τ))− δ

)
, ∀ τ ∈ [τ?, t],

from which it follows that for all τ ∈ [τ?, t]

V (τ, x(τ)) ≤ V (τ∗, x(τ∗))h(τ)h−1(τ∗) + δ − δh(τ)h−1(τ∗).

In particular, if τ = t we have

V (t, x(t)) ≤ V (τ∗, x(τ∗))h(t)h−1(τ∗) + δ − δh(t)h−1(τ∗),

=
(
h(τ∗)ρ(D[u(τ?), 0̂]) + δ

)
h(t)h−1(τ∗) + δ − δh(t)h−1(τ∗),

= h(τ∗)ρ(D[u(τ?), 0̂])h(t)h−1(τ?) + δ,

≤ ‖h‖∞ρ(‖u‖[t0,t]) + δ.

By combining the two cases thus discussed above, we obtain

V (t, x(t)) ≤ α2(D0[x(t0), 0̂])h(t)h−1(t0) + ‖h‖∞ρ(‖u‖[t0,t]) + δ, t ≥ t0, x(t0) ∈ En.
By Lemma 2.5, we get, for all t ≥ t0 and x(t0) ∈ En

D0[x(t), 0̂] ≤α−11 (V (t, x(t)))

≤α−11

(
2α2(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11 (4ρ(‖u‖[t0,t])) + α−11 (4δ)

which shows that the non-linear time-varying fuzzy system (2) is generalized input-
to-state uniformly practically h−stable. �
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Remark 3.2. In Theorem 3.3, if δ = 0, we obtain sufficient conditions to ensure the
generalized input-to-state uniform h−stability of the non-linear time-varying fuzzy
system (2).

The generalized input-to-state practical h−stability can be obtained with the help
of h− stable function.

Corollary 3.4. Suppose there are a Lyapunov-Like function V (t, x) ∈ C(R+ ×
En,R+), δ ∈ R+, a class K function ρ, two class K∞ functions α1, α2 and a scalar
function µ ∈ PC[R+,R] satisfying the following properties:

i): α1(D0[x, 0̂]) ≤ V (t, x) ≤ α2(D0[x, 0̂]) + δ, (t, x) ∈ R+ × En,

ii): D+V(2)(t, x(t)) ≤ µ(t)
(
V (t, x(t))− δ

)
if V (t, x(t)) ≥ e

∫ t
0
µ(s)dsρ(D[u(t), 0̂]) + δ,

t ∈ R+.
(1) If the scalar function µ is h−stable, then the non-linear time-varying fuzzy system

(2) is generalized input-to-state practically h−stable.
(2) If the scalar function µ is uniformly h−stable then, the non-linear time-varying

fuzzy system (2) is generalized input-to-state uniformly practically h−stable.

Proof. Let us consider the function ~(t) = e
∫ t
0
µ(s)ds, t ≥ 0. Then, we get

D+V(2)(t, x(t)) ≤ ~′(t)
~(t)

(
V (t, x(t))− δ

)
if V (t, x(t)) ≥ ~(t)ρ(D[u(t), 0̂]) + δ, t ∈ R+.

It is clear that the function V (t, x) satisfies conditions i) and ii) of Theorem 3.3. Then,
by adopting the same calculation techniques used in the proof of Theorem 3.3, we
end up showing the following inequality

V (t, x(t)) ≤ α2(D0[x(t0), 0̂])e
∫ t
t0
µ(s)ds

+ e
∫ t
0
µ(s)dsρ(‖u‖[t0,t]) + δ, t ≥ t0, x(t0) ∈ En.

• If the scalar function µ is h−stable, then by Proposition 2.2, we get

V (t, x(t)) ≤α2(D0[x(t0), 0̂])h(t)h−1(t0)eξ(t0)

+‖h‖∞h−1(0)eξ(0)ρ(‖u‖[t0,t]) + δ, t ≥ t0, x(t0) ∈ En

Therefore, we get

D0[x(t), 0̂] ≤α−11

(
2K(t0)α2(D0[x(t0), 0̂])h(t)h−1(t0)

)
+α−11

(
4‖h‖∞h−1(0)eζ(0)ρ(‖u‖[t0,t])

)
+ α−11

(
4δ
)
, t ≥ t0, x(t0) ∈ En

with K(t0) = eζ(t0). Consequently, the system (2) is generalized input-to-state
practically h−stable.
• If the function µ is uniformly h−stable, then by Proposition 2.2, we get

D0[x(t), 0̂] ≤α−11

(
2eζα2(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11

(
4‖h‖∞h−1(0)eζρ(‖u‖[t0,t])

)
+ α−11

(
4δ
)
, t ≥ t0, x(t0) ∈ En.

Then, the system (2) is generalized input-to-state uniformly practically h−stable.
�

In what remains, sufficient conditions will be established to ensure the generalized
integral input-to-state practical h−stability of system (2).
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Theorem 3.5. Suppose there are a Lyapunov-Like function V (t, x) ∈ C(R+×En,R+),
δ ∈ R+, two class K functions π1, π2 and two class K∞ functions α1, α2 satisfying
the following properties:

i): α1(D0[x, 0̂]) ≤ V (t, x) ≤ α2(D0[x, 0̂]) + δ, (t, x) ∈ R+ × En,

ii): D+V(2)(t, x(t)) ≤
(
h′(t)
h(t) +π1(D0[u(t), 0̂])

)
(V (t, x(t))− δ) +h(t)π2(D0[u(t), 0̂]),

t ∈ R+.
Then, the non-linear time-varying fuzzy system (2) is generalized integral input-to-
state practically h−stable.

Proof. By condition ii), we have D+V(2)(t, x(t)) ≤ ϕ(t, V (t, x(t))) where

ϕ(t, z) =
(h′(t)
h(t)

+ π1(D0[u(t), 0̂])
)

(z − δ) + h(t)π2(D0[u(t), 0̂]).

Consequently, by Lemma 2.3, we obtain

V (t, x(t)) ≤V (t0, x(t0))e
∫ t
t0
π1(D0[u(s),0̂])+

h′(s)
h(s)

)ds

+

∫ t

t0

e
∫ t
s
π1(D0[u(τ),0̂])+

h′(τ)
h(τ)

)dτh(s)π2(D0[u(s), 0̂])ds

− δh(t)

∫ t

t0

e
∫ t
s
π1(D0[u(τ),0̂]))dτ

h′(s) + h(s)π1(D0[u(s), 0̂])

h2(s)
ds

≤V (t0, x(t0))h(t)h−1(t0)e
∫ t
t0
π1(D0[u(s),0̂])

+ e
∫ t
t0
π1(D0[u(τ),0̂])dτ

∫ t

t0

h(t)

h(s)
h(s)π2(D0[u(s), 0̂])ds

− δh(t)

∫ t

t0

e−
∫ s
t
π1(D0[u(τ),0̂]))dτ

h′(s) + h(s)π1(D0[u(s), 0̂])

h2(s)
ds

≤(α2(D0[x(t0), 0̂]) + δ)h(t)h−1(t0)e
∫ t
t0
π(D0[u(s),0̂])

+ ‖h‖∞e
∫ t
t0
π(D0[u(τ),0̂])dτ

∫ t

t0

π(D0[u(s), 0̂])ds

+ δh(t)

∫ t

t0

[
− e−

∫ s
t
π1(D0[u(τ),0̂]))dτ

h(s)

]′
ds

≤α2(D0[x(t0), 0̂])h(t)h−1(t0)e
∫ t
t0
π(D0[u(s),0̂])

+ ‖h‖∞e
∫ t
t0
π(D0[u(τ),0̂])dτ

∫ t

t0

π(D0[u(s), 0̂])ds+ δ

where π = π1∨π2. Letting θ1 = α2(D0[x(t0), 0̂])h(t)h−1(t0) and θ2 =

∫ t

t0

π(D0[u(τ), 0̂])dτ .

By using the inequality ∀ z1, z2 ∈ R+, z1e
z2 = z1+z1(ez2−1) ≤ z1+ 1

2z
2
1 + 1

2 (ez2−
1)2 we obtain V (t, x(t)) ≤ ξ1(θ1) + ξ2(θ2) + δ, ∀ t ≥ t0 with ξ1(r) = r+ r2

2 ∈ K∞ and
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ξ2(r) = 1
2 (er − 1)2 + ‖h‖∞rer ∈ K∞. By condition i), we have

α1(D0[x(t), 0̂]) ≤V (t, x(t),

≤ξ1(θ1) + ξ2(θ2)) + δ,

≤α2(D0[x(t0), 0̂])h(t)h−1(t0) +
1

2
α2
2(D0[x(t0), 0̂])h2(t)h−2(t0)

+ ξ2(

∫ t

t0

π(D0[u(τ), 0̂])dτ)) + δ,

≤
[
α2(D0[x(t0), 0̂]) +

‖h‖∞
2h(t0)

α2
2(D0[x(t0), 0̂])

]
h(t)h−1(t0)

+ ξ2(

∫ t

t0

π(D0[u(τ), 0̂])dτ)) + δ,

≤max{1, ‖h‖∞
h(t0)

}
[
α2(D0[x(t0), 0̂]) +

1

2
α2
2(D0[x(t0), 0̂])

]
h(t)h−1(t0)

+ ξ2(

∫ t

t0

π(D0[u(τ), 0̂])dτ)) + δ,

:= K(t0)ξ1(D0[x(t0), 0̂])h(t)h−1(t0) + ξ2(

∫ t

t0

π(D0[u(τ), 0̂])dτ)) + δ,

where K(t0) = ‖h‖∞
h(t0)

= max{1, ‖h‖∞h(t0)
} ≥ 1. By Lemma 2.5, we get

D0[x(t), 0̂] ≤α−11

(
2K(t0)ξ1(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11

(
4ξ2(

∫ t

t0

π(D0[u(τ), 0̂])dτ))
)

+ α−11 (4δ).

Then, the non-linear time-varying fuzzy system (2) is generalized integral input-to-
state practical h−stable. �

Remark 3.3. In Theorem 3.5, if δ = 0, we obtain sufficient conditions to ensure the
generalized integral input-to-state h−stability of the non-linear time-varying fuzzy
system (2).

A similar result of generalized integral input-to-state practical h−stability is ob-
tained using the notion of h−stable functions.

Corollary 3.6. Suppose there exists a Lyapunov-Like function V (t, x) ∈ C(R+ ×
En,R+), δ ∈ R+, two class K∞ functions α1, α2 and a scalar function µ ∈ PC[R+,R]
satisfying the following properties :

i): α1(D0[x, 0̂]) ≤ V (t, x) ≤ α2(D0[x, 0̂]) + δ, (t, x) ∈ R+ × En,

ii): D+V(2)(t, x(t)) ≤
(
µ(t)+π1(D0[u(t), 0̂])

)
(V (t, x(t))−δ)+e

∫ t
0
µ(s)dsπ2(D0[u(t), 0̂]),

t ∈ R+.
If the scalar function µ is h−stable, then the non-linear time-varying fuzzy system (2)
is generalized integral input-to-state practically h−stable.
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Proof. Let consider the function ~(t) = e
∫ t
0
µ(s)ds. It’s easy too see that condition ii)

of Corollary 3.6 becomes

D+V(2)(t, x(t)) ≤
(~′(t)
~(t)

+π1(D0[u(t), 0̂])
)

(V (t, x(t))−δ)+~(t)π2(D0[u(t), 0̂]), t ∈ R+.

Based on the proof of Theorem 3.5, we get

V (t, x(t)) ≤V (t0, x(t0))e
∫ t
t0
π1(D0[u(s),0̂])+

~′(s)
~(s)

)ds

+

∫ t

t0

e
∫ t
s
π1(D0[u(τ),0̂])+

~′(τ)
~(τ)

)dτ~(s)π2(D0[u(s), 0̂])ds

− δ~(t)

∫ t

t0

e
∫ t
s
π1(D0[u(τ),0̂]))dτ

~′(s) + ~(s)π1(D0[u(s), 0̂])

~2(s)
ds

≤α2(D0[x(t0), 0̂])~(t)~−1(t0)e
∫ t
t0
π(D0[u(s),0̂])

+ ~(t)e
∫ t
t0
π(D0[u(τ),0̂])dτ

∫ t

t0

π(D0[u(s), 0̂])ds+ δ

where π = π1 ∨ π2. If the function µ is h−stable, then

~(t)~−1(t0) = e
∫ t
t0
µ(s)ds ≤ h(t)h−1(t0)eζ(t0) and ~(t) = e

∫ t
0
µ(s)ds ≤ h(t)h−1(0)eζ(0).

Consequently, we obtain

V (t, x(t)) ≤α2(D0[x(t0), 0̂])h(t)h−1(t0)eζ(t0)e
∫ t
t0
π(D0[u(s),0̂])

+ h(t)h−1(0)eζ(0)e
∫ t
t0
π(D0[u(τ),0̂])dτ

∫ t

t0

π(D0[u(s), 0̂])ds+ δ

≤α2(D0[x(t0), 0̂])h(t)h−1(t0)eζ(t0)e
∫ t
t0
π(D0[u(s),0̂])

+ ‖h‖∞h−1(0)eζ(0)e
∫ t
t0
π(D0[u(τ),0̂])dτ

∫ t

t0

π(D0[u(s), 0̂])ds+ δ

If we take, θ1 = α2(D0[x(t0), 0̂])h(t)h−1(t0)eζ(t0) and θ2 =

∫ t

t0

π(D0[u(τ), 0̂])dτ then,

as in the proof of Theorem 3.5, we get

V (t, x(t)) ≤ ψ1(θ1) + ψ2(θ2) + δ, ∀ t ≥ t0
with

ψ1(r) = r +
r2

2
∈ K∞ and ψ2(r) =

1

2
(er − 1)2 +

‖h‖∞
h(0)

eζ(0)rer ∈ K∞.

Finally, the solution of system (2) satisfies

D0[x(t), 0̂] ≤α−11

(
2ψ1(θ1)

)
+ α−11

(
4ψ2(θ2)

)
+ α−11 (4δ)

≤α−11

(
2K(t0)ψ1(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11

(
4ψ2(

∫ t

t0

π(D0[u(τ), 0̂])dτ))
)

+ α−11 (4δ)

where K(t0) = max{eζ(t0), ‖h‖∞e
2ζ(t0)

h(t0)
}. Then the non-linear time-varying fuzzy sys-

tem (2) is generalized integral input-to-state practically h−stable. �
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As for generalized integral input-to-state uniform practical h−stability, we have
this result given by the following Theorem.

Theorem 3.7. Suppose there are a Lyapunov-Like function V (t, x) ∈ C(R+×En,R+),
δ ∈ R+, two class K∞ functions α1, α2 and a class K function π satisfying the fol-
lowing properties :

i): α1(D0[x, 0̂]) ≤ V (t, x) ≤ α2(D0[x, 0̂]) + δ, (t, x) ∈ R+ × En,

ii): D+V(2)(t, x(t)) ≤
(
h′(t)
h(t) − π(D0[u(t), 0̂])

)(
V (t, x(t))− δ

)
+ h(t)π(D0[u(t), 0̂]),

t ∈ R+.
Then, the non-linear time-varying fuzzy system (2) is generalized integral input-to-
state uniformly practically h−stable.

Proof. Let x(t) = x(t, t0, x0) be the solution of system (2) through (t0, x0) ∈ R+×En.
By condition ii), we have

D+V(2)(t, x(t)) ≤ ϕ(t, x(t)), t ∈ R+

where

ϕ(t, z) =
(h′(t)
h(t)

− π(D0[u(t), 0̂])
)(
z − δ

)
+ h(t)π(D0[u(t), 0̂])

:=p(t)z + q(t)

with

p(t) =
h′(t)

h(t)
− π(D0[u(t), 0̂]), q(t) = −δ

(h′(t)
h(t)

− π(D0[u(t), 0̂])
)

+ h(t)π(D0[u(t), 0̂]).

Using the same techniques of the proof of Theorem 3.5, we obtain

V (t, x(t)) ≤α2(D0[x(t0), 0̂])h(t)h−1(t0)e
−

∫ t
t0
π(D0[u(s),0̂])

+ ‖h‖∞
∫ t

t0

e−
∫ t
s
π(D0[u(τ),0̂])dτπ(D0[u(s), 0̂])ds+ δ

≤α2(D0[x(t0), 0̂])h(t)h−1(t0) + ‖h‖∞
∫ t

t0

π(D0[u(s), 0̂])ds+ δ.

Then, by using condition i) and Lemma 2.5, we obtain, for all t ≥ t0 and x(t0) ∈ En,

D0[x(t), 0̂] ≤α−11

(
2α2(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11

(
4‖h‖∞

∫ t

t0

π(D0[u(s), 0̂])ds
)

+ α−11 (4δ).

Consequently, the system (2) is generalized integral input-to-state uniformly practi-
cally h−stable. �

Using the notion of h−stable functions, we have the following result.

Corollary 3.8. Suppose there exists a Lyapunov-Like function V (t, x) ∈ C(R+ ×
En,R+), δ ∈ R+, two class K∞ functions α1, α2, a class K function π and a scalar
function µ ∈ PC[R+,R] satisfying the following properties :

i): α1(D0[x, 0̂]) ≤ V (t, x) ≤ α2(D0[x, 0̂]) + δ, (t, x) ∈ R+ × En,

ii): D+V(2)(t, x(t)) ≤
(
µ(t)−π(D0[u(t), 0̂])

)
(V (t, x(t))−δ)+e

∫ t
0
µ(s)dsπ(D0[u(t), 0̂]),

t ∈ R+.
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If the scalar function µ is uniformly h−stable, then the non-linear time-varying fuzzy
system (2) is generalized integral input-to-state uniformly practically h−stable.

Proof. Let us consider the function ~(t) = e
∫ t
0
µ(s)ds. The proof is similar to that of

Theorem 3.7. More precisely, after having followed the same steps of calculating of
the proof of theorem 3.7, we obtain

V (t, x(t)) ≤α2(D0[x(t0), 0̂])~(t)~−1(t0)e
−

∫ t
t0
π(D0[u(τ),0̂])dτ

+ ~(t)

∫ t

t0

e−
∫ t
s
π(D0[u(τ),0̂])dτπ(D0[u(s), 0̂])ds+ δ

=α2(D0[x(t0), 0̂])e
∫ t
t0
µ(s)ds

e
−

∫ t
t0
π(D0[u(τ),0̂])dτ

+ e
∫ t
0
µ(s)ds

∫ t

t0

e−
∫ t
s
π(D0[u(τ),0̂])dτπ(D0[u(s), 0̂])ds+ δ

≤α2(D0[x(t0), 0̂])e
∫ t
t0
µ(s)ds

+ e
∫ t
0
µ(s)ds

∫ t

t0

π(D0[u(s), 0̂])ds+ δ.

If the function µ is uniformly h−stable, then by Proposition 2.2, we get

V (t, x(t)) ≤ α2(D0[x(t0), 0̂])h(t)h−1(t0)eξ + h(t)h−1(0)eξ
∫ t

t0

π(D0[u(s), 0̂])ds+ δ.

By condition i) and Lemma 2.5, we obtain

D0[x(t), 0̂] ≤α−11

(
2eξα2(D0[x(t0), 0̂])h(t)h−1(t0)

)
+ α−11

(
4
‖h‖∞
h(0)

eξ
∫ t

t0

π(D0[u(s), 0̂])ds
)

+ α−11

(
4δ
)
.

Then, the non-linear time-varying fuzzy system (2) is generalized integral input-
to-state uniformly practically h−stable. �

4. Conclusion

A new concept of practical h−stability of fuzzy differential equations have been in-
vestigated in this work. Lyapunov stability of fuzzy differential equations have been
obtained by using lyapunov-like functions. This concept include generalized practical
h−stability, practical input-to-state practical h−stability and integral input-to-state
practical h−stability. The stability analysis is also achieved with the help of the
comparison principle and the concept of scalar h−stable functions.
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