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Abstract. This paper focuses on the investigation of bifurcation phenomena in a polyhar-
monic semilinear problem, considering both the Dirichlet and Navier boundary conditions. We

explore the existence and uniqueness of positive solutions, as well as the presence of critical

values and the uniqueness of extremal solutions. Additionally, we address various bifurcation
scenarios that arise in a class of elliptic problems, and we establish the asymptotic behavior

of the solution in the vicinity of the bifurcation point.
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1. Introduction and main results

Many problems of mechanics were described by polyharmonic equations [10]. More-
over, the areas of physics and geometry where such operators occur, include the
study of the Kirchhoff plate equation in the theory of elasticity, and the study of the
Paneitz-Branson operator in conformal geometry, see [10]. Inverse spectral problems
for a potential perturbation of the polyharmonic operator were studied in [13].

The polyharmonic operator (−∆)m is the prototype of an elliptic operator of order
2m. A general theory for boundary value problems for linear elliptic operators of
order 2m was developed by Agmon-Douglis-Nirenberg in [3, 4] and Berchio-Gazzola
in [6].

Although the material is quite technical, it turns out that the Lp-theory can be de-
veloped to a large extent analogously to second order equations. As long as existence,
regularity and stability results are concerned, the theory of semi-linear higher order
problems is already quite well developed. This is no longer true as soon as qualitative
properties of the solution related to the bifurcation problems are investigated.

Shang and Wang have studied in [17] the following polyharmonic problem{
(−∆)mu = λα(x)|u|q−2u+ β(x)|u|m∗−2u, x ∈ Ω,
u ∈ Hm

0 (Ω),
(1)

where Ω is a bounded domain in Rn with n ≥ 2m + 1, 1 < q < 2, λ > 0 and

m∗ =
2n

n− 2m
is the critical Sobolev exponent. The functions α, β are continuous

on Ω which are somewhere positive but which may change sign on Ω. By extracting
the Palais-Smale sequence in the Nehari manifold, the authors showed the existence
of multiple nontrivial solutions to problem (1). In the case α, β ≡ 1 and q = 2,
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some authors have showed the existence and nonexistence of nontrivial solutions for
the polyharmonic problem (1). In particular, when m = 1 and n ≥ 4, Brezis and
Nirenberg have discovered [8] a remarkable phenomenon: There exists a positive

solution to (1) if and only if λ ∈ (0, λ
(1)
1 ) and there is no positive solution if λ ≥ λ(1)

1 ,

where λ
(m)
1 denote the first eigenvalue of (−∆)m in Hm

0 (Ω). In [9, 10, 16], the authors
showed, for m = 2 and n ≥ 8, that the biharmonic problem (1) possesses at least

one nontrivial solution if λ ∈ (0, λ
(2)
1 ). For existence and nonexistence of nontrivial

solutions for the general polyharmonic problems with critical growth and linear or
superlinear perturbation, peoples can refer the papers [9, 10, 11, 16].

Various authors have studied the existence of weak solutions for the bifurcation
problem  −∆u = λ f(u) in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(2)

where Ω is a bounded open subset of Rn, n ≥ 2. Mironescu and Rǎdulescu in [15],
Martel in [14] have proved that there exists 0 < λ∗ < ∞, a critical value of the
parameter λ, such that (2) has a minimal, positive, classical solution uλ for 0 < λ < λ∗

and does not have a weak solution for λ > λ∗. Abid et al. generalized in [2] the same
result for the bi-Laplace operator, and Abid in [1] discussed the existence, uniqueness,
and stability of a positive solution. He also proved the existence of a critical value and
the uniqueness of extremal solutions for a class of parametric fractional Schrödinger
equations.

In this paper, we are interested in the following perturbed polyharmonic equation
for m ≥ 2

(Pλ) : (−∆)mu−∇m−1(θ(x)∇m−1u) = λf(u), u > 0 in Ω,

with the Dirichlet boundary conditions

u =
∂u

∂ν
= · · · = ∂m−1u

∂νm−1
= 0 on ∂Ω, (3)

or with the Navier boundary conditions

u = ∆u = · · · = ∆m−1u = 0 on ∂Ω, (4)

where Ω is a smooth bounded domain in Rn, n ≥ 2 and λ > 0 is a parameter.
Let f ∈ C0,ν(Ω) and θ ∈ C0,ν(Ω), 0 < ν < 1 fulfill the hypotheses

(A1) f is positive, nondecreasing and convex on (0,+∞).

(A2) lim
t→+∞

f(t)

t
= a ∈ (0,∞).

(A3) There exist two positive constant c1, c2 > 0 such that c1 ≤ θ(x) ≤ c2.

The objective of this study is to explore the critical polyharmonic equation’s be-
havior under either Dirichlet or Navier boundary conditions. To accomplish this,
we employ the Maximum Principle, which guarantees the desired outcome under the
condition: There exists ε = ε(n,Ω) such that

‖θ‖∞ < ε,

for more detail, see [10, Theorem 5.19].
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The function spaces Σm(Ω) are defined for polyharmonic problems, which involve
higher-order elliptic equations. These spaces are used to specify the boundary con-
ditions for the problems. There are two types of boundary conditions considered:
Dirichlet and Navier. In the Dirichlet boundary condition, the function space is de-
fined as:

Σm(Ω) = Hm(Ω) ∩H1
0 (Ω)

and in the Navier boundary condition, the function space is defined as:

Σm(Ω) = {ϕ ∈ Hm(Ω) /ϕ = ∆ϕ = · · · = ∆m−1ϕ = 0 on ∂Ω}
These spaces are used to define the problem and ensure that the solutions satisfy the
required boundary conditions.

Given the involvement of multiple orders of differentiation, various equivalent
norms are applicable within these function spaces. The selection of the norm re-
lies heavily on ‖ · ‖2, which represents the L2(Ω)-norm. Additionally, we denote ‖ · ‖
as the Σm-norm, which is defined by

‖u‖ =
(∫

Ω

|Dmu|2
) 1

2

,

where

Dm =

{
∇∆

m−1
2 if m is odd,

∆
m
2 if m is even.

Let us begin by defining weak solutions for problem (Pλ).

Definition 1.1. A function u ∈ Σm(Ω), is a weak solution of problem (Pλ) if∫
Ω

Dmu ·Dmϕ+

∫
Ω

θ(x)∇m−1u∇m−1ϕ = λ

∫
Ω

f(u)ϕ (5)

for all ϕ ∈ Cm(Ω) ∩ Σm(Ω).

These solutions are commonly referred to as weak energy solutions. For brevity,
we will simply refer to them as solutions, assured by the following lemma.

Lemma 1.1. Since f(t) ≤ at + f(0), if u ∈ Σm(Ω) is a weak solution of (Pλ), it is
easily seen by a standard bootstrap argument that u is always a classical solution.

For more details, see [10, Proposition 7.15]. In the rest of this article, we denote
by a solution of (Pλ) any weak or classical solution.

A weak super-solution (resp. sub-solution) is a function that verifies (5) with
equality replaced by ≥ (resp. ≤) for every nonnegative test function.

Let ϕ1 be a positive eigenfunction (see [10, section 3.1.3]) associated with the first
eigenvalue λ1 of the operator (−∆)m −∇m−1(θ(x)∇m−1), namely (−∆)mϕ1 −∇m−1(θ(x)∇m−1ϕ1) = λ1ϕ1 in Ω,

ϕ1 > 0 in Ω,
‖ϕ1‖2 = 1,

(6)

with the Dirichlet boundary conditions

ϕ1 =
∂ϕ1

∂ν
= · · · = ∂m−1ϕ1

∂νm−1
= 0 on ∂Ω,

or with the Navier boundary conditions

ϕ1 = ∆ϕ1 = · · · = ∆m−1ϕ1 = 0 on ∂Ω.
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A solution u of problem (Pλ) is stable if and only if the first eigenvalue µ1(λ, u) of
the linearized operator

v 7→ Lλ(v) := (−∆)mv −∇m−1(θ(x)∇m−1u)v − λf ′(u)v,

given by

µ1(λ, u) := inf
ϕ∈Σm(Ω)−{0}

∫
Ω

|Dmϕ|2 +

∫
Ω

θ(x)|∇m−1ϕ|2 − λ
∫

Ω

f ′(u)ϕ2

‖ϕ‖22
,

is nonnegative. In other words,

λ

∫
Ω

f ′(u)ϕ2 ≤
∫

Ω

|Dmϕ|2 +

∫
Ω

θ(x)|∇m−1ϕ|2, for anyϕ ∈ Σm(Ω). (7)

If µ1(λ, u) < 0, the solution u is said to be unstable.
Next, we define:
• Λ := {λ > 0 : (Pλ) admits a solution }.
• λ∗ := sup Λ ≤ +∞.
• r as the infimum of the function f(t)/t for t > 0, denoted as

r := inf
t>0

f(t)

t
.

The values of a and r defined earlier play a crucial role in understanding the
bifurcation phenomena. Specifically, there exists a finite positive number λ∗, (λ1/a ≤
λ∗ ≤ λ1/r), referred to as the extremal value. For 0 < λ < λ∗, problem λ > λ∗

possesses at least one positive solution. However, for λ > λ∗, no solution exists, even
in the weak sense.

Our first main result establishes the existence of the critical value λ∗.

Theorem 1.2. Under the assumptions (A1), (A2) and (A3) there exists a critical
value λ∗ ∈ (0,∞) such that the following properties hold:

(i) For any λ ∈ (0, λ∗), problem (Pλ) has a minimal solution uλ, which is the unique
stable solution of (Pλ).

(ii) λ1/a ≤ λ∗ and for any λ ∈ (0, λ1/a), uλ is the unique solution of problem (Pλ).
(iii) For evry x ∈ Ω, the function λ 7−→ uλ(x) is a increasing.
(iv) If λ = λ∗, the problem (Pλ) has a solution, then u∗ := limλ→λ∗ uλ is a stable

solution. In particular, µ1(s, λ∗, u∗) = 0.

The next natural focus of our study provides us with more detailed information
regarding λ∗.

An essential role in our arguments will be played by

l := lim
t→+∞

(
f(t)− at

)
.

We classify two distinct situations that heavily depend on the sign of the parameter
l.

Theorem 1.3. Under the assumptions (A1), (A2) and (A3), let us consider the case
where l ≥ 0. Then
(i) λ∗ = λ1/a.

(ii) The problem (Pλ) has no solution.
(iii) lim

λ→λ∗
uλ =∞ uniformly on compact subsets of Ω.
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Theorem 1.4. Under the hypotheses (A1), (A2), and (A3), consider the case where
l < 0. Then
(i) The critical value λ∗ belongs to the interval (λ1/a, λ1/r).

(ii) For λ = λ∗, the problem (Pλ) has a unique solution u∗.
(iii) The problem (Pλ) has an unstable solution vλ for any λ ∈ (λ1/a, λ

∗) and the
sequence (vλ)λ satisfies:

(a) lim
λ→λ1/a

vλ =∞ uniformly on compact subsets of Ω,

(b) lim
λ→λ∗

vλ = u∗ uniformly in Ω.

This paper is organized as follows: In the next section, we present the proof of
Theorem 1.2 which focuses on the existence of ”minimal” solutions. We demonstrate
there exists a limiting parameter λ∗ such that one has the existence of stable and
regular minimal solutions to (Pλ) for λ in the interval (0, λ∗). Furthermore, we
establish that for λ > λ∗, not even singular solutions exist. In Sections 3 and 4,
we delve into the proofs of Theorems 1.3 and 1.4, respectively. In these sections,
we address bifurcation problems for a class of elliptic problems and examine the
asymptotic behavior of the solution around the bifurcation point.

2. Proof of Theorem 1.2

We begin by establishing the following preliminary lemma.

Lemma 2.1. Problem (Pλ) has no solution for any λ > λ1/r, but has at least one
solution provided λ is positive and small enough.

Proof. We begin by proving that (Pλ) has a solution for small λ using the barrier
method. Since f(0) > 0, w ≡ 0 is a strict sub-solution of (Pλ) for every λ > 0. Let
w ∈ Σm(Ω) be the solution of

(−∆)mw −∇m−1(θ(x)∇m−1w) = 1 in Ω,

is a bounded super-solution of (Pλ) for small λ, precisely when λ < 1/f(‖w‖∞).
Next, we define a sequence wn ∈ Σm(Ω) by

(−∆)mwn+1 −∇m−1(θ(x)∇m−1wn+1) = λf(wn) in Ω. (8)

By the maximum principle (see [10]) we have

w ≤ wn ≤ wn+1 ≤ w for all n ∈ N,
implying that the sequence (wn)n≥0 is increasing and bounded. Therefore, it con-
verges, and we conclude that problem (Pλ) has a solution for small λ.

Next, we prove that there is no weak solution for large λ > 0.
Assume that u is a solution of (Pλ) for some λ > 0. Using ϕ1 given in (6) as a test

function and integrating by parts, we obtain

λ1

∫
Ω

ϕ1u =

∫
Ω

(−∆)mϕ1u−
∫

Ω

∇m−1(θ(x)∇m−1ϕ1)u

=

∫
Ω

(−∆)muϕ1 −
∫

Ω

∇m−1(θ(x)∇m−1u)ϕ1

= λ

∫
Ω

f(u)ϕ1 ≥ λr
∫

Ω

uϕ1,
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From this, we can deduce the inequality

(λ1 − λr)
∫

Ω

ϕ1u ≥ 0.

Since ϕ1 > 0 and u > 0, it follows that the parameter λ must belong to the interval
(0, λ1/r). This completes our proof. �

It follows from the previous analysis that λ∗ is a real number. We now state another
useful result as follows

Lemma 2.2. Assume that (Pλ) has a solution for some λ ∈ (0, λ∗). then there exists
a minimal solution denoted by uλ. Moreover, for any λ′ ∈ (0, λ) the problem (Pλ′) is
resolvable.

Proof. Let λ ∈ (0, λ∗) and consider u be a solution of (Pλ). Using the barrier method,
we can construct a sequence (wn)n≥0 defined in (8),which is increasing and bounded
by u. Thus, the sequence converges to a solution uλ, which is independent of the
choice of u and therefore represents a minimal solution.

Furthermore, if u is a solution of (Pλ), it also serves as a super-solution for the
problem (Pλ′) for any λ′ ∈ (0, λ). Similarly, 0 can be used as a sub-solution. This
completes the proof. �

Remark 2.1. Thanks to Lemmas 2.1 and 2.2, the set Λ is a non-empty bounded
interval.

By combining Lemmas 2.1 and 2.2, we are able to establish the Theorem 1.2, which
provides important insights into the minimal solution uλ and its stability.

2.1. Proof of (i). First, we claim that uλ is stable. Let’s assume the contrary, i.e.,
suppose that the first eigenvalue µ1(λ, uλ) is negative. This implies the existence of
a positive eigenfunction ψ ∈ Σm(Ω) such that

(−∆)mψ −∇m−1(θ(x)∇m−1ψ)− λf ′(uλ)ψ = µ1ψ in Ω.

Now consider the function uε := uλ − εψ. By linearity, we have

(−∆)muε −∇m−1(θ(x)∇m−1uε)− λf(uε)

= (−∆)muλ − ε(−∆)mψ −∇m−1(θ(x)∇m−1uλ) + ε∇m−1(θ(x)∇m−1ψ)− λf(uε)

= λf(uλ)− ε(λf ′(uλ)ψ + µ1ψ)− λf(uλ − εψ)

= λ
(
− f(uλ − εψ) + f(uλ)− εf ′(uλ)ψ

)
− εµ1ψ

= λoε(εψ)− εµ1ψ

= εψ(λoε(1)− µ1).

Since µ1(λ, uλ) < 0, for ε > 0 sufficiently small, we have

(−∆)muε −∇m−1(θ(x)∇m−1uε)− λf(uε) ≥ 0 in Ω.

Applying the strong maximum principle, we conclude that uε ≥ 0 is a super-solution
of (Pλ). However, since uε < uλ, this contradicts the minimality of uλ. Therefore, uλ
must be stable.

We now aim to show that (Pλ) has at most one stable solution. Let’s assume the
existence of another stable solution v 6= uλ of problem (Pλ). Consider the fonction
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w := v−uλ. By maximum principle, we have w > 0 in Ω. Taking w as a test function
in (7), we obtain

λ

∫
Ω

f ′(v)w2 ≤
∫

Ω

|Dmw|2 +

∫
Ω

θ(x)|∇m−1w|2

≤
∫

Ω

Dmw.Dmw −
∫

Ω

θ(x)∇m−1w.∇m−1w

≤
∫

Ω

(−∆)mww −
∫

Ω

∇m−1(θ(x)∇m−1w)w

≤
∫

Ω

[
(−∆)mv −∇m−1(θ(x)∇m−1v)

]
w

−
∫

Ω

[
(−∆)muλ +∇m−1(θ(x)∇m−1uλ)

]
w

≤ λ
∫

Ω

[
f(v)− f(uλ)

]
w.

Therefore ∫
Ω

[
f(v)− f(uλ)− f ′(v)(v − uλ)

]
w ≥ 0.

Since f is convex, the term in the brackets is nonpositive, yielding

f(v)− f(uλ)− f ′(v)(v − uλ) = 0 in Ω.

This implies that f is affine over [uλ(x), v(x)] for any x ∈ Ω, and consequently, f is
affine in the interval [0,max

Ω
v]. Thus, there exists two real numbers α and β > 0 such

that

f(x) = αx+ β in [0,max
Ω

v].

Finally, since uλ and v are two solutions to (−∆)mw−∇m−1(θ(x)∇m−1w) = λαw+
λβ, we obtain

0 =

∫
Ω

(
uλ(−∆)m v − v (−∆)muλ

)
−
∫

Ω

(
uλ∇m−1(θ(x)∇m−1v)−∇m−1(θ(x)∇m−1uλ) v

)
= λβ

∫
Ω

(uλ − v).

This is impossible since λ > 0, β = f(0) > 0 and w = v− uλ is positive in Ω. Hence,
we conclude that (Pλ) has at most one stable solution. 2

2.2. Proof of (ii). Recall that λ1 is defined in (6). Using the convexity of f , we
deduce that a = supR+

f ′(t). Let u be a solution to (Pλ) for λ ∈ (0, λ1/a). Suppose

that u is unstable. Then, we can find ϕ = ϕ1 ∈ Σm(Ω) satisfying

λa

∫
Ω

v2
1 ≥ λ

∫
Ω

f ′(u)v2
1 >

∫
Ω

|Dmϕ1|2 +

∫
Ω

θ(x)|∇m−1ϕ1|2

=

∫
Ω

(−∆)mϕ1 ϕ1 −
∫

Ω

∇m−1(θ(x)∇m−1ϕ1) ϕ1 = λ1

∫
Ω

ϕ2
1,
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which implies that

(λa− λ1)

∫
Ω

ϕ2
1 > 0.

However, this is impossible for λ ∈ (0, λ1/a). Thus, we conclude that µ1(λ, u) ≥ 0.
By part (i), this implies the uniqueness of u.

To establish the existence of solutions, we observe that problem (Pλ) can be for-
mulated as the Euler-Lagrange equation of the functional Jλ : Σm(Ω) −→ R defined
by

J (u) :=
1

2

∫
Ω

|Dmu|2 +
1

2

∫
Ω

θ(x)|∇m−1u|2 − λ
∫

Ω

F (u),

for all u ∈ Σm(Ω) with

F (u) :=

∫ u

0

f(s+)ds and s+ := max (s, 0),

The functional Jλ is well-defined and Fréchet differentiable at u ∈ Σm(Ω), and its
derivative J ′λ(u)(ϕ) for ϕ ∈ Σm(Ω) is given by

J ′λ(u)(ϕ) =

∫
Ω

Dmu ·Dmϕ+

∫
Ω

θ(x)∇m−1u · ∇m−1ϕ− λ
∫

Ω

f(u)ϕ.

Therefore, critical points of Jλ correspond to weak solutions of (Pλ). In order to
find these critical points, we need to show that Jλ is well-defined, sequentially weakly
lower semicontinuous, coercive, and belongs to C1(Σm(Ω)).

If λ ∈ (0, λ1/a), there exist ε > 0 and A > 0 depending on λ such that

2λF (t) ≤ (λ1 − ε)t2 +A, ∀ t ∈ R.

Using standard arguments, we can conclude that Jλ(u) is coercive, bounded from
below and weakly lower semicontinuous in Σm(Ω). Hence, the minimum of Jλ is
attained by some function u ∈ Σm(Ω). Therefore, the critical point u of Jλ gives a
solution of (Pλ).

2.3. Proof of (iii). Using sub- and super-solution method, as described in Lemma
2.2 we can conclude that the mapping λ 7→ uλ is increasing. This establishes the
result stated in (iii). 2

2.4. Proof of (iv). Suppose that (Pλ∗) has a solution u. Then, for every λ ∈ (0, λ∗)
we have uλ ≤ u in Ω. Utilizing the monotonicity of uλ, we can define the function

u∗ = lim
λ→λ∗

uλ

which is well-defined in Ω and serves as a stable solution for problem (Pλ∗). Conse-
quently,we have µ1(λ∗, u∗) ≥ 0.

Now, let us consider the nonlinear operator

G : (0,+∞)× C2m,α(Ω) ∩ E −→ C0,α(Ω)
(λ, u) 7−→ (−∆)mu−∇m−1(θ(x)∇m−1u)− λf(u),
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where α ∈ (0, 1) and E is the function space defined as follows:

E =

 {u ∈W
2m,2(Ω) / u = ∂u

∂ν = · · · = ∂m−1u
∂νm−1 = 0 on ∂Ω} if we use (3)

{u ∈W 2m,2(Ω) / u = ∆u = · · · = ∆m−1u = 0 on ∂Ω} if we use (4)
(9)

Assuming that the first eigenvalue µ1(λ∗, u∗) is positive, we can apply the implicit
function theorem to the operator G. For any λ in a neighborhood of λ∗ and u in a
neighborhood of u∗, we have G(λ, u) = 0, which proves that the problem (Pλ) has a
solution for λ in a neighborhood of λ∗. However, this contradicts the definition of λ∗.
Hence, we conclude that µ1(λ∗, u∗) = 0, completing the proof of Theorem 1.2. 2

3. Proof of Theorem 1.3

Remark 3.1. Thanks to Lemma 2.1 and Theorem 1.2, the critical value λ∗ satisfies

λ1/a ≤ λ∗ ≤ λ1/r.

In order to prove this theorem, we will demonstrate the equivalence of the three
assertions and establish the validity of one of them. To aid us in this proof, we
will utilize the following auxiliary result, which is a reformulation of a theorem by
Hörmander [12].

Lemma 3.1. Let Ω be an open bounded subset of Rn, n ≥ 2 with smooth boundary.
Let (un) be a sequence of super-harmonic nonnegative functions defined on Ω. Then
the following alternatives hold:
(i) Either limn→∞ un =∞ uniformly on compact subsets of Ω,

or
(ii) (un) contains a subsequence which converges in L1

loc(Ω) to some function u.

Remark 3.2. The result by Hörmander is also true if (un) is a sequence of a super-
biharmonic nonnegative functions.

3.1. Proof (i)⇒(ii). First, let us assume by contradiction that λ∗ = λ1

a . If (Pλ∗) has
a solution u∗, then according to observation (iv) in Theorem 1.2 we have µ1(λ∗, u∗) =
0. This implies the existence of ψ ∈ H2m(Ω) satisfying:

(−∆)mψ −∇m−1(θ(x)∇m−1ψ)− λ∗f ′(u∗)ψ = 0 in Ω

ψ > 0 in Ω,

subject Dirichlet boundary conditions (3) or Navier bounday conditions (4). By using
ϕ1, given in (6), as a test function and integrating by parts, we obtain∫

Ω

(
(−∆)mϕ1 −∇m−1(θ(x)∇m−1ϕ1)

)
ψ − λ∗

∫
Ω

f ′(u∗)ψϕ1 = 0,

which leads to ∫
Ω

(
λ1 − λ∗f ′(u∗)

)
ψϕ1 = 0.

Since ϕ1 > 0, ψ > 0, λ∗ = λ1

a and a = supt>0 f
′(t), we have λ1 − λ∗f ′(u∗) ≥ 0. This

equation implies λ1 − λ∗f ′(u∗) = 0. Consequently,

f ′(u∗) ≡ a in Ω.
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This implies that f(t) = at+ b in [0,max
Ω

u∗] for some scalar b > 0. However, there is

no positive function in Ω satisfying

(−∆)mu−∇m−1(θ(x)∇m−1u) = λ∗au+ λ∗b in Ω.

To see this, suppose such a function exists. Using ϕ1 as a test function and inte-
grating by parts, we have∫

Ω

(−∆)mu ϕ1 −
∫

Ω

∇m−1(θ(x)∇m−1u) ϕ1 = λ∗a

∫
Ω

u ϕ1 + λ∗b

∫
Ω

ϕ1

which simplifies to∫
Ω

(
(−∆)mϕ1 −∇m−1(θ(x)∇m−1ϕ1)

)
u = λ1

∫
Ω

u ϕ1 + λ∗b

∫
Ω

ϕ1

This implies

0 = λ∗b

∫
Ω

ϕ1,

which is impossible. Therefore, problem (Pλ∗) has no solution and (i) implies (ii).2

3.2. Proof. (ii)⇒(iii). Let us assume that (ii) occurs and we aim to prove that
lim
λ→λ∗

uλ =∞ uniformly on compact subsets of Ω. By contradiction, suppose that (iii)

does not hold. According to Lemma 3.1 and considering a subsequence if necessary,
we have (uλ) converging locally in L1(Ω) to u∗ as λ→ λ∗.

Now, we utilize the following result:

Lemma 3.2. The minimal solution uλ of the problem (Pλ) is bounded in L2(Ω).

Proof. Assume that uλ is not bounded in L2(Ω). We can define

uλ := lλwλ,

where

‖wλ‖2 = 1 and lλ → +∞ as λ→ λ∗.

Since f(t) ≤ at+ f(0), we have∫
Ω

|Dmwλ|2 ≤
∫

Ω

|Dmwλ|2 +

∫
Ω

θ(x)|∇m−1wλ|2

=

∫
Ω

(−∆)mwλ wλ −
∫

Ω

∇m−1(θ(x)∇m−1wλ) wλ =

∫
Ω

λf(uλ)

lλ
wλ

≤ λ∗
∫

Ω

(
aw2

λ +
f(0)

lλ
wλ

)
≤ λ∗a+ cλ

∫
Ω

wλ

≤ λ∗a+ cλ
√
|Ω|,

where cλ is a positive constant independent of λ.

Recalling that wλ satisfies (−∆)mwλ − ∇m−1(θ(x)∇m−1wλ) =
λf(lλwλ)

lλ
and f

is quasilinear, we can deduce that (wλ) is bounded in H2m(Ω). Hence, by taking a
subsequence, we have

wλ → w weakly in H2m(Ω) and wλ → w in strongly in H2m−1(Ω) as λ→ λ∗.
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Moreover, by the trace Theorem, we obtain

w =
∂w

∂ν
= · · · = ∂m−1w

∂νm−1
= 0 on ∂Ω,

w = ∆w = · · · = ∆m−1w = 0 on ∂Ω.

Consequently,

(−∆)mwλ −∇m−1(θ(x)∇m−1wλ) =
λf(uλ)

lλ
→ 0 in L1

loc(Ω) as λ→ λ∗.

This implies that (−∆)mw − ∇m−1(θ(x)∇m−1w) = 0 in D′(Ω). By applying the
boundary conditions, we deduce that w ≡ 0 in Ω. However, this contradicts the fact
that ‖w‖2 = limλ→λ∗ ‖wλ‖2 = 1. Hence, the proof of the lemma is complete. �

Consequently, (uλ) is bounded in L2(Ω) and by employing similar arguments as
above, it is also bounded in H2m(Ω). Thus, we can conclude that, up to a subsequence,

uλ → u weakly in H2m(Ω) and uλ → u in strongly in H2m−1(Ω) as λ→ λ∗.

Moreover, we have

(−∆)mu−∇m−1(θ(x)∇m−1u) = λ∗f(u) in Ω.

However, this is impossible based on the hypothesis (ii). Hence, we can conclude that
(ii) implies (iii). Moreover, this demonstrates that (ii) and (iii) are equivalent.

However, this is impossible based on the hypothesis (ii). Hence, we can conclude
that (ii) implies (iii). Moreover, this demonstrates that (ii) and (iii) are equivalent.

3.3. Proof. (iii)⇒(i). Assume that (Pλ∗) has a solution u∗, and consider the se-
quence (uλ) converges to u∗ as λ. If limλ→λ∗ uλ = ∞, then the sequence cannot
converge to u∗. Hence, we can conclude that (iii) implies (i).

Suppose both (ii) and (iii) occur. We have limλ→λ∗ ‖uλ‖2 =∞. Let us write

uλ = lλwλ with ‖wλ‖2 = 1,

and consider a subsequence such that

wλ ⇀ w weakly in H2m(Ω) and wλ → w strongly in H2m−1(Ω) as λ→ λ∗.

We also have,

λ

lλ
f(lλwλ)→ λ∗aw in L2(Ω) as λ→ λ∗.

(−∆)mwλ −∇m−1(θ(x)∇m−1wλ)→ (−∆)mw −∇m−1(θ(x)∇m−1w) in D′(Ω)

as λ→ λ∗, and then

(−∆)mw −∇m−1(θ(x)∇m−1w) = λ∗aw in Ω,

w =
∂w

∂ν
= · · · = ∂m−1w

∂νm−1
= 0 on ∂Ω,

or

w = ∆w = · · · = ∆m−1w = 0 on ∂Ω.
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By multiplying by ϕ1, as defined in (6), we obtain∫
Ω

λ∗awϕ1 =

∫
Ω

(−∆)mwϕ1 −
∫

Ω

∇m−1(θ(x)∇m−1w)ϕ1

=

∫
Ω

(−∆)mϕ1w −
∫

Ω

∇m−1(θ(x)∇m−1ϕ1)w

=

∫
Ω

λ1ϕ1w.

Since ϕ1 > 0 and w > 0 in Ω, we have λ∗ = λ1

a which proves (i).
To complete the proof of Theorem 1.3, it remains to show that (Pλ1/a) has no

solution.
Assume that u is a solution of (Pλ1/a). Since

l := lim
t→∞

(
f(t)− at

)
≥ 0,

we have f(t)− at ≥ 0. Therefore,

(−∆)mu−∇m−1(θ(x)∇m−1u) =
λ1

a
f(u) ≥ λ1u in Ω.

Multiplying the previous equation by ϕ1 and integrating by parts, we obtain f(u) = au
in Ω, which contradicts f(0) > 0. This establishes that (Pλ1/a) has no solution.

The proof of Theorem 1.3 is now complete. 2

Remark 3.3. Note that the equivalence of the statements in Theorem 1.3 holds
regardless of the sign of l.

4. Proof of Theorem 1.4

4.1. Proof (i). For the first part of Theorem 1.4, we already established in Remark
3.1 that λ1/a ≤ λ∗ ≤ λ1/r. Therefore, it suffices to show that λ∗ 6= λ1/a and
λ∗ 6= λ1/r.

First, assume that λ∗ = λ1/a. By Remark 3.3, we know that

lim
λ→λ∗

uλ =∞ uniformly on compact subsets of Ω.

Let uλ be the minimal solution to (Pλ). Multiplying (Pλ) by ϕ1 and integrating, we
obtain:

0 =

∫
Ω

(
λ1 uλ − λ f(uλ)

)
ϕ1dx =

∫
Ω

(
(λ1 − aλ)uλ − λ(f(uλ)− auλ)

)
ϕ1dx.

This leads to:

λ

∫
Ω

ϕ1

(
f(uλ)− auλ

)
dx ≥ 0.

Taking the limit as λ approaches λ∗, in the last inequality, we find:

0 ≤ lλ∗
∫

Ω

ϕ1dx < 0,

which is a contradiction. Therefore, λ∗ 6= λ1

a .
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Next, assume that λ∗ = λ1/r and let u be a solution of problem (Pλ∗). Multiplying
(Pλ∗) by ϕ1 and integrating by parts, we have

λ1

∫
Ω

uϕ1dx =
λ1

r

∫
Ω

f(u)ϕ1dx.

This implies: ∫
Ω

(f(u)− ru)ϕ1dx = 0.

Hence, we obtain f(u) = r u in Ω, which implies f(t) = rt for t ∈ [0,maxΩ u].
However, this contradicts the fact that f(0) > 0. Therefore, λ∗ 6= λ1

r .
This completes the proof of (i) in Theorem 1.4. 2

4.2. Proof (ii). Since λ∗ > λ1/a, the existence of a solution to (Pλ∗) with λ∗ is
assured by Remark 3.3. It remains to prove the uniqueness. Assume that u is another
solution to (Pλ∗) and let w := u−u∗. Since uλ < u and lim

λ→λ∗
uλ = u∗, we have w ≥ 0.

By convexity of f, we have :

(−∆)mw −∇m−1(θ(x)∇m−1w) = λ∗(f(u)− f(u∗)) ≥ λ∗f ′(u∗)w in Ω.

Recall that µ1(λ∗, u∗) = 0, so let ψ be the corresponding eigenfunction. Multiplying
the last inequality by ψ and integrating by parts, we find:

0 =

∫
Ω

λ∗
(
f(u)− f(u∗)− f ′(u∗)w

)
ψ ≥ 0.

Therefore, we must have equality f(u) − f(u∗) = f ′(u∗)w in Ω, which implies that
f is linear in [0,max

Ω
u]. However, this leads to a contradiction as in the proof of

Theorem 1.2.
Hence, the solution u∗ of (Pλ∗) is unique, and this completes the proof of (ii) in

Theorem 1.4. 2

4.3. Proof (iii). To establish the existence of a non-stable solution vλ for (Pλ), we
will make use of the mountain pass theorem introduced by Ambrosetti and Rabinowitz
[5]. The theorem is stated as follows:

Theorem 4.1. Let E be a real Banach space and J ∈ C1(E,R). Assume that J
satisfies the Palais-Smale condition and the following geometric assumptions:
(*) there exist positive constants R and ρ such that

J(u) ≥ J(u0) + ρ, for all u ∈ E with ‖u− u0‖ = R.

(**) there exists v0 ∈ E such that ‖v0 − u0‖ > R and J(v0) ≤ J(u0).
Then the functional J possesses at least a critical point. The critical value is charac-
terized by

c := inf
g∈Γ

max
u∈g([0,1])

J(u),

where

Γ :=
{
g ∈ C([0, 1], E) : g(0) = u0, g(1) = v0

}
and satisfies c ≥ J(u0) + ρ.
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In our case, we define the functional Jλ as follows:

Jλ : E −→ R

u 7−→ 1

2

∫
Ω

|Dmu|2 +
1

2

∫
Ω

θ(x)|∇m−1u|2 −
∫

Ω

F (u),

where

F (t) = λ

∫ t

0

f(s)ds, for all t ≥ 0,

and E is the function space defined in (9). In this context, we choose u0 to be the
stable solution uλ for each λ ∈ (λ1/a, λ

∗). It is important to note that the operator
Dm is given by:

Dm =

{
∇∆

m−1
2 for m odd

∆
m
2 for m even ,

Remark 4.1. The energy functional Jλ is continuously differentiable and its deriv-
ative is given by:

〈J ′λ(u), v〉 =

∫
Ω

Dmu ·Dmv +

∫
Ω

θ(x)∇m−1u · ∇m−1v − λ
∫

Ω

f(u)v,

for all u, v ∈ E.

Since µ1(λ, uλ) > 0, the function uλ is a strict local minimum for Jλ.Therefore,
we can apply the mountain pass theorem to Jλ.

Next, we will prove the compactness condition of Jλ, which is known as the Palais-
Smale condition.

Lemma 4.2. Let (un) ⊂ E be a Palais-Smale sequence, which means that it satisfies
the following conditions:

sup
n∈N
|Jλ(un)| < +∞, (10)

‖J ′λ(un)‖E∗ → 0 as n→∞. (11)

Then (un) is relatively compact in E.

Proof. Since any subsequence of (un) satisfies (10) and (11) it is enough to prove that
(un) contains a convergent subsequence in E. Specifically, we aim to show that (un)
contains a bounded subsequence in E.

Suppose that ‖un‖ → ∞. Let un = knwn with kn →∞ and ‖wn‖2 = 1. Then we
have

0 = lim
n→∞

Jλ(un)

k2
n

= lim
n→∞

[1

2

∫
Ω

(
|Dmwn|2 + θ(x)|∇m−1wn|2

)
− 1

k2
n

∫
Ω

F (un)dx
]
.

However, since |f(t)| ≤ a|t|+ b, we have

|F (un)| = |F (knwn)| ≤ aλ

2
k2
nw

2
n + bλ|knwn|.

This shows that
1

k2
n

∫
Ω

F (un)dx ≤ aλ

2

∫
Ω

w2
ndx+

bλ

kn

∫
Ω

wndx <∞.

We claim that

(−∆)mu−∇m−1(θ(x)∇m−1u) = aλw+ where w+ := max{0, w}. (12)
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To prove this claim, we consider (11) divided by kn, which gives∫
Ω

(
Dmwn ·Dmv + θ(x)∇m−1wn · ∇m−1v

)
− λ

∫
Ω

f(un)

kn
vdx→ 0, (13)

for each v ∈ E. Now, we have∫
Ω

(
Dmwn ·Dmv+θ(x)∇m−1wn ·∇m−1v

)
→
∫

Ω

(
Dmw ·Dmv+θ(x)∇m−1w ·∇m−1v

)
.

Hence (12) can be concluded from (13) if we show that 1/knf(un) converges (up to a
subsequence) to aw+ in L2(Ω).

Now, we have 1/knf(un) = 1/knf(knwn) and it is easy to see that the required
limit is equal to aw in the set {x ∈ Ω : wn(x)→ w(x) 6= 0}.

If w(x) = 0 and wn(x) → w(x), let ε > 0 and n0 be such that |wn(x)| < ε for
n ≥ n0. Then

f(knwn)

kn
≤ aε+

b

kn
for such n,

which implies that the required limit is 0. Thus, f(un)/kn → aw+ almost everywhere.
Here b = f(0). Now wn → w in L2(Ω) and, thus, up to a subsequence, wn is

dominated in L2(Ω) see ([7], Theorem IV.9).
Since 1/knf(un) ≤ a|wn| + 1/knb, it follows that 1/knf(un) is also dominated.

Hence (12) is obtained. Now, (12) and the maximum principle imply that w ≥ 0 and
(12) becomes

(−∆)mw −∇m−1(θ(x)∇m−1w) = aλ w in Ω, w ≥ 0 in Ω, ‖w‖2 = 1 in Ω.

Thus from (6), we have λa = λ1 and w = ϕ1, which contradicts the fact that λ 6= λ1/a.

The second step is to show that (un) admits a strongly convergent subsequence in
E. Then, up to a subsequence, un → u weakly in E, strongly in L2(Ω). Now (11)
gives

(−∆)mun −∇m−1(θ(x)∇m−1un)− λf(un)→ 0 in D′(Ω).

Note that f(un) → f(u) in L2(Ω) because |f(un) − f(u)| ≤ a|un − u|. This shows
that

(−∆)mun −∇m−1(θ(x)∇m−1un)→ λf(u) in D′(Ω).

That is

(−∆)mu−∇m−1(θ(x)∇m−1u)− λf(u) = 0.

The above equality multiplied by u gives∫
Ω

|Dmu|2 +

∫
Ω

θ(x)|∇m−1u|2 − λ
∫

Ω

f(u)u = 0. (14)

Now (11) multiplied by (un) gives∫
Ω

|Dmun|2 +

∫
Ω

θ(x)|∇m−1un|2 − λ
∫

Ω

f(un)un = 0.→ 0 (15)

in view of the boundedness of (un) and the L2(Ω)-convergence of un and f(un). We
have

λ

∫
Ω

f(un)un → λ

∫
Ω

f(u)u.
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Hence, (14) and (15) give∫
Ω

(
|Dmun|2θ(x)|∇m−1un|2

)
→
∫

Ω

∣∣∣Dmun|2 + θ(x)|∇m−1un|2
)
,

which ensures us that un → u in E. Actually, it is enough to prove that (un) is (up
to a subsequence) bounded in L2(Ω). The L2(Ω)-boundedness of (un) implies that
E-boundedness of (un) as can be seen by examining (10).

Therefore, (un) contains a convergent subsequence in E, and the proof is complete.
�

To establish the validity of the two geometric assumptions of Theorem 4.1, we
proceed as follows:

Firstly, consider uλ which is a local minimum of Jλ. This implies the existence of
R > 0 such that for any u ∈ E satisfying ‖u − uλ‖ = R, we have Jλ(u) ≥ Jλ(uλ).
Consequently, we obtain the expression

Jλ(u)− Jλ(uλ) = J ′′λ (uλ)(u− uλ, u− uλ) + ρ,

where ρ > 0. Thus, uλ becomes a strict local minimum for J , establishing the validity
of assumption (∗).

Next, using the definition of ϕ1 given in (6), we have, ∀ t ∈ R

Jλ(tϕ1) =
λ1

2
t2 −

∫
Ω

F (tϕ1)

Considering that lim
t→+∞

(f(t)− a t) is finite, there exists β ∈ R such that

f(t) ≥ a t+ β, ∀ t > 0.

Hence, we deduce

F (t) ≥ a λ

2
t2 + βλt, ∀ t > 0.

This yields
Jλ(tϕ1)

t2
≤
(λ1

2
− aλ

2

)
− βλ

t

∫
Ω

ϕ1,

which implies

lim sup
t→+∞

1

t2
Jλ(tϕ1) ≤ λ1 − aλ

2
< 0, ∀ λ > λ1/a.

Therefore,

lim
t→+∞

Jλ(tϕ1) = −∞.

Thus, there exists v0 ∈ E such that Jλ(v0) ≤ Jλ(uλ), which establishes the validity
of assumption (∗∗).

Finally, let ṽ (respectively c̃) denote the critical point (respectively critical value)
of Jλ Recall that the function ṽ belongs to E and satisfies

(−∆)mṽ −∇m−1(θ(x)∇m−1ṽ) = λf(ṽ) in Ω and J (ṽ) = c̃.

The next Lemma states that the limit of a sequence of unstable solutions is also
unstable

Lemma 4.3. Let un ⇀ u in E and ηn → η such that µ1(ηn, un) < 0. Then,
µ1(η, u) < 0.
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Proof. We begin by assuming that µ1(ηn, un) < 0, which implies the existence of a
sequence (ϕn) in Σm(Ω) satisfying∫

Ω

|Dmϕn|2 +

∫
Ω

θ(x)|∇m−1ϕn|2 ≤ ηn
∫

Ω

f ′(un)ϕ2
n with

∫
Ω

ϕ2
n = 1. (16)

Since f ′ ≤ a, inequality (16) implies that the sequence (ϕn) is bounded in Σm(Ω).
Therefore, there exists a subsequence, still denoted by (ϕn) for simplicity, such that
ϕn ⇀ ϕ in Σm(Ω).

Taking the weak lower semicontinuity property of norms into account, we have∫
Ω

|Dmϕ|2 ≤ lim inf

∫
Ω

|Dmϕn|2,
∫

Ω

θ(x)|∇m−1ϕ|2 ≤ lim inf

∫
Ω

θ(x)|∇m−1ϕn|2.

Since ‖ϕ‖2 = 1, we obtain∫
Ω|Dmϕ|2 +

∫
Ω

θ(x)|∇m−1ϕ|2 ≤ lim inf

(∫
Ω

|Dmϕn|2 +

∫
Ω

θ(x)|∇m−1ϕn|2
)
.

Moreover, as ηn → η, we have

ηn

∫
Ω

f ′(un)ϕ2
n → η

∫
Ω

f ′(u)ϕ2.

Combining the above inequalities and limits, we conclude that∫
Ω

|Dmϕ|2 +

∫
Ω

θ(x)|∇m−1ϕ|2 ≤ η
∫

Ω

f ′(u)ϕ2.

Thus, µ1(η, u) < 0, which completes the proof. �

It is evident that the function v belongs to C2m(Ω)∩E due to a bootstrap argument.
In fact, the subsequent paragraph provides substantial additional information re-

garding the behavior of the unstable solution vλ.

4.3.1. Proof (iii) (a). By contradiction, thanks to Lemma 3.1, we can assume
the existence of a sequence of positive scalars (ηn) and a sequence (vn) of unstable
solutions to Pηn such that vn → v in L1

loc(Ω) as ηn → λ1/a for some function v.
Firstly, we claim that the sequence (vn) cannot be bounded in E. If it were

bounded, there would exist w ∈ E such that, up to a subsequence,

vn ⇀ w weakly in E and vn → w strongly in L2(Ω)

Consequently, we would have

(−∆)mvn −∇m−1(θ(x)∇m−1vn)→ (−∆)mw −∇m−1(θ(x)∇m−1w) in D′(Ω),

f(vn)→ f(w) in L2(Ω),

which implies that

(−∆)mw −∇m−1(θ(x)∇m−1w) =
λ1

a
f(w) in Ω.

Hence, w ∈ E and solves Pλ1/a. However, this contradicts the uniqueness of the
solution to Pλ1/a.

Now, since

(−∆)mvn −∇m−1(θ(x)∇m−1vn) = ηnf(vn),
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the unboundedness of (vn) in E implies that this sequence is also unbounded in L2(Ω).
To see this, let us consider the decomposition vn = knwn, where kn > 0, ‖wn‖2 = 1,
and kn →∞. It follows that

(−∆)mwn −∇m−1(θ(x)∇m−1wn) =
ηn
kn
f(vn)→ 0 in L1

loc(Ω).

Hence, the sequence (wn) is bounded in E due to standard arguments. Consequently,
we obtain

(−∆)mw −∇m−1(θ(x)∇m−1w) = 0 and ‖w‖2 = 1.

which leads to the desired contradiction since w ∈ E.

4.3.2. Proof (iii) (b). We end the proof by showing that vλ tends to u∗ uniformly
in Ω when λ tends to λ∗.

As before, it is sufficient to prove the L2(Ω) boundedness of vλ near λ∗ and utilize
the uniqueness property of u∗. Suppose that ‖vn‖2 → ∞ as ηn → λ∗, where vn is a
solution to (Pηn). Once again, we express vn = lnwn. Then, we have

(−∆)mwn −∇m−1(θ(x)∇m−1wn) =
ηn
ln
f(vn). (17)

The boundedness of the right-hand side of (17) in L2(Ω) implies that the sequence
(wn) is bounded in E. Let (wn) be such that (up to a subsequence)

wn ⇀ w weakly in E and wn → w strongly in L2(Ω).

A previously established computation shows that

(−∆)mw −∇m−1(θ(x)∇m−1w) = λ∗aw, w ≥ 0 and ‖w‖2 = 1,

which implies that λ∗ = λ1/a. This contradiction concludes the proof. 2

In conclusion: The results obtained provide a comprehensive understanding of the
solution behavior in the quasilinear case with a ∈ (0,+∞). An essential element in

our arguments is the quantity l := lim
t→∞

(
f(t)− at

)
, which plays a crucial role. Based

on the sign of l, we can distinguish two distinct situations that have a significant
impact on the solutions.

-
λ0 λ∗

6

uλ

-
λ0 λ∗µ1

a
µ1

r

6

uλ

u∗

Fig 1 : Behavior of the minimal solution, l > 0. Fig 2 : Bifurcation branches, l < 0.
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