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Optimization techniques in landslides modelling

Riad Hassani, Ioan R. Ionescu, and Thomas Lachand-Robert

Abstract. The stationary anti-plane problem for a two dimensional Bingham fluid is consid-
ered. We take into account the inhomogeneous yield limit of the fluid, which is well adjusted to
the description of landslides. The blocking property is analyzed and we introduce the safety
factor which is connected to two optimization problems in terms of velocities and stresses.
Concerning the velocity analysis the minimum problem is equivalent to a shape optimization
problem. We describe a numerical method to compute the safety factor through this equiva-
lence. For the stress optimization problem we give a stream function formulation in order to
deduce a minimum problem in W 1,∞(Ω) and we prove the existence of an minimizer. The
Lp(Ω) approximation technique is used to get a sequence of minimum problems for smooth
functionals. The finite element approach and a Newton method is used to obtain a numerical
scheme for the safety factor. Some numerical results are given in order to compare the two
methods. The shape optimization method is sharp in detecting the sliding zones but the con-
vergence is very sensitive to the choice of the parameters. The stress optimization method is
more robust, gives precise safety factors but the results cannot be easily compiled to obtain
the sliding zone.
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1. Introduction

A lot of efforts have been devoted in analyzing and modelling landslides in order
to evaluate the risk and to obtain a prediction. A stability analysis may provide
information on the safety factor of stable mass of soil.

Recently the inhomogeneous (or density-dependent) Bingham fluid was considered
in landslides modelling [8, 4, 9, 18]. This rigid visco-plastic model is very simple
exhibiting only two constitutive constants: viscosity and yield stress. Another im-
portant advantage of using this model is the fact that the initial distribution of the
stress in the soil is not required.

Although the Bingham model deals with fluids, it was also seen as a solid, called the
“Bingham solid” (see for instance [25]) and investigated to describe the deformation
and displacement of many solid bodies. The inhomogeneous yield limit is a key point
in describing landslides phenomenon. Indeed, due to their own weight, the geomateri-
als are compacted so that the mechanical properties also vary with depth. Therefore
the yield limit g and the viscosity coefficient η cannot be supposed homogeneous.
In opposition to the previous works dealing only with homogeneous Bingham fluids
[14, 19, 20, 24], we are interested here in a fluid whose yield limit is inhomogeneous.

A particularity of the Bingham model lies in the presence of rigid zones located
in the interior of the flow of the Bingham solid/fluid. As the yield limit g increases,
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these rigid zones become larger and may completely block the flow. When modelling
landslides, the solid is blocked in its natural configuration and the beginning of a flow
can be seen as a “disaster”. The “safety factor” was introduced in [17] to obtain a
qualitative and quantitative evaluation of the blocking phenomenon. More precisely,
through the safety factor we study the link between the yield limit distribution and
the external forces distribution (or the mass density distribution) for which the flow
of the Bingham fluid is blocked.

Let us give the outline of the paper. The stationary anti-plane problem (two
dimensional) is considered in section 2. The variational formulations in terms of
velocities and stresses are recalled from [18]. In section 3 the blocking property is
analyzed and we introduce the safety factor which is connected to two optimization
problems (velocity and stress formulations). The analysis in terms of velocities is
given in section 4. Here we recall from [21] the equivalence between the minimum
problem in BV (Ω) and a shape optimization problem. In section 5 we study the stress
optimization problem. We give a stream function formulation in order to deduce a
minimum problem in W 1,∞(Ω) and we prove the existence of a minimizer. The
Lp(Ω) approximation technique is used to get a sequence of minimum problems for
smooth functionals. Finally, we propose a numerical approach following the analysis
presented before. First, we describe a numerical method to compute the safety factor
through the equivalence with the shape optimization problem. After that we use
a finite element discretization and a Newton method to obtain a numerical scheme
for the safety factor through the stress analysis. We compare and we analyze the
two approaches through two numerical examples. The shape optimization method is
sharp in detecting the sliding zones but the convergence is very sensitive to the choice
of the parameters. The finite element method is more robust, giving more precise
safety factor but the results cannot be easily compiled to obtain the sliding zone.

2. The anti-plane flow

We consider here the equations describing the stationary anti-plane flow of an
inhomogeneous Bingham fluid in a domain D = Ω × R ⊂ R3, where Ω is a bounded
domain in R2 with a smooth boundary ∂Ω. We are looking for a flow in the Ox3

direction, i.e. the velocity field u is given by u = (0, 0, u), where u does not depend
on x3 and t so that u = u(x1, x2) (see Figure 1). The non-vanishing stress components
are σ13(x1, x2), σ23(x1, x2) denoted by σ = (σ13, σ23). The momentum balance law
in the Eulerian coordinates reads

div σ + f = 0 in Ω, (1)

where f denotes the body forces in the x3 direction. The rate deformation is described
by∇u and the constitutive equation of the Bingham fluid [3] can be written as follows:

σ = η∇u + g
∇u

|∇u| if |∇u| 6= 0, (2)

|σ| ≤ g if |∇u| = 0, (3)

where η = η(x1, x2) is the viscosity distribution and g = g(x1, x2) is a positive
continuous function which stands for the yield limit distribution in D. The behavior
described by equations (2–3) can be observed in the case of some oils or sediments used
in the process of oil drilling [14, 16]. The Bingham model, also denominated “Bingham
solid” (see for instance [25]) was considered in order to describe the deformation of
many solid bodies. For instance, in metal-forming processes, it was introduced in the
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Figure 1: The anti-plane flow geometry.

study of wire drawing [7, 20]. Recently the inhomogeneous (or density-dependent)
Bingham fluid was chosen in landslides modelling [4, 9, 18]. Note that in this latter
case the fluid/solid cannot be supposed to be homogeneous as for oil drilling or metal
forming modelling.

In order to complete equations (1–3) with some boundary conditions we assume
that the boundary of Ω is divided into two parts Γ = Γ0 ∪ Γ1. On Γ0 we suppose an
adherence condition and Γ1 will be considered as a (stress) free surface (called also
”rigid roof”). More precisely we have

u = 0 on Γ0, σ · n = 0 on Γ1, (4)

where n stands for the outward unit normal on ∂Ω.
We suppose in the following that

f, g, η ∈ L∞(Ω), g(x) ≥ g1 > 0, η(x) ≥ η0 > 0, a.e. x ∈ Ω.

If we define

V = {v ∈ H1(Ω); v = 0 on Γ0}
then the variational formulation for the anti-plane flow is

u ∈ V,

∫

Ω

η(x)∇u(x) · ∇(v(x)− u(x)) dx +
∫

Ω

g(x)|∇v(x)| dx

−
∫

Ω

g(x)|∇u(x)| dx ≥
∫

Ω

f(x)(v(x)− u(x)) dx, ∀v ∈ V. (5)

The above problem is a standard variational inequality. If meas(Γ0) > 0 then it has
a unique solution u. If Γ0 = ∅ and

∫
Ω

f(x) dx = 0 then a solution exists and it is
unique up to an additive constant. In the following we will always assume that the
former holds; the other one can be deduced with obvious minor changes.

In order to give a variational formulation in terms of stresses for (5) we define

Af = {τ ∈ (L2(Ω))2; div τ = −f in Ω, τ · n = 0 on Γ1}, (6)



OPTIMIZATION TECHNIQUES IN LANDSLIDES MODELLING 161

where τ · n is considered in H− 1
2 (Γ). Let T : L2(Ω)2 → R be defined by

T (τ ) =
∫

Ω

1
2η(x)

[|τ (x)| − g(x)]2+ dx, (7)

where [ ]+ is the positive part. We recall from [18] the following result

Theorem 1. i) There exists at least a σ ∈ Af minimizing T on Af , i.e. T (σ) ≤ T (τ ),
for all τ ∈ Af , which is characterized by

σ ∈ Af and
∫

Ω

[|σ(x)| − g(x)]+
η(x)|σ(x)| σ(x) · τ (x) dx = 0, ∀ τ ∈ A0, (8)

(where A0 is Af with f = 0).
ii) Let u be the solution of (5). Then we have

∇u(x) =
[|σ(x)| − g(x)]+

η(x)|σ(x)| σ(x), a.e. x ∈ Ω. (9)

When considering a viscoplastic model of Bingham type, one can observe rigid
zones (i.e. zones where ∇u = 0) in the interior of the flow of the solid/fluid. The
above theorem gives the opportunity to describe the rigid zones Ωr and the shearing
zones Ωs defined by

Ωr = {x ∈ Ω; |∇u(x)| = 0}, Ωs = {x ∈ Ω; |∇u(x)| > 0}.
From (9) we deduce |σ(x)| = g(x) + η(x)|∇u(x)| in Ωs and that the solution σ of
(8) is unique in Ωs, (i.e. if σ1,σ2 are two solutions of (8) then σ1(x) = σ2(x) a.e.
x ∈ Ωs). For any σ solution of (8) we have

Ωr = {x ∈ Ω; |σ(x)| ≤ g(x)}, Ωs = {x ∈ Ω; |σ(x)| > g(x)}. (10)

3. The blocking property and the safety factor

The previous description of the rigid zones can be used to study the blocking prop-
erty, i.e. when the whole Ω is a rigid zone (Ω = Ωr). When g increases, the rigid zones
are growing and if g becomes sufficiently large, the fluid stops flowing [16]. Commonly
called the blocking property, such a behavior can lead to unfortunate consequences in
oil transport in pipelines, in the process of oil drilling or in the case of metal form-
ing. On the contrary, in landslides modelling, it is precisely the blocking phenomenon
which ensures stability of the soil.

Proposition 1. The following three statements are equivalent.
i) The Bingham fluid is blocked i.e. u ≡ 0 is the solution of (5).
ii) The blocking inequality holds:∫

Ω

g(x)|∇v(x)| dx ≥
∫

Ω

f(x)v(x) dx, ∀v ∈ V. (11)

iii) There exists σ ∈ Af such that |σ(x)| ≤ g(x) a.e. x ∈ Ω.

In order to give another characterization of the blocking property let us define:

B(v) :=

∫

Ω

g(x)|∇v(x)| dx
∣∣∣∣
∫

Ω

f(x)v(x) dx

∣∣∣∣
, s := inf

v∈V
B(v) (12)

S(τ ) := ess sup
x∈Ω

|τ (x)|
g(x)

, µ := inf
τ∈Af

S(τ ). (13)
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Then we have the following result of [17].

Proposition 2. The following equality holds

s =
1
µ

. (14)

Moreover the Bingham fluid is blocked if and only if s = 1/µ ≥ 1.

In the case of landslides modelling s = 1/µ appears here as a safety factor. To see
this one can consider a loading parameter t, i.e. we put tf in (1) instead of f and a
family of variational inequalities where f is replaced by tf and ut ∈ V is the family
of solutions:

ut ∈ V,

∫

Ω

η(x)∇ut(x) · ∇(v(x)− ut(x)) dx +
∫

Ω

g(x)|∇v(x)| dx−
∫

Ω

g(x)|∇ut(x)| dx ≥ t

∫

Ω

f(x)(v(x)− ut(x)) dx, ∀v ∈ V. (15)

We obtain the existence of a critical loading tcr = s which characterize the blocking
phenomenon: the blocking occurs (i.e. ut ≡ 0) if and only if t ≤ tcr.

4. Velocity analysis

Let us suppose, all over this section, that g and f are continuous functions on Ω.
Since the trace map is not lower semi-continuous with respect to the weak* topology
of BV (Ω) we have to relax the boundary condition v = 0 on Γ0. Indeed, if we denote
by

W := {v ∈ BV (R2) : v = 0 a.e. in RN \ Ω},
then for all v ∈ W there exist φn ∈ C∞c (R2) ∩ V such that

∫

Ω

f(x)φn(x) dx →
∫

Ω

f(x)v(x) dx, (16)
∫

Ω

g(x) |∇φn(x)| dx →
∫

Ω

g(x) d |∇v| (x) +
∫

Γ0

g(x)|v(x)| dS, (17)

where |∇v| is the variation measure of v and |v| on Γ0 have to be understood in
the sense of the trace map on BV (Ω). That means that we have to introduce the
boundary condition into the functional B, i.e. to extend B for all v ∈ W as follows

B(v) =

∫

Ω∪Γ0

g(x) d |∇v| (x)
∫

Ω

f(x)v(x) dx

. (18)

Note that Γ0 may be non-negligible with respect to the variation measure |∇v|. Let
us also remark that if v ∈ BV (Ω) then

∫

Ω∪Γ0

g(x) d |∇v̄| (x) =
∫

Ω

g(x) d |∇v| (x) +
∫

Γ0

g(x)|v(x)| dS, (19)

where v̄ : R2 → R is the function v extended by 0 outside Ω (i.e. v̄(x) = v(x) for
x ∈ Ω and v̄(x) = 0, for x ∈ R2 \ Ω).

From the above equality it is clear now that B has an extension on W, i.e. B(v̄)
given by (18) coincides with B(v) given by (12) for all v ∈ V . Then we have [21]:
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Theorem 2. There exists v∗ ∈ W such that

s = B(v∗) = min
v∈W

B(v). (20)

Remark 4.1. In the special case f ≡ 1 ≡ g and Γ1 = ∅ the minimum in (20) is the
first eigenvalue of the so-called 1-laplacian operator [12, 13, 22]. The latter is the limit,
as p → 1, of the p-laplacian operator whose first eigenvalue λp(Ω) can be estimated
from below by the Cheeger constant h(Ω) = infω⊂Ω |∂ω|/|ω| with λp(Ω) ≥ (h(Ω)/p)p,
see [23]. For p = 2, this is the well-known Cheeger’s inequality [6], which was the
initial motivation for the study of the Cheeger’s problem.

We consider now the functional J defined for open sets ω ⊂ Ω with regular bound-
ary by:

J (ω) =

∫
∂ω\Γ1

g(x) dS∫
ω

f(x) dx
. (21)

Let ω ⊂ Ω be given and 1ω be its characteristic function. Then one can check that
1ω ∈ W and since ∂ω ∩ (Ω ∪ Γ0) = ∂ω \ Γ1 we have J (ω) = B(1ω). The integrals
in (21) can be considered for any set ω with finite perimeter (that is, such that its
characteristic function 1ω belongs to BV (RN )). Hence we may extend the definition of
J (ω) for these sets. In this case ∂ω has to be replaced by the reduced boundary ∂∗ω of
ω, ( see [15, section 5.7]) and we can write

∫
∂∗ω\Γ1

g(x) dS, instead of
∫
Ω∪Γ0

g d |∇1ω|.
Even if the set ω does not have finite perimeter, then the integral on the boundary
∂∗ω can be considered infinite and we will define J (ω) = +∞ regardless of the value
of

∫
ω

f(x) dx. Since we shall investigate a minimization problem for J , such a set ω
is not relevant, because it is not a minimizer. Finally we have

J (ω) = B(1ω), ∀ω ∈ O,

where O is the set of open subsets of Ω with finite perimeter. We denote in the
following by O1 ⊂ O, the set of simply connected open subsets of Ω.

We recall from [21] the link between the blocking inequality (11) and a shape opti-
mization problem (i.e. a minimum problem for J ), and some existence and regularity
results:

Theorem 3. We have
s = inf

ω∈O
J (ω). (22)

Moreover if Ω is simply connected then the infimum in (22) is attained by some simply
connected open set X, i.e.

s = J (X) = min
ω∈O1

J (ω). (23)

Additionally, if g ∈ C1(Ω), then any minimizer X of J has a boundary of class C2

in Ω and C1 in any point x0 ∈ Γ0 where the tangent cone K(x0) = ∪λ>0λ(Ω− x0) is
a convex set. If ∂X crosses Γ1 at some point x0 ∈ Γ1 where Γ1 is C1, then ∂X has
a tangent line orthogonal to Γ1 at x0.

We shall investigate now the physical interpretation of the optimal subset X. For
this we consider ut the family of solutions of (15) and let

Ω0
t := {x ∈ Ω; ut(x) = 0}, Ωsl

t := {x ∈ Ω; ut(x) 6= 0} = Ω \ Ω0
t (24)

be the family of subsets of Ω where the fluid is at rest or sliding, respectively. As
it follows from the previous section we have Ω0

t = Ω,Ωsl
t = ∅ for all t ∈ (0, s]. We
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conjecture the following result:

Conjecture. The optimal subset X is the part of the land which slides whenever
the loading parameter t becomes greater than s. More precisely, there exists lim

t→s+
Ωsl

t

and
X = lim

t→s+
Ωsl

t = Ω \ lim
t→s+

Ω0
t

is a solution of the shape optimization problem (23).

As it’s proved in [17], the conjecture is true for the one dimensional flow (Ω ⊂ R)
between an infinite plane (x = 0) and a rigid roof (x = `) which models landslides on
a natural slope (see [8]). In this case the body forces f are positive and are given by
f(x) = γρ(x) sin θ > 0, where θ is the angle of the slope, ρ(x) > 0 is the mass density
distribution and γ is the vertical gravitational acceleration.

5. Stress analysis

We shall suppose in this section that Γ1 is simply connected and |Γ1| > 0. From
Proposition 2 we have that the problem of the safety factor s = 1/µ in terms of
stresses reduces to

µ = inf
τ∈Af

S(τ ). (25)

We shall suppose in the following that A∞f := Af ∩ (L∞(Ω))2 is not empty and let
τ f = (τf

1 , τf
2 ) ∈ A∞f . Then we have A∞f = A∞0 + τ f , where A∞0 is A∞f with f = 0.

For all τ = (τ1, τ2) ∈ A∞0 the condition ∂x1τ1 + ∂x2τ2 = 0 implies that there exists
a function φ (the stream function) such that ∂x1φ = −τ2, ∂x2φ = τ1 in Ω. The
condition τ ·n = 0 on Γ1 means that the tangential derivative of φ on Γ1 is vanishing.
This means that φ is constant on Γ1 and since φ is only defined up to an additive
constant, we can assume φ = 0 on Γ1.

In order to give a formulation of (25) in terms of stream functions we define

W∞ := {φ ∈ W 1,∞(Ω) | φ = 0 on Γ1},

P (φ) := ess sup
x∈Ω

|∇φ(x) + σf (x)|
g(x)

,

where σf = (−τf
2 , τf

1 ) ∈ L∞. Since for all φ ∈ W∞ we have τ = (∂x2φ,−∂x1φ) ∈ A∞0
and S(τ +τ f ) = P (φ) we can replace (25) with a minimization problem for P on the
space of the stream functions.

Since the integrand x → |A+σf (x)|/g(x) is not regular enough we cannot directly
apply a result of [1] to deduce the lower semicontinuity of P with respect to the weak-
∗ topology in W 1,∞(Ω). This property follows from the uniform coercivity property
of the integrand (see [5]). More precisely we have the following result of [17]:

Proposition 3. There exists ψ ∈ W∞ solution of

µ = P (ψ) = min
φ∈W∞

P (φ). (26)

In order to use the Lp approximation method we introduce the following sequence
of spaces and functionals for p > 1

Wp = {φ ∈ W 1,p(Ω) | φ = 0 on Γ1}
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Qp(φ) =
1
|Ω|

∫

Ω

|∇φ(x) + σf (x)|p
g(x)p

dx, Pp(φ) = Qp(φ)1/p.

Theorem 4. For all p > 1 there exists an unique solution ψp of the optimization
problem for Pp

µp := Pp(ψp) = min
φ∈Wp

Pp(φ). (27)

The minimum µp converges to µ as p goes to ∞. Moreover there exist a subsequence of
(ψp)p>1, again denoted by (ψp)p>1 and ψ ∈ W∞ a solution of (26) such that ψp ⇀ ψ
in Wq for all q > 1.

The proof given in [17] does not make use of the Γ-convergence method introduced
in [11] (see [10] for more details). Since the integrand does not satisfy the linear
growth condition given in [5, Proposition 3.6] we need to give here a direct proof.

6. Numerical approach

In this section we present some numerical results obtained for the two approaches
described in sections 4 and 5 in order to compare them. It is not our intention to give
here a numerical analysis (convergence, optimal parameters, . . . ) for the numerical
methods described below. We just want to compare velocity and stress analysis
through some numerical experiments in order to get some general features of these
two approaches.

6.1. Shape optimization approach. We give here a numerical approach of the
blocking property following the velocity analysis (described in section 4). For this,
let us consider r : Ω → R such that

∂r

∂x2
(x) = f(x), ∀x = (x1, x2) ∈ Ω.

Then the integral on ω can be reduced on its boundary∫

ω

f(x) dx = −
∫

∂ω

r(x) dx1.

In order to discretize the shape optimization problem (22) let n ∈ N and let us
consider γn a piecewise linear Jordan curve with n edges [xi, xi+1], 1 ≤ i ≤ n (where
xn+1 = x1). We denote by ωn the interior of γn, i.e. γn = ∂ωn. Let us consider
Fn, Gn : Ωn → R:

Fn(x1, ..., xn) = −
n∑

i=1

(xi+1
1 − xi

1)
∫ 1

0

r(xi + t(xi+1 − xi)) dt

Gn(x1, ..., xn) =
n∑

i=1

ηi|xi+1 − xi|
∫ 1

0

g(xi + t(xi+1 − xi)) dt

where ηi = 0 if [xi, xi+1] ⊂ Γ1 and ηi = 1 otherwise. Then we can define Jn : Ωn → R
as

Jn(x1, ..., xn) := Gn(x1, ..., xn)/Fn(x1, ..., xn) = J (ωn).
The discretization of (22) consists of constructing a sequence Xn of domains with the
boundary ∂Xn =

⋃n
i=1[z

i, zi+1] a piecewise linear Jordan curve with n edges such
that

sn = Jn(z1, ..., zn) = min
(x1,...,xn)∈Ωn

Jn(x1, ..., xn). (28)



166 R. HASSANI, I.R. IONESCU, AND T. LACHAND-ROBERT

We have considered a shape discretization of 200 points. Since it is not the goal of
this paper to discuss the more appropriate method for the non-convex optimization
problem (28) we have chosen a basic one: the gradient method. As expected, we
have remarked that a large number of iterations are needed but the method is quite
precise. On the other hand, in some cases the method is converging to local minima
different from the global minimum. Even with a choice of an initial shape close to the
optimal shape, the step has to be very small to ensure the convergence to the global
minimum.

6.2. Supremal functional approach. As it follows from section 5 the sequence of
optimization problems for the functional Qp

µp
p = Qp(ψp) = min

φ∈Wp

Qp(φ), (29)

approximates the stream minimization problem (26).
Our aim now is to obtain a finite element approximation of the problem (29).

Let be given a family of finite dimensional subspaces Wh ⊂ W∞ where h denotes
the discretization parameter. The finite dimensional problem consists then of finding
ψph ∈ Wh such that:

ψph ∈ Wh, Qp(ψph) = min
φh∈W h

Qp(φh). (30)

In order to solve the optimization problem (30) we shall use a classical Newton itera-
tive method. Hence we shall consider a sequence of linear algebraic systems with the
solutions (ψn

ph)n recursively defined

ψn
ph ∈ Wh, Q′′

p(ψn
ph)(ψn+1

ph − ψn
ph;φh) = −Q′p(ψ

n
h)(φh), ∀φh ∈ Wh, (31)

where Q′p and Q′′
p denotes the gradient and the Hessian matrix given by:

Q′p(ψ)(φ) =
p

|Ω|
∫

Ω

g−p|∇ψ + σf |p−2(∇ψ(x) + σf ) · ∇φ dx,

Q′′p(ψ)(φ; ϕ) =
p

|Ω|
∫

Ω

g−p|∇ψ + σf |p−4
{

(p− 2)[(∇ψ + σf ) · ∇φ]

[(∇ψ + σf ) · ∇ϕ] + |∇ψ + σf |2∇φ · ∇ϕ
}

dx.

For the stress analysis we have used an uniform mesh of 100× 100 finite elements.
The parameter p was chosen up to 200 and a rapid convergence of the Newton method
was remarked. As a matter of fact we have changed p at each iteration to ensure the
convergence with respect to these two parameters in the same time. Due to the Lp

approximation, in some cases, the distribution of |∇ψn
ph + σf |/g in Ω is not sharp

enough to distinguish the sliding and rigid zones.

6.3. Numerical results and comparison. A rectangular domain Ω = (−1, 1) ×
(−1, 1) with the free surface (rigid roof) Γ1 = (−1, 1)×{1} was the geometry we have
considered. Firstly we have considered f = g = 1, i.e. the homogeneous case. The
computed safety factors are very close µ = 1/s = 0.71037 for the shape optimization
and µ = 1/s = 0.70954 for the other method. The computed optimal set X (or the
sliding domain) has as interior boundary two quarters of a circle (see Figure 2). This
fact, which was proved in [21], is not so evident in the stress analysis.

In the second example we have considered the nonhomogeneous case with functions
which depend on the vertical variable y. The distribution is linear with respect to
the depth for the body forces f(y) = 3 + 2(1 − y) and quadratic for the yield stress
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Figure 2: The homogeneous case f = g = 1 on Ω = (−1, 1) × (−1, 1) (light grey)
with the (stress) free surface Γ1 = (−1, 1) × {1}. Left: the computed
distribution of |∇ψp + σf |/g solution of the stream optimization problem
(27) with µ = 1/s = 0.70954. Right: the computed domain X (dark grey)
solution of the shape optimization problem (23) with µ = 1/s = 0.71037.

g(y) = 2 + 2(1 − y)2 as proposed in [4]. The shape optimization method and the
stream function method gives close results for the safety factors µ = 1/s = 0.66461
and µ = 1/s = 0.66917 respectively. We remark that in this case the sliding domain
(optimal set X) is smaller and does not touch the bottom (see Figure 3).

If we compare the two approaches the conclusions are:
(1) The shape optimization method is sharp in detecting the zones in sliding but the

convergence to a global minimum, which is very sensitive to the choice of the
parameters, is not ensured.

(2) The stress optimization method is more robust, gives precise safety factors but
the results cannot be easily compiled to obtain the sliding zone.
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Figure 3: The domain Ω = (−1, 1)× (−1, 1) (light grey) with the (stress) free surface
Γ1 = (−1, 1)× {1} with non-homogeneous body forces and yield limit f =
f(y) = 3+2(1− y) and g = 2+2(1− y)2. Left : the computed distribution
of |∇ψp + σf |/g solution of the stream optimization problem (27) with
µ = 1/s = 0.66917. Right : the computed domain X (dark grey) solution
of the shape optimization problem (23) with µ = 1/s = 0.66461.
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