

## \*-Miao-Tam Equation on Contact Geometry

UDAY CHAND DE AND SHAHROUD AZAMI

**ABSTRACT.** In this article, we classify \*-Miao-Tam equations in contact geometry. In the beginning, it is demonstrated that if a Sasakian manifold satisfies \*-Miao-Tam equation with the potential function  $\lambda$ , then  $\lambda = c_1 t + c_2$ ,  $c_1 \neq 0$ , provided the scalar curvature is invariant under  $\zeta$ . Also, we show that if a Sasakian 3-manifold satisfies \*-Miao-Tam equation with non-constant potential function, then the manifold is \*-Ricci flat and becomes a Sasakian space-form. Next, we characterize \*-Miao-Tam equation on  $(k, \mu)$ -contact manifolds.

2020 *Mathematics Subject Classification.* Primary 53C25; Secondary 53E20.

*Key words and phrases.* \*-Miao-Tam equation, Miao-Tam equation, contact manifold, Sasakian manifold,  $(k, \mu)$ -contact manifold.

### 1. Introduction

The metric  $g$  is considered to be a critical metric of a compact Riemannian manifold  $(\mathcal{M}, g)$  of dimension  $(2n + 1)$  with boundary  $\partial\mathcal{M}$  if the following equation holds

$$-(\Delta_g \lambda)g + \nabla_g^2 \lambda - \lambda S = g, \quad (1)$$

$\lambda : \mathcal{M} \rightarrow \mathbb{R}$  is a smooth function (known as the potential function) and  $\lambda$  vanishes on  $\partial\mathcal{M}$ ,  $\Delta_g$ ,  $\nabla_g^2$  are the Laplacian, Hessian operator with respect to the metric  $g$ , respectively and  $S$  denotes the Ricci tensor. The equation (1) is named Miao-Tam equation (shortly, **MTE**). The metrics fulfilling (1) are known as the Miao-Tam critical metrics [13].

Equation (1) implies

$$\nabla_g^2 \lambda - \lambda S_g + \left(\frac{r\lambda + 1}{2n}\right)g = 0. \quad (2)$$

Recent research shows that Patra-Ghosh examined equation (1) for contact metric manifolds and almost Kenmotsu manifolds ([15], [16]). It was demonstrated in particular that a complete K-contact metric that solves the **MTE** is isometric to the unit sphere  $S^{2n+1}$ . An almost Kenmotsu manifold with the **MTE** was also taken to be considered by Wang and Wang [20]. The physical and geometrical characteristics of the **MTE** have been studied by a number of researchers ([6], [9], [10], [12], [16]).

In this study, we develop the **\*-MTE** on contact geometry, which is given by

$$\nabla_g^2 \lambda - \lambda S_g^* + \left(\frac{r^* \lambda + 1}{2n}\right)g = 0, \quad (3)$$

where we have replaced the Ricci tensor  $S$  and the scalar curvature  $r$ , respectively by \*-Ricci tensor  $S^*$  and \*-scalar curvature  $r^*$  in (2).

Received December 12, 2023. Accepted April 9, 2025.

A variety of works have been carried out on  $*$ -Ricci tensors over the past few years. Various solitons have been carried out on the  $*$ -Ricci tensor ([8], [11], [14], [17], [18], [19], [21]). Inspired by these works, we study the  **$*$ -MTE** in contact geometry. To be more detailed, the following outcomes are obtained:

**Theorem 1.1.** *If a Sasakian manifold satisfies  **$*$ -MTE** with potential function  $\lambda$ , then the solution is  $\lambda = c_1 t + c_2$ ,  $c_1 \neq 0$ , provided the scalar curvature is invariant under  $\zeta$  where  $\zeta$  is characteristic vector field.*

**Theorem 1.2.** *If a Sasakian 3-manifold satisfies  **$*$ -MTE** with non-constant potential function, then the manifold is  $*$ -Ricci flat and becomes a Sasakian space-form.*

**Theorem 1.3.** *If a  $(k, \mu)$ -contact manifold satisfies  **$*$ -MTE** with potential function  $\lambda$ , then one of the cases holds:*

- (i) *either the manifold is flat for  $n = 1$  and for  $n > 1$  it is locally isometric to  $E^{n+1} \times S^n(4)$  or  $\text{grad } \lambda$  is pointwise collinear with  $\zeta$ .*
- (ii) *The equation has constant solution, provided  $(2k + n\mu)^2 + \mu^2(k - 1) \neq 0$ .*

## 2. Preliminaries

A manifold  $\mathcal{M}$  of dimension  $(2n + 1)$  is an almost contact manifold with almost contact structure  $(\varphi, \zeta, \eta)$ ,  $\zeta$  (characteristic vector field) is a unit vector field,  $\varphi$  being a  $(1, 1)$ -tensor field and  $\eta$  is a 1-form fulfilling

$$\varphi^2 \Lambda_1 = -\Lambda_1 + \eta(\Lambda_1)\zeta, \quad \eta(\zeta) = 1. \quad (4)$$

An almost contact metric (shortly, **acm**) structure  $(\varphi, \zeta, \eta, g)$  is an almost contact structure whose metric  $g$  fulfills

$$g(\varphi \Lambda_1, \varphi \Lambda_2) = g(\Lambda_1, \Lambda_2) - \eta(\Lambda_1)\eta(\Lambda_2), \quad g(\Lambda_1, \zeta) = \eta(\Lambda_1) \quad (5)$$

for any  $\Lambda_1, \Lambda_2 \in \mathfrak{X}(M)$ . An **acm** structure  $(\varphi, \zeta, \eta, g)$  is said to be normal if the associated complex structure  $J$  on  $\mathcal{M} \times \mathbb{R}$  is integrable.

If a Riemannian manifold  $\mathcal{M}$  and its **acm** structure  $(\varphi, \zeta, \eta, g)$  satisfies the condition ([2], p. 47)  $d\eta(\Lambda_2, \Lambda_3) = g(\Lambda_2, \varphi \Lambda_3)$  for all vector fields  $\Lambda_2, \Lambda_3$ , it is said to be a contact metric manifold (shortly, **cmm**). The contact metric structure's associated metric is  $g$ . Two self-adjoint operators,  $h = \frac{1}{2}\mathcal{L}_\zeta \varphi$  and  $l = R(\cdot, \zeta)\zeta$ , are taken into consideration on the **cmm**  $\mathcal{M}(\varphi, \zeta, \eta, g)$ ,  $\mathcal{L}_\zeta$  is the Lie-derivative along  $\zeta$ . The two operators  $h$  and  $l$  satisfy ([2], p. 84-85)

$$\text{tr } h = \text{tr } h\varphi = 0, \quad h\zeta = l\zeta = 0, \quad h\varphi = -\varphi h. \quad (6)$$

**Lemma 2.1.** [5] *On a **cmm**  $\mathcal{M}(\varphi, \zeta, \eta, g)$*

$$\nabla_{\Lambda_2} \zeta = -\varphi \Lambda_2 - \varphi h \Lambda_2, \quad (7)$$

$$S(\zeta, \zeta) = g(Q\zeta, \zeta) = \text{tr } l = 2n - \text{tr } h^2, \quad (8)$$

$$(\text{div}(h\varphi))\Lambda_2 = g(Q\zeta, \Lambda_2) - 2n\eta(\Lambda_2) \quad (9)$$

hold for any vector field  $\Lambda_2$ .

If  $\zeta$  is a Killing vector field, or alternatively if  $h = 0$  ([2], p. 87), a **cmm** is called a  $K$ -contact manifold. Therefore, on a  $K$ -contact manifold equation (7) turns into

$$\nabla_{\Lambda_2} \zeta = -\varphi \Lambda_2. \quad (10)$$

A Sasakian manifold always represents a  $K$ -contact manifold. When the dimension is three, the reverse also holds true, however this may not be true in higher dimensions. The following equations are widely known on the Sasakian manifold:

$$\nabla_{\Lambda_1}\zeta = -\varphi\Lambda_1, \quad (11)$$

$$R(\Lambda_1, \Lambda_2)\zeta = \eta(\Lambda_2)\Lambda_1 - \eta(\Lambda_1)\Lambda_2, \quad (12)$$

$$R(\zeta, \Lambda_1)\Lambda_2 = g(\Lambda_1, \Lambda_2)\zeta - \eta(\Lambda_2)\Lambda_1, \quad (13)$$

$$S(\Lambda_1, \zeta) = 2n\eta(\Lambda_1), \quad Q\zeta = 2n\zeta \quad (14)$$

hold for any vector field  $\Lambda_1, \Lambda_2$  and the Ricci tensor, curvature tensor and Ricci operator are denoted by  $S, R$  and  $Q$ , respectively.

Let  $\mathcal{M}(\varphi, \zeta, \eta, g)$  represent an almost contact metric manifold with Ricci tensor  $S$ . The  $*$ -Ricci tensor and  $*$ -scalar curvature of  $\mathcal{M}$  respectively, are given by

$$S^*(\Lambda_1, \Lambda_2) = \sum_{j=1}^{2n+1} R(\Lambda_1, \mathbf{m}_j, \varphi\mathbf{m}_j, \varphi\Lambda_2), \quad r^* = \sum_{j=1}^{2n+1} S^*(\mathbf{m}_j, \mathbf{m}_j). \quad (15)$$

**Lemma 2.2.** [14] *In a Sasakian manifold  $\mathcal{M}$  with dimension  $(2n+1)$ , the  $*$ -Ricci tensor and  $*$ -scalar curvature are given by*

$$S^*(\Lambda_1, \Lambda_2) = S(\Lambda_1, \Lambda_2) - (2n-1)g(\Lambda_1, \Lambda_2) - \eta(\Lambda_1)\eta(\Lambda_2) \quad (16)$$

and

$$r^* = r - 4n^2. \quad (17)$$

**Lemma 2.3.** [5] *In a Sasakian 3-manifold, the Ricci tensor  $S$  is given by*

$$S(\Lambda_1, \Lambda_2) = \left(\frac{r}{2} - 1\right)g(\Lambda_1, \Lambda_2) + \left(3 - \frac{r}{2}\right)\eta(\Lambda_1)\eta(\Lambda_2). \quad (18)$$

Blair et al. [4] investigated a novel class of **cmm**s called a  $(k, \mu)$ -contact manifold (shortly,  $(k, \mu)$ -**cm**). In [7], Boeckx properly characterized these manifolds. A  $(k, \mu)$ -**cm** is a  $\mathcal{M}(\varphi, \zeta, \eta, g)$  **cmm**. Its curvature tensor fulfills

$$R(\Lambda_2, \Lambda_3)\zeta = k[\eta(\Lambda_3)\Lambda_2 - \eta(\Lambda_2)\Lambda_3] + \mu[\eta(\Lambda_3)h\Lambda_2 - \eta(\Lambda_2)h\Lambda_3] \quad (19)$$

for all  $\Lambda_2, \Lambda_3$  and  $k, \mu \in \mathbb{R}$ . A  $(k, \mu)$ -contact manifold is called an  $N(k)$ -**cmm** if  $\mu = 0$  ([1], [3]).

The following formulas are used for  $(k, \mu)$ -contact manifolds [4]:

$$\begin{aligned} S(\Lambda_2, \Lambda_3) &= [2(n-1) - n\mu]g(\Lambda_2, \Lambda_3) + [2(n-1) + \mu]g(h\Lambda_2, \Lambda_3) \\ &\quad + [2(1-n) + n(2k + \mu)]\eta(\Lambda_2)\eta(\Lambda_3), \end{aligned} \quad (20)$$

$$Q\zeta = 2nk\zeta, \quad (21)$$

$$h^2 = (k-1)\varphi^2, \quad k \leq 1, \quad (22)$$

when  $k = 1$  (equivalently,  $h = 0$ ), equality holds, that is,  $\mathcal{M}$  is Sasakian. The  $(k, \mu)$ -nullity condition completely determines the curvature of  $\mathcal{M}$  in the non-Sasakian case, that is,  $k < 1$ . Furthermore, the scalar curvature  $r$  is obtained by

$$r = 2n(2(n-1) + k - n\mu). \quad (23)$$

**Lemma 2.4.** *In a  $(k, \mu)$ -contact manifold*

$$R(\zeta, \Lambda_2)\Lambda_3 = k[g(\Lambda_2, \Lambda_3)\zeta - \eta(\Lambda_3)\Lambda_2] + \mu[g(h\Lambda_2, \Lambda_3)\zeta - \eta(\Lambda_3)h\Lambda_2], \quad (24)$$

$$(\nabla_\zeta Q)\Lambda_2 = \mu[2(n-1) + \mu]h\varphi\Lambda_2, \quad (25)$$

$$(\nabla_\zeta h)\Lambda_2 = \mu h\varphi\Lambda_2, \quad (26)$$

$$(\nabla_{\Lambda_2} Q)\zeta = (\varphi + \varphi h)Q\Lambda_2 - 2nk(\varphi + \varphi h)\Lambda_2 \quad (27)$$

hold.

**Lemma 2.5.** [14] *In a  $(k, \mu)$ -contact manifold, the  $*$ -Ricci tensor and  $*$ -scalar curvature are given by*

$$S^*(\Lambda_1, \Lambda_2) = (n\mu + k)[-g(\Lambda_1, \Lambda_2) + \eta(\Lambda_1)\eta(\Lambda_2)] \quad (28)$$

and

$$r^* = -2n(n\mu + k). \quad (29)$$

**Lemma 2.6.** [2] *If  $k = \mu = 0$  in a  $(k, \mu)$ -contact manifold, then the manifold is flat for  $n = 1$  and  $n > 1$  it is locally isometric to  $E^{n+1} \times S^n(4)$ .*

### 3. Proof of the Main Results

*Proof of Theorem 1.1.* From equation (3), we obtain

$$\nabla^2\lambda - \lambda S^* + \left(\frac{r^*\lambda + 1}{2n}\right)g = 0. \quad (30)$$

Using (16) in (30), we obtain

$$\nabla_{\Lambda_1} D\lambda = \lambda Q\Lambda_1 - \psi\Lambda_1 - \lambda\eta(\Lambda_1)\zeta, \quad (31)$$

where  $\psi = \frac{(r-2n)\lambda+1}{2n}$ .

Differentiating (31), we infer

$$\begin{aligned} \nabla_{\Lambda_2} \nabla_{\Lambda_1} D\lambda &= (\Lambda_2\lambda)Q\Lambda_1 + \lambda\nabla_{\Lambda_2} Q\Lambda_1 - (\Lambda_2\psi)\Lambda_1 - \psi\nabla_{\Lambda_2}\Lambda_1 \\ &\quad - (\Lambda_2\lambda)\eta(\Lambda_1)\zeta - \lambda[\nabla_{\Lambda_2}\eta(\Lambda_1)\zeta - \eta(\Lambda_1)\varphi\Lambda_2]. \end{aligned} \quad (32)$$

Interchanging  $\Lambda_1$  and  $\Lambda_2$  in (32) gives

$$\begin{aligned} \nabla_{\Lambda_1} \nabla_{\Lambda_2} D\lambda &= (\Lambda_1\lambda)Q\Lambda_2 + \lambda\nabla_{\Lambda_1} Q\Lambda_2 - (\Lambda_1\psi)\Lambda_2 - \psi\nabla_{\Lambda_1}\Lambda_2 \\ &\quad - (\Lambda_1\lambda)\eta(\Lambda_2)\zeta - \lambda[\nabla_{\Lambda_1}\eta(\Lambda_2)\zeta - \eta(\Lambda_2)\varphi\Lambda_1]. \end{aligned} \quad (33)$$

From (31), we get

$$\nabla_{[\Lambda_1, \Lambda_2]} D\lambda = \lambda Q([\Lambda_1, \Lambda_2]) - \psi([\Lambda_1, \Lambda_2]) - \lambda\eta([\Lambda_1, \Lambda_2])\zeta, \quad (34)$$

Equations (32)-(34) together imply

$$\begin{aligned} R(\Lambda_1, \Lambda_2)D\lambda &= (\Lambda_1\lambda)Q\Lambda_2 - (\Lambda_2\lambda)Q\Lambda_1 + \lambda[(\nabla_{\Lambda_1} Q)\Lambda_2 - (\nabla_{\Lambda_2} Q)\Lambda_1] \\ &\quad - (\Lambda_1\psi)\Lambda_2 + (\Lambda_2\psi)\Lambda_1 - (\Lambda_1\lambda)\eta(\Lambda_2)\zeta + (\Lambda_2\lambda)\eta(\Lambda_1)\zeta \\ &\quad - \lambda[2g(\Lambda_1, \varphi\Lambda_2)\zeta - \eta(\Lambda_2)\varphi\Lambda_1 + \eta(\Lambda_1)\varphi\Lambda_2]. \end{aligned} \quad (35)$$

Contracting  $\Lambda_1$  in (35), we obtain

$$\begin{aligned} S(\Lambda_2, D\lambda) &= g(Q\Lambda_1, D\lambda) - r(\Lambda_2\lambda) - \frac{1}{2}\lambda(\Lambda_2r) \\ &\quad + 2n(\Lambda_2\psi) - (\zeta\lambda)\eta(\Lambda_2) + (\Lambda_2\lambda). \end{aligned} \quad (36)$$

Again, we aassume

$$\psi = \frac{(r - 2n)\lambda + 1}{2n},$$

which implies

$$2n(\Lambda_2\psi) = (r - 2n)\Lambda_2\lambda + (\Lambda_2r)\lambda. \quad (37)$$

Using (37) in (36) entails that

$$(2n - 1)\Lambda_2\lambda + (\zeta\lambda)\eta(\Lambda_2) = \frac{\lambda}{2}(\Lambda_2r). \quad (38)$$

Putting  $\Lambda_2 = \zeta$  in (38), we get

$$\zeta\lambda = \frac{\lambda}{4n}(\zeta r). \quad (39)$$

If we taking  $\zeta r = 0$ , then (39) implies  $\zeta\lambda = 0$ . Hence  $\zeta(\zeta\lambda) = 0$ . If we take  $\zeta = \frac{\partial}{\partial t}$ , then

$$\frac{\partial^2\lambda}{\partial t^2} = 0.$$

Solution of the above equation is  $\lambda = c_1t + c_2$ ,  $c_1 \neq 0$ . As a result, the proof is completed.  $\square$

*Proof of Theorem 1.2.* For 3-dimension, equations (16), (17) and (18) together imply

$$S^*(\Lambda_1, \Lambda_2) = \left(\frac{r}{2} - 2\right)[g(\Lambda_1, \Lambda_2) - \eta(\Lambda_1)\eta(\Lambda_2)] \quad (40)$$

and

$$r^* = r - 4. \quad (41)$$

In view of (3), (40) and (41) gives

$$\nabla_{\Lambda_1} D\lambda = -\frac{1}{2}\Lambda_1 - \frac{\lambda}{2}(r - 4)\eta(\Lambda_1)\zeta. \quad (42)$$

Differentiating (42), we get

$$\begin{aligned} \nabla_{\Lambda_2} \nabla_{\Lambda_1} D\lambda &= -\frac{1}{2}\nabla_{\Lambda_2}\Lambda_1 - \frac{1}{2}[(\Lambda_2\lambda)(r - 4)\eta(\Lambda_1)\zeta + \lambda(\Lambda_2r)\eta(\Lambda_1)\zeta \\ &\quad + \lambda(r - 4)\{\nabla_{\Lambda_2}\eta(\Lambda_1)\zeta - \eta(\Lambda_1)\varphi\Lambda_2\}]. \end{aligned} \quad (43)$$

Interchanging  $\Lambda_1$  and  $\Lambda_2$  in (43) entails that

$$\begin{aligned} \nabla_{\Lambda_1} \nabla_{\Lambda_2} D\lambda &= -\frac{1}{2}\nabla_{\Lambda_1}\Lambda_2 - \frac{1}{2}[(\Lambda_1\lambda)(r - 4)\eta(\Lambda_2)\zeta + \lambda(\Lambda_1r)\eta(\Lambda_2)\zeta \\ &\quad + \lambda(r - 4)\{\nabla_{\Lambda_1}\eta(\Lambda_2)\zeta - \eta(\Lambda_2)\varphi\Lambda_1\}]. \end{aligned} \quad (44)$$

From (42), we infer

$$\nabla_{[\Lambda_1, \Lambda_2]} D\lambda = -\frac{1}{2}([\Lambda_1, \Lambda_2]) - \frac{\lambda}{2}(r - 4)\eta([\Lambda_1, \Lambda_2])\zeta. \quad (45)$$

Equations (43)-(45) together imply

$$\begin{aligned} R(\Lambda_1, \Lambda_2)D\lambda &= \frac{1}{2}[\{(\Lambda_2\lambda)(r - 4) + \lambda(\Lambda_2r)\}\eta(\Lambda_1)\zeta \\ &\quad - \{(\Lambda_1\lambda)(r - 4) + \lambda(\Lambda_1r)\}\eta(\Lambda_2)\zeta] \\ &\quad - \lambda(r - 4)g(\Lambda_1, \varphi\Lambda_2)\zeta. \end{aligned} \quad (46)$$

Contracting  $\Lambda_1$  in (46), we obtain

$$S(\Lambda_2, D\lambda) = \frac{1}{2}[(\Lambda_2\lambda)(r-4) + \lambda(\Lambda_2r) - \{(\zeta\lambda)(r-4) + \lambda(\zeta r)\}\eta(\Lambda_2)]. \quad (47)$$

Replacing  $\Lambda_1$  by  $D\lambda$  in (18) gives

$$S(\Lambda_2, D\lambda) = \left(\frac{r}{2} - 1\right)(\Lambda_2\lambda) + \left(3 - \frac{r}{2}\right)(\zeta\lambda)\eta(\Lambda_2). \quad (48)$$

In view of the above two equations, we get

$$2[(\Lambda_2\lambda) + (\zeta\lambda)\eta(\Lambda_2)] = \lambda[(\Lambda_2r) - (\zeta r)\eta(\Lambda_2)]. \quad (49)$$

Again, from (18) we get

$$Q\Lambda_1 = \left(\frac{r}{2} - 1\right)\Lambda_1 + \left(3 - \frac{r}{2}\right)\eta(\Lambda_1)\zeta. \quad (50)$$

Equation (50) implies

$$(\nabla_{\Lambda_2} Q)\Lambda_1 = \frac{\Lambda_2 r}{2}[\Lambda_1 - \eta(\Lambda_1)\zeta] + \left(3 - \frac{r}{2}\right)[g(\varphi\Lambda_1, \Lambda_2)\zeta - \eta(\Lambda_1)\varphi\Lambda_2]. \quad (51)$$

Contracting  $\Lambda_1$  in (51) and using  $(\operatorname{div} Q)\Lambda_1 = \frac{1}{2}(\Lambda_1 r)$ , we get

$$\zeta r = 0. \quad (52)$$

Using (52) in (49), we get

$$(\Lambda_2\lambda) + (\zeta\lambda)\eta(\Lambda_2) = \frac{\lambda}{2}(\Lambda_2r). \quad (53)$$

Considering the inner product of (46) with  $\zeta$ , we infer

$$\begin{aligned} (\Lambda_2\lambda)\eta(\Lambda_1) - (\Lambda_1\lambda)\eta(\Lambda_2) &= \frac{1}{2}[\{(\Lambda_2\lambda)(r-4) + \lambda(\Lambda_2r)\}\eta(\Lambda_1) \\ &\quad - \{(\Lambda_1\lambda)(r-4) + \lambda(\Lambda_1r)\}\eta(\Lambda_2)] \\ &\quad - \lambda(r-4)g(\Lambda_1, \varphi\Lambda_2). \end{aligned} \quad (54)$$

Setting  $\Lambda_1 = \zeta$  in (54), we obtain

$$\frac{(6-r)}{2}[\Lambda_2\lambda - (\zeta\lambda)\eta(\Lambda_2)] = \frac{\lambda}{2}(\Lambda_2r). \quad (55)$$

From (53) and (55), we infer

$$(\Lambda_2\lambda) + (\zeta\lambda)\eta(\Lambda_2) = \frac{(6-r)}{2}[\Lambda_2\lambda - (\zeta\lambda)\eta(\Lambda_2)]. \quad (56)$$

Putting  $\Lambda_2 = \zeta$  in (53) gives

$$\zeta\lambda = 0. \quad (57)$$

The above two equations together imply

$$(r-4)\Lambda_2\lambda = 0, \quad (58)$$

which implies either  $r = 4$  or  $r \neq 4$ .

If  $r = 4$ , then (40) implies  $S^*(\Lambda_1, \Lambda_2) = 0$ , that is,  $*$ -Ricci tensor vanishes, which implies  $r^*$  vanishes. It can be easily seen that for a 3-dimensional Sasakian manifold the  $\varphi$ -sectional curvature is equal to  $\frac{r-4}{2}$ . Since  $r = \text{constant}$ , the  $\varphi$ -sectional curvature is a constant and thus the manifold becomes a 3-dimensional Sasakian space-form [2], provided the potential function is non-constant.  $r \neq 4$  implies  $\lambda = \text{constant}$ , which is a contradiction. Thus, the proof is finished.  $\square$

*Proof of Theorem 1.3.* From (3) and (28), we get

$$\nabla_{\Lambda_1} D\lambda = \lambda(n\mu + k)\eta(\Lambda_1)\zeta - \frac{1}{2n}\Lambda_1. \quad (59)$$

Differetiating (59), we get

$$\begin{aligned} \nabla_{\Lambda_2} \nabla_{\Lambda_1} D\lambda &= (\Lambda_2\lambda)(n\mu + k)\eta(\Lambda_1)\zeta + \lambda(n\mu + k)[\nabla_{\Lambda_2}\eta(\Lambda_1)\zeta \\ &\quad - (\varphi\Lambda_2 + \varphi h\Lambda_2)\eta(\Lambda_1)] - \frac{1}{2n}\nabla_{\Lambda_2}\Lambda_1. \end{aligned} \quad (60)$$

Interchanging  $\Lambda_1$  and  $\Lambda_2$  in (60), we get

$$\begin{aligned} \nabla_{\Lambda_1} \nabla_{\Lambda_2} D\lambda &= (\Lambda_1\lambda)(n\mu + k)\eta(\Lambda_2)\zeta + \lambda(n\mu + k)[\nabla_{\Lambda_1}\eta(\Lambda_2)\zeta \\ &\quad - (\varphi\Lambda_1 + \varphi h\Lambda_1)\eta(\Lambda_2)] - \frac{1}{2n}\nabla_{\Lambda_1}\Lambda_2. \end{aligned} \quad (61)$$

From (59), we obtain

$$\nabla_{[\Lambda_1, \Lambda_2]} D\lambda = \lambda(n\mu + k)\eta([\Lambda_1, \Lambda_2])\zeta - \frac{1}{2n}([\Lambda_1, \Lambda_2]). \quad (62)$$

Equations (60)-(62) together imply

$$\begin{aligned} R(\Lambda_1, \Lambda_2)D\lambda &= (\Lambda_1\lambda)(n\mu + k)\eta(\Lambda_2)\zeta - (\Lambda_2\lambda)(n\mu + k)\eta(\Lambda_1)\zeta \\ &\quad + \lambda(n\mu + k)[g(\Lambda_1, \varphi\Lambda_2)\zeta + (\varphi\Lambda_2 + \varphi h\Lambda_2)\eta(\Lambda_1) \\ &\quad - (\varphi\Lambda_1 + \varphi h\Lambda_1)\eta(\Lambda_2)]. \end{aligned} \quad (63)$$

Taking inner product in (63) with  $\zeta$ , we infer

$$\begin{aligned} k[(\Lambda_2\lambda)\eta(\Lambda_1) - (\Lambda_1\lambda)\eta(\Lambda_2)] + \mu[g(h\Lambda_2, D\lambda)\eta(\Lambda_1) - g(h\Lambda_1, D\lambda)\eta(\Lambda_2)] \\ = (n\mu + k)[(\Lambda_1\lambda)\eta(\Lambda_2) - (\Lambda_2\lambda)\eta(\Lambda_1) + 2\lambda g(\Lambda_1, \varphi\Lambda_2)]. \end{aligned} \quad (64)$$

Setting  $\Lambda_1 = \zeta$  in (64) gives

$$(2k + n\mu)[\Lambda_2\lambda - (\zeta\lambda)\eta(\Lambda_2)] + \mu g(h\Lambda_2, D\lambda) = 0. \quad (65)$$

Replacing  $\Lambda_2$  by  $h\Lambda_2$  in (65) entails that

$$(2k + n\mu)g(h\Lambda_2, D\lambda) - \mu(k - 1)[\Lambda_2\lambda - (\zeta\lambda)\eta(\Lambda_2)] = 0. \quad (66)$$

In view of (65)and (66), we obtain

$$[(2k + n\mu)^2 + \mu^2(k - 1)][\Lambda_2\lambda - (\zeta\lambda)\eta(\Lambda_2)] = 0. \quad (67)$$

Contracting  $\Lambda_1$  in (63), we get

$$S(\Lambda_2, D\lambda) = (n\mu + k)[(\zeta\lambda)\eta(\Lambda_2) - \Lambda_2\lambda]. \quad (68)$$

Again, replacing  $\Lambda_1$  by  $D\lambda$  in (20) and comparing with (68) entails that

$$\begin{aligned} &[2(n - 1) - n\mu](\Lambda_2\lambda) + [2(n - 1) + \mu]g(h\Lambda_2, D\lambda) \\ &+ [2(1 - n) + n(2k + \mu)](\zeta\lambda)\eta(\Lambda_2) \\ &= (n\mu + k)[(\zeta\lambda)\eta(\Lambda_2) - \Lambda_2\lambda]. \end{aligned} \quad (69)$$

Setting  $\Lambda_2 = \zeta$  in (69), we get

$$k(\zeta\lambda) = 0, \quad (70)$$

which means either  $k = 0$  or  $k \neq 0$ .

Case I: If  $k = 0$ , then (67) implies

$$\mu[\Lambda_2\lambda - (\zeta\lambda)\eta(\Lambda_2)] = 0, \quad (71)$$

which means either  $\mu = 0$  or  $\mu \neq 0$ .

Case i: If  $\mu = 0$ , then from Lemma 2.6 the manifold is flat for  $n = 1$  and for  $n > 1$  it is locally isometric to  $E^{n+1} \times S^n(4)$ .

Case ii: If  $\Lambda_2\lambda - (\zeta\lambda)\eta(\Lambda_2) = 0$ , then  $D\lambda = (\zeta\lambda)\zeta$  which means that  $\text{grad } \lambda$  is pointwise collinear with  $\zeta$ .

Case II: If  $k \neq 0$ , then (70) implies  $\zeta\lambda = 0$ . Hence (67) implies  $\Lambda_2\lambda = 0$  which means that  $\lambda$  is constant for  $(2k + n\mu)^2 + \mu^2(k - 1) \neq 0$ . Therefore the equation has constant solution.

As a result, our proof is completed.  $\square$

#### 4. Conclusion

blair3 Critical point equations have been investigated in Riemannian as well as in semi-Riemannian manifolds. Several researchers have characterized **MTE** equations in Riemannian and semi-Riemannian manifolds but nobody is interested to investigate **\*-MTE** in contact geometry. In this article, we introduce **\*-MTE** in contact geometry and characterize Sasakian and  $(k, \mu)$ -contact metric manifolds admitting **\*-MTE**.

#### References

- [1] C. Baikoussis, D.E. Blair, T. Koufogiorgos, *A decomposition of the curvature tensor of a contact manifold satisfying  $R(\Lambda_1, \Lambda_2)\zeta = k(\eta(\Lambda_2)\Lambda_1 - \eta(\Lambda_1)\Lambda_2)$* , Mathematics Technical Report, University of Ioannina, Greece, 1992.
- [2] D.E. Blair, *Riemannian geometry of contact and symplectic manifolds*, Birkhauser, Boston, 2010.
- [3] D.E. Blair, J.S. Kim, M.M. Tripathi, On the concircular curvature tensor of a contact metric manifold, *J. Korean Math. Soc.* **42** (2005), 883-892.
- [4] D.E. Blair, T. Koufogiorgos, B.J. Papantoniu, Contact metric manifolds satisfying a nullity condition, *Isr. J. Math.* **91** (1995), 189-214.
- [5] D.E. Blair, T. Koufogiorgos, S.R. Harma, A classification of 3-dimensional contact metric manifolds with  $Q\varphi = \varphi Q$ , *Kodai Math. J.* **13** (1990), 391-401.
- [6] A.M. Blaga, On harmonicity and Miao-Tam critical metrics in a perfect fluid spacetime, *Bol. Soc. Mat. Mex.* **26** (2020), 1289-1299.
- [7] E. Boeckx, A full classification of contact metric  $(k, \mu)$ -spaces, *Ill. J. Math.* **44** (2000), 212-219.
- [8] X. Chen, Real Hypersurfaces with **\*-Ricci Solitons** of Non-flat Complex Space Forms, *Tokyo J. Math.* 41(2018), 433-451.
- [9] X. Chen, On almost  $f$ -cosymplectic manifolds satisfying the Miao-Tam equation, *J. Geom.* **111** (2020), 28.
- [10] X. Chen, Real hypersurfaces with Miao-Tam critical metrics of complex space forms, *J. Korean Math. Soc.* **55** (2018), 735-747.
- [11] X. Dai, Y. Zhao, U.C. De, **\*-Ricci soliton** on  $(k, \mu)'$ -almost Kenmotsu manifolds, *Open Math.* **17** (2019), 874-882.
- [12] U.C. De, Y.J. Suh, P. Majhi, Ricci Solitons on  $\eta$ -Einstein Contact Manifolds, *Filomat* **32** (2018), 4679-4687.
- [13] P. Miao, L.-F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, *Calc. Var. PDE.* **36** (2009), 141-171.

- [14] A. Ghosh, D.S. Patra,  $*$ -Ricci Soliton within the framework of Sasakian and  $(k, \mu)$ -contact manifold, *Int. J. Geom. Methods Mod. Phys.* **15** (2018), no. 7, 1850120.
- [15] D. S. Patra, A. Ghosh, Certain contact metrics satisfying Miao–Tam critical condition, *Ann. Polon. Math.* **116** (2016), 263–271.
- [16] D.S. Patra, A. Ghosh, Certain almost Kenmotsu metrics satisfying the Miao–Tam equation, *Publ. Math. Debr.* **93** (2018), 107–123.
- [17] D.S. Patra, A. Ali, F. Mofarreh, Geometry of almost contact metrics as almost  $*$ -Ricci solitons, arXiv:2101.01459.
- [18] V. Venkatesha, D.M. Naik, H.A. Kumara,  $*$ -Ricci solitons and gradient almost  $*$ -Ricci solitons on Kenmotsu manifolds, *Mathematica Slovaca* **69** (2019), 1447–1458.
- [19] V. Venkatesha, H.A. Kumara, D.M. Naik, Almost  $*$ -Ricci soliton on para Kenmotsu manifolds, *Arab. J. Math.* **9** (2020), 715–726.
- [20] Y. Wang, W. Wang, An Einstein-like metric on almost Kenmotsu manifolds, *Filomat* **31** (2017), 4695–4702.
- [21] Y. Wang, Contact 3-manifolds and  $*$ -Ricci solitons, *Kodai Math. J.* **43** (2020), 256–267.

(Uday Chand De) DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA, 35, BALLYGUNGE CIRCULAR ROAD, KOLKATA 700019, WEST BENGAL, INDIA

*E-mail address:* uc.de@yahoo.com

(Shahroud Azami) DEPARTMENT OF PURE MATHEMATICS, FACULTY OF SCIENCE, IMAM KHOMEINI INTERNATIONAL UNIVERSITY, QAZVIN, IRAN

*E-mail address:* azami@sci.ikiu.ac.ir