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On strong ergodicity of iterated function systems, with
applications to time series models

Ulrich Herkenrath and Andreas Rudolph

Abstract. We consider so-called iterated function systems, mainly as a mathematical model
of (non-linear) autoregressive time series. We apply recent results on Markov chains to iterated
function systems and such time series. The goal is to ensure the aperiodic strong ergodicity
of Markov chains generated by iterated function systems, respectively of the time series.

2000 Mathematics Subject Classification. Primary 60J05; Secondary 62M10.

Key words and phrases. iterated function system, Markov process, autoregressive time series.

1. Introduction

In the last two decades the so-called ”iterated function systems” (IFSs for short) or
”iterated random functions” have attracted much attention. Researchers from quite
different branches of applied mathematics, as engineers, physicists, mathematicians
who study the construction of fractals or analyze certain autoregressive time series
models, dealt with such systems.

From a mere theoretical standpoint, IFSs are a mathematical model consisting of
two stochastic processes in discrete time, a state and an event process. The event
process (Xn, n ≥ 0) is a sequence of independent identically distributed (i. i. d.
for short) random variables with values in a measurable space (X,X ) distributed
according to a probability measure p on X . The state process (Wn, n ≥ 0) with values
in the measurable space (W,W) starts with a given random variable W0 distributed
according to a probability measure µ on W and is generated recursively by means of
a measurable transition function u : (W ×X,W ⊗X ) → (W,W) such that Wn+1 =
u(Wn, Xn) for all n ≥ 0. Obviously, the state process (Wn, n ≥ 0) is a Markov chain
on (W,W) with transition probability Q, where Q is determined by p and u as

Q(w,A) = p(u−1
w (A)), w ∈ W,A ∈ W.

Here uw : X → W stands for the section of u defined by uw(x) = u(w, x), w ∈
W,x ∈ X. We shall also use the section ux : W → W of u defined by ux(w) = u(w, x),
x ∈ X, w ∈ W .

The components of an IFS are collected in

Definition 1.1. An IFS is a quadruple {(W,W), (X,X ), u, p}, where
- (W,W) and (X,X ) are measurable spaces,
- u : (W ×X,W ⊗X ) → (W,W) is a measurable function,
- p is a probability measure on X .

Received : November 11, 2004.

170



ON STRONG ERGODICITY 171

According to the Ionescu Tulcea theorem, for each probability measure µ on
W there exist a probability space (Ω,K,Pµ) = ((W × X)N, (W ⊗ X )N,Pµ), N =
{0, 1, 2, . . .}, and two sequences (Wn, n ≥ 0) und (Xn, n ≥ 0) with values in W re-
spectively X such that Pµ(W0 ∈ A) = µ(A), A ∈ W, (Xn, n ≥ 0) is i. i. d. with
common probability distribution p, Wn+1 = u(Wn, Xn), n ≥ 0.

Hence the random variable Wn may be represented as the n th iterate of u to mean
that

Wn = u(u(. . . u(u(W0, X0), X1), . . .), Xn−1).

When constructing fractals, see e. g. [3], X is a finite set X = {1, . . . , N}, W a real
interval endowed with the Borel σ-algebra W = BW and the mappings ux : W → W ,
x ∈ X, which are iterated, are chosen at random by means of the distribution p.

In the context of (non-linear) autoregressive time series models, W and X are
(subsets of) Euclidean spaces, p is the noise-distribution and the process (Wn, n ≥ 0)
is the time series which is recursively generated by the transition function u and the
noise-terms, see e. g. [2] and [4].

In any case of an IFS the focus of attention is to ensure desirable properties for
the Markov chain (Wn, n ≥ 0). Here we concentrate our interest to the (aperiodic)
strong ergodicity of the Markov chain.

Definition 1.2. Let (Wn, n ≥ 0) be a Markov chain on (W,W) with transition prob-
ability Q. Let Qn be the corresponding n-step transition probability and Q(n) the
average or Cesaro sum Q(n) = 1

n

∑n−1
j=0 Qj(w,A), w ∈ W , A ∈ W, n = 1, 2, . . ..

The Markov chain (Wn, n ≥ 0) is called strongly ergodic if and only if there exists
a probability measure π on W such that

∀w ∈ W ‖ Q(n)(w, .)− π(.) ‖→ 0

as n → ∞, where ‖ . ‖ denotes the norm of total variation on the space of signed
measures on W.

Moreover, the Markov chain (Wn, n ≥ 0) is called aperiodic strongly ergodic if and
only if there exists a probability measure π on (W,W) such that

∀w ∈ W ‖ Qn(w, .)− π(.) ‖→ 0

as n →∞.

As for these definitions and their consequences, we refer to [5] and [7]. The prob-
ability measure π in Definition 1.2 is the unique invariant probability measure for
Q, as easily can be checked. Therefore according to Proposition 9.2.2 in [5] strong
ergodicity as defined above is equivalent to the so-called ”positive Harris recurrence”
of the Markov chain (Wn, n ≥ 0). As well the aperiodic strong ergodicity defined
above is equivalent to the ”aperiodic positive Harris recurrence” of the Markov chain
(Wn, n ≥ 0) according to Theorems 4.3.3 and 4.3.4 in [5]. For a discussion of the
property of ”(aperiodic) positive Harris recurrence” we refer again to the books [5]
and [7]. Of course, aperiodic strong ergodicity implies strong ergodicity and the latter
property implies e. g. that the Markov chain (Wn, n ≥ 0) with π as initial distrib-
ution, i. e. W0 is distributed according to π, is an ergodic stationary process (see
Proposition 2.4.3 in [5]).

Next, we present a sufficient condition for a strongly ergodic Markov chain to be
aperiodic.
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Lemma 1.1. Let the Markov chain (Wn, n ≥ 0) be strongly ergodic and its transition
probability Q satisfy ∀w ∈ W,A ∈ W : Q(w, A) =

∫
A

q(w, w′)φ(dw′) with q(w, w′) > 0
for a nontrivial σ-finite measure φ on W, w, w′ ∈ W . Then (Wn, n ≥ 0) is aperiodic.

Proof. If π is the unique invariant probability measure for Q given by the assumption,

(Wn, n ≥ 0) is π-irreducible, since π(A) > 0 implies
∞∑

j=1

Qj(w, A) > 0 for all w ∈ W .

According to Proposition 5.2.4 in [7], there is a countable collection of ”small sets”

Ci ∈ W such that W =
∞⋃

i=1

Ci. As π(W ) = 1, there exists at least one small set Ci0

with π(Ci0) > 0. Proposition 4.2.7 in [5] ensures the existence of a so-called d-cycle

{D1, . . . , Dd} of disjoint sets Di ∈ W such that π(
d⋃

i=1

Di) = 1.

The equality

π(A) =
∫

W

Q(w, A)π(dw) =
∫

W

∫

A

q(w, w′)φ(dw′)π(dw)

=
∫

A

∫

W

q(w, w′)π(dw)φ(dw′)

shows the equivalence of π and φ.
Now, if d = 1, then π(D1) = 1. If d > 1 then

π(D2) =
∫

W

Q(w, D2)π(dw)

=
∫

D1

Q(w, D2)π(dw) +
∫

W\∪d
i=2Di

Q(w, D2)π(dw) = π(D1),

since {D1, . . . , Dd} is a d-cycle. By symmetry, π(Di) = 1
d , i = 1, . . . , d.

So, φ(Di) > 0, i = 1, . . . , d. The assumption ”d > 1” leads to a contradiction, since
then Q(w, D1) = 0 for all w ∈ D1, which would imply φ(D1) = 0. Therefore ”d = 1”
is valid, i. e. (Wn, n ≥ 0) aperiodic.

By Theorems 4.3.2 and 4.3.4 in [5], (Wn, n ≥ 0) is aperiodic strongly ergodic.
¤

Definition 1.3. An IFS {(W,W), (X,X ), u, p} is called (aperiodic) strongly ergodic
if and only if the Markov chain (Wn, n ≥ 0) generated by this IFS is (aperiodic)
strongly ergodic.

The presentation of our results is organized as follows: In Section 2 we give two
sufficient conditions for the (aperiodic) strong ergodicity of an IFS. These are applied
in Section 3 to some (non-linear) autoregressive time series models, i. e. for those
models sufficient conditions are given for the (aperiodic) strong ergodicity of the
corresponding time series. These applications exhibit the powerful potential of the
available theory on Markov chains, respectively IFSs.

2. Two Theorems on IFSs

In [5] several theorems are presented in which the existence of a unique invariant
probability measure π for a Markov chain is taken as an assumption or is proved in a
first step on the way to derive the (aperiodic) positive Harris recurrence of the chain,
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respectively the (aperiodic) strong ergodicity (see the remarks following Definition
1.2). Following this approach we shall prove

Theorem 2.1. Consider an IFS {(W,W), (X,X ), u, p} = {(R,B), (R,B), u, p}, where
B denotes the Borel σ-algebra. Assume that

(1)
∫

X

l(x)p(dx) < 1, where

l(x) = sup
w′ 6=w′′

| ux(w′)− ux(w′′) |
| w′ − w′′ | ;

(2) there exists w0 ∈ W such that
∫

X
| w0 − ux(w0) | p(dx) < ∞;

(3) for all w ∈ W the sections uw : X → W are surjective and continuously differ-
entiable with

0 <
d

dx
uw(x) < ∞;

(4) p has a strictly positive density p̃ with respect to the Lebesgue measure λ on R.
Then the IFS, i. e. the Markov chain (Wn, n ≥ 0) generated by this IFS, is

aperiodic strongly ergodic.

Proof. Theorem 4 in [6] shows that (1) and (2) ensure the existence of a unique
invariant probability measure π for (Wn, n ≥ 0), respectively its transition probability
Q.

Now, according to the theorem on the transformation of densities each probability
measure Q(w, .) has a strictly positive Lebesgue density

q(w,w′) = p̃(u−1
w (w′))

(
d

dx
uw(u−1

w (w′))
)−1

, w, w′ ∈ W.

The Lebesgue measure λ is in turn absolutely continuous with respect to π.
If A ∈ W has positive Lebesgue measure λ(A), then Q(w, A) > 0 for all w ∈ W and

therefore π(A) =
∫

W
Q(w,A)π(dw) > 0. As a consequence we get Q(w, .) ¿ λ ¿ π

for every w ∈ W . Theorem 4.4.1 in [5] ensures the positive Harris recurrence of the
chain (Wn, n ≥ 0), in other words its strong ergodicity, while Lemma 1.1 then ensures
its aperiodicity.

¤

Remark 2.1. Assumption (1) means that the mappings ux are contractions in the
mean, assumption (2) that they are in some sense non-explosive. Assumption (4) is
satisfied in many cases, e. g. in the context of time series models for the normal
distribution as noise-distribution.

Another possibility to ensure strong ergodicity and then, by some additional as-
sumption, even aperiodicity consists in assuming a so-called drift-condition for the
Markov chain, see again [7] and [5]. We namely have

Theorem 2.2. Consider an IFS {(W,W), (X,X ), u, p}, where (W,W) is a locally
compact separable metric space endowed with the Borel σ-algebra W. Moreover as-
sume that
(1) the Markov chain (Wn, n ≥ 0) is φ-irreducible for a nontrivial σ-finite measure

φ on W, i. e. φ(A) > 0 for A ∈ W implies
∞∑

n=1

Qn(w, A) > 0 for all w ∈ W ;

(2) for all x ∈ X the sections ux are continuous;
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(3) there exist a measurable function V : W → R+ and a so-called moment function
h : W → R+ such that

∫

X

V (u(w, x))p(dx) ≤ V (w)− h(w) + 1.

(A measurable function h : W → R+ is called a moment function if and only if
there exists a sequence of compact sets Kn ↑ W such that inf

w∈Kc
n

h(w) →∞ with

Kc
n = W\Kn.)

Under the above assumptions, the IFS, i. e. the Markov chain (Wn, n ≥ 0) gener-
ated by this IFS, is strongly ergodic.

The proof follows directly from that of Proposition 4.4.3 in [5], if that Proposition
is applied to the Markov chain (Wn, n ≥ 0) respectively the transition probability Q
of the IFS: Assumption (2) implies that the transition probability Q of (Wn, n ≥ 0) is
weak-Feller, i. e. for each sequence (wn, n ≥ 0) → w, wn, w ∈ W , the corresponding
sequence Q(wn, .) converges weakly to Q(w, .). Moreover the Markov operator gives
QV (w) =

∫
W

V (w′)Q(w, dw′) =
∫

X
V (u(w, x))p(dx) according to the transformation

theorem. ¤
In the next section we present examples for which the above theorems apply.

3. Applications to time series models

In this section we apply the above theorems to some time series models which are
frequently studied in the context of financial markets, see e. g. [4], [1].

Example 3.1. Consider an IFS {(W,W), (X,X ), u, p} = {(R,B), (R,B), u, p}, where
u(w, x) = f(w) + g(w)x for measurable functions f, g : W → W .

Case (1): If the random variables Xn have common probability distribution p, let
us assume that
(1a) E[| Xn |] < ∞;
(1b) g(.) > 0, f and g Lipschitz-continuous such that

l(f) + l(g)E[| Xn |] < 1,

where l(f) = sup
w′ 6=w′′

| f(w′)− f(w′′) |
| w′ − w′′ | , l(g);

(1c) p has a strictly positive Lebesgue density p̃.
Case (2): Assume that

(2a) p is the standard normal distribution, i. e. Xn ∼ N(0, 1), n ≥ 0;
(2b) g(.) > 0, f, g continuous;
(2c) there exists a compact set K ⊂ W such that sup

w∈K
[f(w)2+g(w)2] ≤ 1 and f(w)2+

g(w)2 ≤ 1 + (1− γ)w2 for all w 6∈ K and for some 0 < γ < 1.

For this example we shall prove

Theorem 3.1. In both Cases (1) and (2) the time series (Wn, n ≥ 0) generated by
the IFS of Example 3.1, i. e. the recursively defined process

Wn+1 = f(Wn) + g(Wn)Xn, n ≥ 0,

is an aperiodic strongly ergodic Markov chain.
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Proof. In Case (1) all assumptions of Theorem 2.1 are satisfied:
(1a) implies (2), since for each w0 ∈ W

∫

X

| w0 − ux(w0) | p(dx) ≤| w0 − f(w0) | +g(w0)E[| Xn |],

(1b) implies (3), since
d

dx
uw(x) = g(w) > 0,

(1c) is (4) and finally (1b) implies (1), since l(x) ≤ l(f) + l(g) | x |, x ∈ X.
We show that in Case (2) all assumptions of Theorem 2.2 are satisfied. Since

Q(w, .) is the N(f(w), g(w)2)-distribution for all w ∈ W , Assumption (1) is valid
with φ = Lebesgue measure λ. Obviously (2b) implies (2). Next, (2c) ensures that
Assumption (3) is satisfied with V (w) = w2 and

h(w) =
{

0 , w ∈ K
γw2 , w 6∈ K

,

since
∫

X

V (u(w, x))p(dx) =
∫

X

[f(w) + g(w)x]2p(dx)

= f(w)2 + g(w)2

due to the fact that E[Xn] = 0 and E[X2
n] = 1.

Moreover, the Markov chain (Wn, n ≥ 0) is aperiodic by Lemma 1.1, since all
Q(w, .) are normally distributed.

¤

A well-known special case of Example 3.1 is

Example 3.2. The AR(1)-time series model described by the recursion

Wn+1 = αWn + Xn, n ≥ 0

with i. i. d. Xn, n ≥ 0, with common distribution N(0, σ2), σ > 0, is a special case
of Example 3.1 with f(w) = αw, g(w) = σ, p the N(0, 1)-distribution.

The aperiodic strong ergodicity of the time series (Wn, n ≥ 0) under the condition
| α |< 1 holds by Theorem 3.1, since l(f) =| α | and l(g) = 0.

Another special case of Example 3.1 is

Example 3.3. Consider the IFS of Example 3.1 with u given by

u(w, x) = αw +
√

α0 + α1w2x

with α ≥ 0, α0 > 0, α1 ≥ 0, i. e. f(w) = αw and g(w) =
√

α0 + α1w2, and with p
the standard normal distribution N(0, 1).

This IFS induces an ARCH(1)-time series model

Wn+1 = αWn +
√

α0 + α1W 2
nXn

for which

E[Wn+1 | W0, . . . ,Wn] = αWn

V ar[Wn+1 | W0, . . . ,Wn] = α0 + α1W
2
n , n ≥ 0.
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Theorem 3.1 applied to this special time series model yields two sets of sufficient
conditions for the aperiodic strong ergodicity of the time series (Wn, n ≥ 0).

Theorem 3.2. If the parameters of the Markov chain (Wn, n ≥ 0) generated in
Example 3.3 satisfy one of the conditions

(1) α +
√

2
α1

π
< 1

or

(2) α0 ≤ 1 and α2 + α1 < 1,

then (Wn, n ≥ 0) is aperiodic strongly ergodic.

Proof. Under Condition (1) we have Case (1) of Example 3.1. Since E[| Xn |] =
√

2
π ,

l(f) = α, l(g) =
√

α1, the inequality (1) is nothing else but Assumption (1b) of Case
(1). Under Condition (2) we are in Case (2) of Example 3.1: Choose K = {0} and
γ = 1− (α2 + α1) > 0 to ensure Assumption (2c).

¤

Remark 3.1. Conditions (1) and (2) in Theorem 3.2 are different in the sense that
neither implies the other one. First, note that under both conditions we should have
α < 1. Under (2) the restrictions α0 ≤ 1 and α1 < 1 should hold, whereas under (1)
there is no restriction on α0, while α1 may moderately exceed 1. On the other hand,
(2) allows e. g. a combination like α = 0.9 and α1 = 0.18 which is not allowed under
(1).

As another interesting example to which Theorem 2.2 can be applied is a so-called
autoregressive time series model with random coefficients (an RCA-model for short),
see [8].

Example 3.4. Consider an IFS {(W,W), (X,X ), u, p} = {(R,B), (R2,B2), u, q⊗ r},
where

- p is the product of the measures q and r on B;
- u has the form u(w, x) = u(w, (ξ, ε)) = (α+ξ)w+ ε for x = (ξ, ε) ∈ R2 and some

α ∈ R.
The measure p = q ⊗ r generates two independent sequences of i. i. d. random

variables (ξn, n ≥ 0) and (εn, n ≥ 0), where ξn is distributed according to q and εn

according to r.
Let us assume that εn is standard-normally distributed, εn ∼ N(0, 1), and E[ξ] = 0,

V ar[ξ] = σ2
ξ < ∞.

This IFS generates a time series (Wn, n ≥ 0) by the recursion

Wn+1 = (α + ξn)Wn + εn, n ≥ 0.

We can prove

Theorem 3.3. Under the additional assumption

α2 + σ2
ξ < 1,

the time series (Wn, n ≥ 0) of Example 3.4 is an aperiodic strongly ergodic Markov
chain.
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Proof. We show that all assumptions in Theorem 2.2 and Lemma 1.1 are satisfied.
If f denotes the density of the N(0, 1)-distribution, we can represent the transition

probability Q of (Wn, n ≥ 0) as

Q(w, A) =
∫

X

Pµ(Wn+1 ∈ A | Wn = w, ξn = x)q(dx)

=
∫

X

∫

A

f(ε− αw − xw)dε q(dx)

=
∫

A

∫

X

f(ε− αw − xw)q(dx)dε, w ∈ W,A ∈ W.

Therefore, each Q(w, .) has a strictly positive Lebesgue density. Now, Assumption
(1) of Theorem 2.2 is fulfilled. As (2) is obviously valid, (3) remains to be checked.
With V (w) = w2 we have

∫

X

V (u(w, x))p(dx) =
∫

R

∫

R
[(α + x)w + ε]2q(dx)f(ε)dε

= (αw)2 + w2E[ξ2] + E[ε2]

= w2[α2 + σ2
ξ ] + 1 = V (w)[α2 + σ2

ξ ] + 1

= V (w)− h(w) + 1

with h(w) = [1−α2 − σ2
ξ ]w2. By the additional assumption, h is a moment function.

Since Lemma 1.1 applies with φ = Lebesgue measure, the proof is complete.
¤

The way we took to ensure the (aperiodic) strong ergodicity for certain autoregres-
sive time series models may be modified by using different conditions to ensure the
existence of a unique invariant probability measure, respectively different drift condi-
tions in combination with additional assumptions. Various variants of such conditions
and additional assumptions are dealt with in the literature cited above.

References
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