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Descriptive Analysis of New Model of Unbounded 3× 3
Operator Matrix with Application
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Abstract. In the present paper, we are interested to develop some spectral properties of

new model of unbounded block 3 × 3 of operator matrix with non diagonal domain, named

one sided block 3 × 3 of operator matrix. Some new hypotheses are invested assuring a new
approach to find a fine description of the spectrum, the resolvent expression as well as some

essential spectra of such new matrix model independently of the knowledge of the union of

some essential spectra of its diagonal operators entries. Our developed results extending some
known results from I. Marzouk et al. (from Georgian Math. J., https://doi.org/10.1515/gmj-

2023-2071 (2023)) to the case of one sided block 3×3 of operator matrix form. Physical model

of neutron transport equation with one partly elastic diagonal collision operator is stated to
exam the validity of our theoretical framework.

2020 Mathematics Subject Classification. Primary 39B42, 47A56, 47A13, 47A10, 47A53,
34K08, 47A55; Secondary 47B99.

Key words and phrases. Theory of operator matrices, Fredholm theory, spectral theory,
neutron transport equation with partly elastic collision operator.

1. Introduction

During the past decades the spectral analysis of the problem of operator matrices
with mixed forms is one of the most famous topics in the studies of the spectral
analysis problem of unbounded block operator matrix. A strong renewal of interest
in the study of n× n block of operator matrix form was emerged in the literature in
more than one occasion [2, 3, 4, 10, 12, 13, 19, 20, 22, 23, 30, 32], where (n ≥ 2).
Unfortunately, one of the critical topics in the studies of such kind of problem is the
case where n over strictly 2. In this prospect, many mathematicians tackled such
fields by decomposing n × n block of operator matrix with the partitioned of 2 × 2
block operator matrix with entries blocks of the partition. Mainly, such concept of
study fail not be interesting. So, it is interesting to prove the generality of such study.

Even in approach physics, many evolution equations may be modeled by the form
of 3×3 block of unbounded operator matrix with mixed domains as mentioned by: J.
A. Burns et al. in [3, 4] for wave equation with Viscoelastic Damping, G. Leugering
in [19], T. Nishida et al. in [23] and G. Strohmer in [31] for equations describing the
flow of viscous, compressible and heat conducting fluids in R3, D.L.Russel in [27, 28]
for Euler Bernoulli Beam, and among others. Nevertheless, the above examples seem
to indicate that one of the most complicated problems arises in the situation where
the domain fail not be maximal or diagonal.
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Based upon, the literature of mathematics built a generalized study for the model
of unbounded operator matrix with non maximal domain coined by the name of the
one sided coupled operator matrix. Such model of operator was originate informed
and invested in the serials of work by Klauss J. Engel in [5, 9, 11, 12], to offer to the
reader the impact of the use of such model in the spectral analysis properties of 2× 2
block of operator matrix case. So, attracted by the specificity of this nice notion of
operator matrix form our current research prompts us to lead who this model can be
tackled for the case of 3 × 3 operator matrix without using any partitioned form of
2× 2 block of operator matrix with block operators entries. Mainly, we start with a
general setting which could be useful to draw an interesting results intervening in the
theory of operators matrices.

Therefore, our interest in this paper is to find some new criteria on the operators
entries of our matrix form allowing to show their compatibility in the formulation of a
new factorization form different then the most known in the theory of operator matri-
ces by Frobenuis-Schur factorization form. The most relevance of such new obtained
factorization form seems to be remarked to derive new argumentations and criterions
which could be useful in spectral description of the spectrum, the resolvent form of
our studied matrix form as well as in proving the interaction of the Fredholmness
properties between our matrix and in terms of their diagonal entries. The illustration
of the validity of our development sketched to an example of an integral differential
equation. Precisely, trough some arguments of Abdul-Majeed Al-Izeri et al. devel-
oped in [1], which works straightforwardly in neutron transport equation with partly
elastic collision operator, we iterate our approach in order to adopt our main inves-
tigations of our matrix framework to the neutron transport equation with one partly
elastic diagonal collision operator and with specific boundary condition. Specifically,
our idea in this paper aims not only to enlarge the spectral analysis developed by
Klauss J. Engel in [5] but also to introduce a new model of unbounded block 3 × 3
of operator matrix allowing to develop with a new concept an appropriate criteria to
ameliorate and extend some works done by I. Walha et al. in [2, 20].

The outline of our paper is organized as follows: Section 2 is devoted to recall
some basic notations and definitions from the theory of operators and presents their
fundamental properties. In Section 3, we introduce a new model of unbounded block
3× 3 operator matrix M. Sufficient criteria are introduced to guarantee our interest
and to prove an improvement in the theory of operators matrices and an amelioration
to many earlier works. In the last section, generic example of neutron transport
equation with one partly elastic diagonal collision operator is introduced to exam the
validity and the accuracy ideas developed in the theoretical part of this paper.

2. Framework and basic definitions

In this section, we introduce the framework and we prove some preliminary results
such as the analysis of perturbed Fredholm operators via Fredholm perturbation and
relations between those operators and their corresponding essential spectra.

Let X and Y be two Banach spaces. We denote by:

- L(X,Y ) : the set of bounded linear operators from X to Y.

- C(X,Y ) : the set of densely defined closed linear operators from X to Y.

- K(X,Y ) : the set of compact operators from X to Y.
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- PK(X): the set of polynomially compact operators which defined as:

PK(X) :={ A ∈ L(X) : there exists a nonzero complex polynomial

P (z) =

n∑
k=0

akz
k satisfying P (A) ∈ K(X)}.

- CΩ : the complement of a subset Ω ⊂ C. Before moving to define sets of Fredholm
operators, we need to clarify to the readers the meaning of the following notations for
T ∈ C(X,Y ) as: D(T ) for the domain, N(T ) ⊂ X for the null space and R(T ) ⊂ Y
for the range of T. The nullity, α(T ), of T is defined as the dimension of N(T ) and
the deficiency, β(T ), of T is defined as the codimension of R(T ).

Sets of Fredholm operators of unbounded linear operator were defined as follows:

Definition 2.1. (i) Set of upper semi-Fredholm operators from X into Y is defined
by:

Φ+(X,Y ) := {T ∈ C(X,Y ) : α(T ) <∞ and R(T ) is closed in Y }.
(ii) Set of lower semi-Fredholm operators from X into Y is defined by:

Φ−(X,Y ) := {T ∈ C(X,Y ) : β(T ) <∞ and R(T )is closed in Y }.
(iii) Set of Fredholm operator from X into Y is defined as:

Φ(X,Y ) := Φ−(X,Y ) ∩ Φ+(X,Y ).

For T ∈ Φ(X,Y ), the index of T is defined by the number i(T ) := α(T )− β(T ).
The set of upper (resp. lower) Weyl operators from X into Y is defined by:

W+(X,Y ) := {T ∈ C(X,Y ) : T ∈ Φ+(X,Y ) with i(T ) ≤ 0}(
resp. W−(X,Y ) := {T ∈ C(X,Y ) : T ∈ Φ−(X,Y ) with i(T ) ≥ 0}

)
.

More general them the sets of upper (resp. lower) semi-Fredholm and upper (resp.
lower) Weyl operators, we introduce the following definition.

Definition 2.2. Let T ∈ C(X,Y ).
(i) Sets of left and right Fredholm operators from X into Y are defined respectively
as:

Φl(X,Y ) := {T ∈ Φ+(X,Y ) : R(T ) is complemented subspace of Y }
and

Φr(X) := {T ∈ Φ−(X,Y ) : N(T ) is complemented subspace of X}.
(ii) The sets of left and right Weyl operators from X into Y are defined respectively
by:

Wl(X,Y ) := {T ∈ Φl(X,Y ) : i(T ) ≤ 0}
and

Wr(X,Y ) := {T ∈ Φr(X,Y ) : i(T ) ≥ 0}.

Consequently from Definitions 2.1 and 2.2, we introduce the set of Weyl operators
which is defined as:

W(X,Y ) :=W+(X,Y ) ∩W−(X,Y )

=Wl(X,Y ) ∩Wr(X,Y ) = {T ∈ Φ(X,Y ) : i(T ) = 0}.
If X = Y, the sets L(X,X), C(X,X), K(X,X), Φ+(X,X), Φ−(X,X), Φ(X,X),
W+(X,X),W−(X,X), Φl(X,X), Φr(X,X),Wl(X,X),Wr(X,X) andW(X,X) will
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be replaced by L(X), C(X), K(X), Φ+(X), Φ−(X), Φ(X), W+(X), W−(X), Φl(X),
Φr(X), Wl(X), Wr(X) and W(X), respectively.

For H ∈ {Φ+,Φ−,Φl,Φr,Φ,W+,W−,Wl,Wr,W}, the following notations will be
required to clarified the analysis results developed along this paper:
• P (H(X,Y )): defines the set of Fredholm perturbation from X into Y as:

P ∈ P (H(X,Y )) if and only if T + P ∈ H(X,Y ), for all T ∈ H(X,Y ).

• σH(T ): defines the essential spectrum of T ∈ C(X) as:

σH(T ) := {µ ∈ C : µ− T /∈ H(X)}.
In the following, we list some basic notations about some classes of Fredholm

perturbations those are used in our formulation:

Definition 2.3. Let T ∈ L(X,Y ).
(i) T is said a weakly compact operator from X into Y , if T (M) is relatively weakly
compact on Y , for every bounded subset M ⊂ X.

The set of weakly compact operators from X into Y will be denoted byWC(X,Y ).
(ii) T is called a strictly singular operator if, for every infinite-dimensional subspace
M, the restriction of T to M is not a homeomorphism, that is m(TJM ) = 0, where
JM is the natural inclusion of M into Y .

The set of strictly singular operators from X into Y will be denoted by SS(X,Y ).
If X = Y , the family of weakly compact (resp. strictly singular) operators on

X, WC(X) := WC(X,X) (resp. SS(X) := SS(X,X)) is a closed two-sided ideal of
L(X).

Remark 2.1. Let (Ω,Σ, µ) stands for a positive measure space. Xp denotes the space
Lp(Ω, dµ) (1 ≤ p ≤ ∞), where (Ω,Σ, µ) stands for a positive measure space.

Following Theorem 1 in [24, 25], in a special case for L1(Ω, dµ)-space (respectively
C(Ω)-spaces, with Ω is a compact Hausdorff space), we obtain:

WC(L1(Ω, dµ)) = SS(X1)L1(Ω, dµ)).

However, when dealing with reflexive space Lp(Ω, dµ), 1 < p < ∞, we have
L(Lp(Ω, dµ)) = WC(Lp(Ω, dµ)). On the other hand, it follows from Theorem 5.2
in [14] that:

K(Lp(Ω, dµ)) ⊂ 6= SS(Lp(Ω, dµ)) ⊂ 6= WC(Lp(Ω, dµ))

with p 6= 2. In particular case for p = 2 we get:

K(Lp(Ω, dµ)) = SS(Lp(Ω, dµ)) =WC(Lp(Ω, dµ)).

In the theory of operators matrices, the analysis of the invertibility problem of
operator matrix block 3×3 become an attractive ways to keep some spectral properties
of bounded operator matrix.

Proposition 2.1. Let the Banach spaces Ui, for 1 ≤ i ≤ 3, (A,E,K) ∈ L(U1) ×
L(U2) × L(U3), B ∈ L(U2,U1), C ∈ L(U3,U1), D ∈ L(U1,U2), F ∈ L(U3,U2),

G ∈ L(U3,U1), H ∈ L(U3,U2), and consider a bounded operator matrix on

3∏
i=1

Ui

as:

M :=

A B C
D E F
G H K

 .
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Assume that A and ∆1 := E − DA−1B are two invertible operators, then the
following items are equivalent:
(i) M is invertible in L(U1 ×U2 ×U3).
(ii) ∆2 := K −GA−1C − [H −GA−1B]∆−1

1 [F −DA−1C] is invertible in U3.

Proof. We begin to proof (ii) =⇒ (i).
Based on the Frobenius-Schur factorization of the operator M, for invertible oper-

ators A and ∆1, we may rewritten then as:

M := Prdiag(A,∆1,∆2)Pl
where:

Pr :=

 I 0 0
Pr1 I 0
Pr2 Pr3 I

 Pr1 := DA−1

Pr2 := GA−1

Pr3 := [H −GA−1B]∆−1
1

and

Pl :=

 I Pl1 Pl2
0 I Pl3
0 0 I

 Pl1 := A−1B
Pl2 := A−1C

Pl3 := ∆−1
1 [F −DA−1C]

Therefore, it is seen to observe that the following matrix form P−1
l diag(A−1,∆1

1,∆
−1
2 )P−1

r

is the inverse of M, for:

P−1
l :=

 I −Pl1 −Pl2 + Pl1Pl3
0 I −Pl3
0 0 I

 and P−1
r :=

 I 0 0
−Pr1 I 0

−Pr2 + Pr3Pr1 −Pr3 I

 .

We proof (i) =⇒ (ii).
Indeed, assume that M, A and ∆1 are invertible.
A short computation leads the following expression:

P−1
r MP−1

l := diag(A,∆1,∆2).

Which amounts that the operator ∆2 is invertible. �

3. Principal and main results

We state the Banach spaces Ui, for 1 ≤ i ≤ 4, and we consider:

• the maximal operator Ã (resp. Ẽ and K) defined with maximal domain D(Ã)

(resp. D(Ẽ) and D(K)) in U1 (resp. in U2 and U3) as:

Ã : D(Ã) ⊂ U1 −→ U1 (resp. Ẽ : D(Ẽ) ⊂ U2 −→ U2 and K : D(K) ⊂ U3 → U3),

• the linear operators:

A : D(A) ⊂ U1 → U1 E : D(E) ⊂ U2 → U2

B : D(B) ⊂ U2 → U1 C : D(C) ⊂ U3 → U1

D : D(D) ⊂ U1 → U2 F : D(F ) ⊂ U3 → U2

G : D(G) ⊂ U1 → U3 H : D(H) ⊂ U2 → U3

• the space of boundaries condition U4 for the graph norm on D(Ã),D(Ẽ),D(K),
defines the boundary operators ΨUi , 1 ≤ i ≤ 3, as in the following diagram which is
needed to define our abstract framework of operator matrix with non maximal domain
as described in the next definition.
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Definition 3.1. In the product of the Banach spaces U :=

3∏
k=1

Uk, we define the

operator matrix M on its non diagonal domain

D(M) :=


fg
h

 :
f ∈ D(Ã)

g ∈ D(Ẽ)
h ∈ D(K)

and ΨU1
(f) = ΨU2

(g) = ΨU3
(h)


as:

M

 f
g
h

 :=

 A B C
D E F
G H K

 f
g
h

 :=

 Ãf +Bg + Ch

Df + Ẽg + Fh
Gf +Hg +Kh

 , ∀

 f
g
h

 ∈ D(M).

The idea of this work consists in introducing an abstract setting allowing to analysis
some spectral properties of the above kind matrix form.

Especially, we provide a new arguments which ensure the computation of some
essential spectra of the matrix form introducing in Definition 3.1 independently of
their two Schur complements but in relation with their diagonal operators entries.

Such treatment are not artificial but these are meaningful as an easier manner in
the expression of the eigenvalues of some physical problems.

To explain such interest, we define some other operators

Ã| = Ã |ker ΨU1
and Ẽ| = Ẽ |ker ΨU2

,

due to fact that we deal with unbounded model of 3×3 block operator matrix defined
with non diagonal domain. The specificity of such operators is offered to provide
some spectral interactions between the matrix M and another matrix form M0 :=

diag(Ã|, Ẽ|,K) defined with diagonal domain D(M0) := D(Ã|)×D(Ẽ|)×D(K).
We assume the following hypothesis on the entries of the operator matrix M.

(H1) The operators Ã, Ẽ and K are densely defined and closed linear operators.
(H2) The operators ΨUi are surjective, for i = {1, 2}.

(H3)

{
D(Ã) ⊃ D(D) ∩ D(G),

D and G are bounded from D(Ã) into U2 and U3, respectively.

(H4)

{
D(Ẽ) ⊃ D(B) ∩ D(H),

B and H are bounded from D(Ẽ) into U1 and U3, respectively.

(H5)

{
D(K) ⊃ D(C) ∩ D(F ),
C and F are bounded from D(K) into U1 and U2, respectively.

We list some results whose will be essential to formulate our goal.
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Remark 3.1. Assume that the assumptions (H1)− (H2) are satisfied. Then, we have:

(i) ΨU1
(D(Ã)) = {0}, resp. ΨU2

(D(Ẽ)) = {0}, the operator Ã| := Ã|ker ΨUi
, resp.

Ẽ| := Ẽ|ker ΨU2
is closed and therefore, D(Ã|), resp. D(Ẽ|), is a closed subset of U1,

resp. U2. Moreover, for µ ∈ %(Ã|) ∩ %(Ẽ|), one has

D(Ã) = D(Ã|)⊕ ker(µ− Ã) and D(Ẽ) = D(Ẽ|)⊕ ker(µ− Ẽ).

(ii) Following Lemma 1.2 in [15] in view of the last item, we deduce the following
continuous bijections:

Ψ1µ := ΨU1 |ker(µ−Ã) and Ψ2µ := ΨU2 |ker(µ−Ẽ),

from ker(µ− Ã) and ker(µ− Ẽ) into U1 and U2, respectively, for µ ∈ %(Ã|) ∩ %(Ẽ|).
(iii) According assumption (H2) with the item (ii), one has two isomorphisms Ψ2µ

and Ψ3µ which having continuous inverses.

It follows from the last remark that for µ ∈ %(Ã|) ∩ %(Ẽ|) ∩ %(K), the inverse of
Ψ1µ and Ψ2µ will be essential to define the bounded operators L1µ, L2µ and L3µ as
stated in the following Lemma:

Lemma 3.1. Let µ ∈ %(Ã|) ∩ %(Ẽ|) ∩ %(K), then we define the bounded operators:

(i)

{
L1µ : D(Ẽ) −→ D(Ã)

g 7−→ L1µ(g) = Ψ−1
1µ ◦ΨU2(g),

(ii)

{
L2µ : D(K) −→ D(Ã)

h 7−→ L2µ(h) = Ψ−1
1µ ◦ΨU3(h),

(iii)

{
L3µ : D(K) −→ D(Ẽ)

h 7−→ L3µ(h) = Ψ−1
2µ ◦ΨU3(h).

Furthermore, the linear operators ΨU1
, ΨU2

and ΨU3
obey to the following rela-

tions:

ΨU1
(L1µg) = ΨU2

(g), ΨU1
(L2µh) = ΨU3

(h), ΨU2
(L3µh) = ΨU3

(h) (1)

for all g ∈ D(Ẽ) and h ∈ D(K).

Proof. The results follows immediately from Lemma 3.1. �

Remark 3.2. We should be observe from Lemma 3.1, that, for µ ∈ %(Ã|) ∩ %(Ẽ|) ∩
%(K), the unique operator L1µ (resp. L2µ and L3µ) obey to Eq. (1) with Im(L1µ) ⊂
Ker(µ− Ã) (resp. Im(L2µ) ⊂ Ker(µ− Ã) and Im(L3µ) ⊂ Ker(µ− Ẽ)).

For µ ∈ ρ(Ã|) ∩ ρ(Ẽ|) ∩ ρ(K), we state the following bounded operator, in view of
the hypotheses (H1)− (H5), as:

U1(µ) := −L1µ + (µ− Ã|)
−1B V1(µ) := (µ− Ẽ|)

−1D

U2(µ) := L1µL3µ − L2µ + (µ− Ã|)
−1C V2(µ) := (µ−K)−1G

U3(µ) := −L3µ + (µ− Ẽ|)
−1F V3(µ) := (µ−K)−1H.

Wµ :=

 I U1(µ) U2(µ)
V1(µ) I U3(µ)
V2(µ) V3(µ) I

 ∈ L(D(Ã)×D(Ẽ)×D(K)), (2)

which are powerful tools to reach a formulation of a fine decomposition of our model
of operator matrix.
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Lemma 3.2. Let µ ∈ %(Ã|) ∩ %(Ẽ|) ∩ %(K).
Suppose that the hypotheses (H1)− (H5) hold true.
Then, the operator matrix µ−M obey to the following decomposition on D(M):

µ−M = (µ−M0)Wµ. (3)

Proof. Let µ ∈ %(Ã|) ∩ %(Ẽ|) ∩ %(K).
Firstly, we shall show that: f

g
h

 ∈ D(M) ⇐⇒ Wµ

 f
g
h

 ∈ D(M0).

To get this equivalent, let consider

 f
g
h

 ∈ D(Ã)×D(Ẽ)×D(K).

A short computation, reveals that:

Wµ

 f
g
h

 =


f − L1µg + L1µL3µh− L2µh︸ ︷︷ ︸

=0

+(µ− Ã|)−1Bg + (µ− Ã|)−1Ch

(µ− Ẽ|)−1Df + g − L3µh+ (µ− Ẽ|)−1Fh

(µ−K)−1Gf + (µ−K)−1Hg + h

 .

Hence,

Wµ

fg
h

 ∈ D(M0) = D(Ã|)×D(Ẽ|)×D(K)

= (D(Ã) ∩ ker ΨU1
)× (D(Ẽ) ∩ ker ΨU2

)×D(K).

That is,

Wµ

fg
h

 ∈ D(M0) ⇐⇒


f − L1µg + (µ− Ã|)−1Bg + (µ− Ã|)−1Ch ∈ ker ΨU1

(µ− Ẽ|)−1Df + g − L3µh+ (µ− Ẽ|)−1Fh ∈ ker ΨU2

(µ−K)−1Gf + (µ−K)−1Hg + h ∈ D(K).

Using the linearity of the operators ΨUi with the definition of Liµ, 1 ≤ i ≤ 3, one
has:

ΨU1
(f − L1µg + (µ− Ã|)−1Bg + (µ− Ã|)−1Ch) =

= ΨU1(f)−ΨU1(L1µg) + ΨU1((µ− Ã|)−1Bg) + ΨU1((µ− Ã|)−1Ch)

= ΨU1
(f)−ΨU2

(g).

and

ΨU2
((µ− Ẽ|)−1Df + g − L3µh+ (µ− Ẽ|)−1Fh) =

= ΨU2((µ− Ẽ|)−1Df) + ΨU2(g)−ΨU2(L3λh) + ΨU2((µ− Ẽ|)−1Fh)

= ΨU2
(g)−ΨU3

(h).
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Therefore,

Wµ

fg
h

 ∈ D(M0) if and only if

 ΨU1(f)−ΨU2(g) = 0, f ∈ D(Ã) and g ∈ D(Ẽ)
and

ΨU2
(g)−ΨU3

(h) = 0, g ∈ D(Ẽ) and h ∈ D(K)

if and only if

 f ∈ D(Ã), g ∈ D(Ẽ), h ∈ D(K)
and
ΨU1(f) = ΨU2(g) = ΨU3(h)

if and only if

fg
h

 ∈ D(M).

Secondly, we will proof that:

(µ−M)

fg
h

 = (µ−M0)Wµ

fg
h

 , for all

fg
h

 ∈ D(M).

In fact, for

fg
h

 ∈ D(M), we obtain formally

(µ−M0)Wµ

fg
h

 :=


(µ− Ã|)

(
f − L1µg + (µ− Ã|)−1Bg + (µ− Ã|)−1Ch

)
(µ− Ẽ|)

(
(µ− Ẽ|)−1Df + g − L3µh+ (µ− Ẽ|)−1Fh

)
(µ−K)

(
(µ−K)−1Gf + (µ−K)−1Hg + h

)



:=


(µ− Ã)f +Bg + Ch

Df + (µ− Ẽ)g + Fh

Gf +Hg + (µ−K)h

 = (µ−M)

fg
h

 ,

while L1µ ∈ ker(µ − Ã) and L3µ ∈ ker(µ − Ẽ) (see Remark 3.2 and Lemma 3.1 for
more details). �

As a first towards a new chap of some essential spectra of one sided coupled block
3× 3 operator matrix M will be invested as below.

So, the following proposition will be essential to present the key tool for our inves-
tigations.

Proposition 3.3. Assume, for µ ∈ C\σ(Ã|) ∪ σ(Ẽ|) ∪ σ(K), that:
(i) the hypotheses (H1)-(H5) are fulfilled.
(ii) 0 /∈ σ(∆1(µ)), for ∆1(µ) := I − V1(µ)U1(µ).

Then, the following assertions are equivalents:
(i) 0 ∈ σ(Wµ).
(ii) 0 ∈ σ(∆2(µ)), where ∆2(µ) is given by:

∆2(µ) := I − V2(µ)U2(µ)− [V3(µ)− V2(µ)U1(µ)]∆1(µ)−1[U3(µ)− V1(µ)U2(µ)].
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Moreover, in this case, the resolvent formula of Wµ is given by the following matrix:

W−1
µ := diag(I,∆1(µ)−1,∆2(µ)−1) + (Wij)1≤i,j≤3, (4)

where:

W11 := U1(µ)∆1(µ)−1V1(µ) +
[
U1∆1(µ)−1 [U3(µ)− V1(µ)U2(µ)]− U2(µ)

]
∆2(µ)−1

×
[
[V3(µ)− V2(µ)U1(µ)] ∆1(µ)−1V1(µ)− V2(µ)

]
,

W12 := − U1(µ)∆1(µ)−1 −
[
U1(µ)∆1(µ)−1 [U3(µ)− V1(µ)U2(µ)]− U2(µ)

]
∆2(µ)−1

× [V3(µ)− V2(µ)U1(µ)] ∆1(µ)−1,

W13 :=
[
U1(µ)∆1(µ)−1 [U3(µ)− V1(µ)U2(µ)]− U2(µ)

]
∆2(µ)−1,

W21 := −∆1(µ)−1V1(µ)−∆1(µ)−1 [U3(µ)− V1(µ)U2(µ)] ,

×∆2(µ)−1
[
[V3(µ)− V2(µ)U1(µ)] ∆1(µ)−1V1(µ)− V2(µ)

]
,

W22 := 41(µ)−1 [U3(µ)− V1(µ)U2(µ)]42(µ)−1 [V3(µ)− V2(µ)U1(µ)]41(µ)−1,

W23 := −41(µ)−1 [U3(µ)− V1(µ)U2(µ)]42(µ)−1,

W31 := 42(µ)−1
[
[V3(µ)− V2(µ)U1(µ)]41(µ)−1V1(µ)− V2(µ)

]
,

W32 := 42(µ)−1 [V3(µ)− V2(µ)U1(µ)]41(µ)−1,

W33 := 0.

Proof. The results may be checked directly from the use of Proposition 2.1 and Eq.
(2). �

The main advantage of Proposition 3.3 with the factorization 3 makes the computa-
tion of some essential spectra of M easy and in a fast manner as well as to characterize
its invertibility. Thus, we summarize such arguments in the following theorem.

Theorem 3.4. For the considered operator M defined as in Definition 3.1 under the

hypotheses (H1)-(H5). The following assertions hold true for µ ∈ %(Ã|)∩ %(Ẽ|)∩ %(K)
such that 0 /∈ σ(∆1(µ)):

(i) µ ∈ σ(M) implies that 0 ∈ σ(∆2(µ)).

(ii) If I −∆1(µ) ∈ PK(D(Ẽ)) and I −∆2(µ) ∈ PK(D(K)), then we get:

µ ∈ σ(M) ⇐⇒ 0 ∈ σ(∆2(µ)).

Moreover, in this case the resolvent expression of M is formally given by:

(µ−M)−1 := (µ−M0)−1 + (Wij)1≤i,j≤3(µ−M0)−1

+ diag (0,
(
∆1(µ)−1 − I

)
(µ− Ẽ|)−1,

(
∆2(µ)−1 − I

)
(µ−K)−1). (5)

Proof. Let µ ∈ %(Ã|) ∩ %(Ẽ|) ∩ %(K) such that 0 ∈ %(∆1(µ)).

(i) While µ ∈ %(Ã|)∩%(Ẽ|)∩%(K), one has µ−M0 is invertible with bounded inverse

on D(Ã|)×D(Ẽ|)×D(K).
This yields the required result by using Lemma 3.2 and Proposition 3.3 in view of

the criterions posed on this item.
(ii) We will proof only the reverse implication, while the direct seems from item (i).
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Indeed, in view of the polynomially compactness arguments of the operators that
I −∆1(µ) and I −∆2(µ) with the fact that µ−M0 is invertible with bound inverse,
we deduce from Proposition 3.3 that ∆2(µ) is invertible, therefore it is injective.

Hence, the desired result holds.
Therefore, in what follows, the expression of the resolvent of M may be obvious

from the use of Eqs. (3) and (4). �

Remark 3.3. (i) Let (Ω, λ) be a σ-finite measure space. Thus, consider X =
L1(Ω, dλ) (respectively X = C(Ω)-spaces with Ω is a compact Hausdorff space) for
which I − ∆1(µ) ∈ WC(X ) (resp. I − ∆2(µ) ∈ WC(X )) satisfies for P (z) = z2.
Therefore, in such spaces, we obtain P (I − ∆1(µ)) = (I − ∆1(µ))2 ∈ K(X ) (resp.
P (I −∆1(µ)) = (I −∆1(µ))2 ∈ K(X )) (as the product of two weakly compact linear
operators in L1(Ω, dλ) (respectively C(Ω), where Ω is a compact Hausdorff space) is
compact from [26] (resp. [16])). So, we conclude that P (I − ∆1(µ)) ∈ K(X ) (resp.
P (I−∆2(µ)) ∈ K(X ) ) and therefore, I−∆1(µ) ∈ PK(X ) (resp. I−∆2(µ) ∈ PK(X )).
Consequently, we may the required results of Theorem 3.4 under weakly compact as-
sumptions in L1(Ω, dλ) (respectively C(Ω), where Ω is a compact Hausdorff space).

(ii) Obviously, for compact operators (or strictly singular operators) I − ∆1(µ)
and I − ∆2(µ) in L2(Ω, dλ) and for particular polynomial P (z) = z, we deduce
that P (I − ∆1(µ)) = I − ∆1(µ) ∈ K(L2(Ω, dλ)) and P (I − ∆2(µ)) = I − ∆2(µ) ∈
K(L2(Ω, dλ)). In this fact, we conclude the validity of the results of Theorem 3.4 in
such particular spaces and for such particular polynomial case.

New we are in the position to formulate our interest.

Theorem 3.5. For µ ∈ ρ(Ã|) ∩ ρ(Ẽ|) ∩ ρ(K), suppose that the following items hold
true:

(i) the hypotheses (H1)-(H5) associated to the operators M are satisfied.
(ii) 0 /∈ σ(∆1(µ)) ∪ σ(∆2(µ)).

(iii) I −∆1(µ) ∈ PK(D(Ẽ)) and I −∆2(µ) ∈ PK(D(K)).
Then,

(µ−M)−1 − (µ−M0)−1 ∈ P (H(U))

implies that

σH(M) = σH(Ã|) ∪ σH(Ẽ|) ∪ σH(K), for σH(.) ∈ {σΦl
(.), σΦr

(.), σΦ(.)}

and

σH(M) ⊆ σH(Ã|) ∪ σH(Ẽ|) ∪ σH(K), for σH(.) ∈ {σWl
(.), σWr

(.), σW(.)}.

Assume further that CσΦ∗(Ã|),
CσΦ∗(Ẽ|) and CσΦ∗(K) are connected, then we get:

γ ∈ σW∗(M) ⇐⇒ γ ∈ σW∗(Ã|) ∪ σW∗(Ẽ|) ∪ σW∗(K),

for
(
σΦ∗(.), σW∗(.)

)
∈
{(
σΦl

(.), σWl
(.)
)
,
(
σΦr

(.), σWr
(.)
)}
.

Proof. The required estimations follow immediately from Theorem 3.4, Theorem 2.3
in [6] and Lemma 4.1 in [7]. �

Remark 3.4. (i) The results of Theorem 3.5 remain true for some criterions of
weakly compactness in L1(Ω, dλ).
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Precisely, if we assume, for µ ∈ %(Ã|) ∩ %(Ẽ|) ∩ %(K), that Uk(µ) and Vk(µ),
1 ≤ k ≤ 3, are weakly compact operators in L1(Ω, dλ), where (Ω, dλ) is a positive
measure space, we deduce that:

(µ−M)−1 − (µ−M0)−1 ∈ WC(L1(Ω, dλ)× L1(Ω, dλ)× L1(Ω, dλ)) ⊂ P (H(U)).

(ii) For compact operators Uk(µ) and Vk(µ), 1 ≤ k ≤ 3, in Lp − spaces,

for 1 ≤ p ≤ +∞ and µ ∈ %(Ã|) ∩ %(Ẽ|) ∩ %(K), we infer that:

(µ−M)−1 − (µ−M0)−1 ∈ K(Lp(Ω, dλ)× Lp(Ω, dλ)× Lp(Ω, dλ)) ⊂ P (H(U)).

Therefore, we illustrate the validity of the obtained results of Theorem 3.5 in such
particular case.

Now, we deal in the last section with a generic physical example of integro dif-
ferential equation named neutron transport equation with one partly elastic diagonal
collision operator. This subsequent physical model is intended to illustrate the validity
of our general framework.

4. Example of neutron transport equation with one partly elastic diagonal
collision operator

In this section, we state an example of integro-differential equation to fit the impor-
tance of our theoretical results modeled as the following form for (x, ξ, t) ∈ Ω×V ×R+:

(T.E)
∂ui(x, ξ, t)

∂t
+ ξ

∂ui(x, ξ, t)

∂x
− σi(ξ)ui(x, ξ, t) =

=

3∑
j=1,i6=j

∫
V

κcij (x, ξ, ξ′) uj(x, ξ
′, t) dξ′ + K̃i, 1 ≤ i ≤ 3,

with initial condition

(I.C) ui(x, ξ, 0) = u0
i (x, ξ)

where:

� K̃i :=


∫
SN−1

κe(x, ρ, ω, ω
′) ui(x, ρω

′, t) dω′ +

l∑
m=1

K
(m)
d ui(x, ξ, t), i = 3

0, i 6= 3.

� Ω ⊂ RN (N ≥ 3) : is an open and bounded set of RN (N ≥ 3) endowed with the
Lebesgue measure dx,
� the space of admissible velocities is defined by:

V := {ξ = ρω, ω ∈ SN−1, 0 ≤ ρmin ≤ ρ ≤ ρmax <∞} := I × SN−1

and endowed with Lebesgue measure dξ = ρN−1dρdω, (dω denotes the Lebesgue
measure on the unit sphere SN−1),
� µ() : is a positive Radon measurement on RN with µ(0) = 0,
� σi(.) ∈ L∞(V, dµ(ξ)) : denotes the collision frequency,
� ui(x, ξ, t) : represents the number density of particle having the position x and the
velocity ξ.
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Our interest consists at showing what are this kind of (T.E) fit into framework of
3× 3 groups of transport equations with one partly elastic diagonal collision operator
modeled as follows:

MT .E :=

 T1 Kc12 Kc13

Kc21 T2 Kc23

Kc31 Kc32 TH +Kc33 +Ke +Kd


with specific boundary condition given by:

(B.C) u− := Hu+

� Γ− : denotes the incoming part of the boundary of the phase space Ω × V and
defined as:

Γ− :=
{

(x, ξ) ∈ ∂Ω× V, ξ.η(x) ≤ 0
}
,

where η(x) stands for the outward normal unit at x ∈ ∂Ω.
� Γ+ : denotes the outgoing part of the boundary of the phase space Ω × V and

defined as:

Γ+ :=
{

(x, ξ) ∈ ∂Ω× V, ξ.η(x) ≥ 0
}
.

� X p,− and X p,+ : denotes the boundary spaces which defined as:
X p,− := Lp(Γ−, | v.ννx | dγxdµ(ξ)) and X p,+ := Lp(Γ+, | v.ννx | dγxdµ(ξ)).

� H ∈ L(X p,+,X p,−) : is an abstract bounded linear operator defined on suitable
boundary spaces relating the traces of u, for u ∈ Wp := {u ∈ X p : ξ ∂u∂x ∈ X

p}, i.e.,
u− on Γ− with the range of u+ on Γ+ by H, as follows:

H :=

 0 0 H
0 0 H
0 0 H

 .

While:
� each operator Tj , j = {1, 2}, is defined by:{
Tj : D(Tj) ⊂ X p −→ X p, for X p := Lp(Ω× V, dxdµ(ξ)), with 1 < p <∞

uj 7−→ Tjuj , (Tjuj)(x, ξ) := −ξ ∂uj(x, ξ)
∂x

− σj(ξ)uj(x, ξ), ∀uj ∈ D(Tj) =Wp

� the streaming operator TH is defined by:{
TH : D(TH) ⊂ X p −→ X p, D(TH) = {h ∈ Wp : h− = H h+}

h 7−→ TH h, (THh)(x, ξ) = −ξ ∂h(x, ξ)

∂x
− σ3(ξ)h(x, ξ),

� the classical collision operator

Kcij ∈ L(X p) : X p 3 u 7−→ Kciju,

(x, ξ) 7−→ Kciju(x, ξ) :=

∫
V

κcij (x, ξ, ξ′) u(x, ξ′, t) dξ′,

corresponds physically to fission, high energy elastic slowing down and thermal in-
elastic scattering.

� the elastic operator Ke is described by an integral operator of the form:

Keu(x, ξ) :=

∫
SN−1

κe(x, ρ, ω, ω
′) u(x, ρω′) dω′,
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for low energy neutrons describing microscopic events in which the kinetic energy is
conserved and velocities are changed only in their direction.

� the high energy inelastic scattering Kd is described by a downshift operator of
the form:

Kdu(x, ξ) :=

l∑
m=1

K
(m)
d u(x, ξ) =

l∑
m=1

∫
SN−1

κmd (x, em(ρ), ω, ω′) u(x, em(ρ)ω′, t) dω′,

where K
(m)
d , (1 ≤ m ≤ l) describes an event in which a discrete energy Em is lost by

a neutron at position x with initial speed em(ρ) and final speed ρ.
Keeping with the theoretical part, we point that our above described physical

model of neutron transport equation may be translated in our matrix terminology

described in section 3, by taking Uk = X p, 1 ≤ k ≤ 3, the closed operator Ã := T1

(resp. Ẽ := T2 and K := TH +Kc33 +Ke+Kd) with D(Ã) :=Wp (resp. D(Ẽ) :=Wp

and D(K) := D(TH), while the off-diagonal operators entries B,C,D, F,G and H
correspond to the collision operators Kcij , i 6= j, that is, B = Kc12 , C = Kc13 , D =
Kc21 , F = Kc23 , G = Kc31 and H = Kc32 .

According to the boundaries condition (B.C) of this kind of physical model, we
express the domain D(MT .E) in the same notation of Definition 3.1 as follows:

D(MT .E) :=


fg
h

 ∈ Wp ×Wp ×D(TH) : ΨU1
(f) = ΨU2

(g) = ΨU3
(h)

 ,

where the functions ΨUi
, for 1 ≤ i ≤ 3, are identified as well:{

ΨUi
: Wp −→ X p,−, for 1 ≤ i ≤ 2

u 7−→ ΨUi(u) = u−
and

{
ΨU3

: Wp −→ X p,−
h 7−→ ΨU3(h) = Hh+.

Therefore, the associated operators Ã| and Ẽ| appears in this physical example as
the model of an streaming operators with vacuum boundaries condition modeled as
follows:

Ã| := T1| = T1|ker ΨU1
, D(Ã|) :=

{
f ∈ Wp : f− = 0

}
and

Ẽ| := T2| = T2|ker ΨU2
, D(Ẽ|) :=

{
g ∈ Wp : g− = 0

}
.

Remark 4.1. (i) Following Definition 2.2 in [1], one has t±(x, ξ) = 0, t∓ (x, ξ) > 0,
for (x, ξ) ∈ Γ±.

Therefore, we deduce that in all cases x− t−(x, ξ)ξ ∈ Γ−.
(ii) In view of the above description and keeping into account from the arguments

that the operators Tk, k = 1, 2 and TH are closed and densely defined, we conclude
the validity of the hypothesis (H1), introduced in Section 3, in this physical example.

(iii) Due to Theorem 1 p. 252 in [8], the hypothesis (H2) is fulfilled, while the
traces mappings ΨUi , for 1 ≤ i ≤ 3, are continuous and subjective.

(iv) The physical problem studied in this section presents a perturbation of the
operator

T := diag(T1, T2, TH)
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by the bounded collision operator

K :=

 0 Kc12 Kc13

Kc21 0 Kc23

Kc31 Kc32 Kc33 +Ke +Kd

 .

So, the assumptions (H3)− (H5) are satisfied with our present situation.

Consider the real number

µ̃j := ess− inf {σj(ξ), ξ ∈ V } , 1 ≤ j ≤ 3.

Now, we are in position to express the bounded operators L1µ, L2µ and L3µ cor-
responding to the theoretical part of this paper.

For this interest, we will use the following terminology.

Lemma 4.1. Let µ ∈ %(T1|) ∩ %(T2|) ∩ %(TH +Ke +Kd +Kc33).
L1µ, L2µ and L3µ are bounded operators which are expressed as the mapping:

L1µ : Wp −→Wp

g 7−→ L1µg

(x, ξ) 7−→ (L1µg)(x, ξ) := g(x− t−(x, ξ)ξ, ξ)e−(σ1(ξ)+µ)t−(x,ξ), for Reµ > −µ̃1

= H h(x− τ(x, ξ)ξ, ξ)e−(σ1(ξ)+µ)t−(x,ξ), (x, ξ) ∈ Γ+,

L2µ : D(TH) −→Wp

h 7−→ L2µh

(x, ξ) 7−→ (L2µh)(x, ξ) := h(x− t−(x, ξ)ξ, ξ)e−(σ2(ξ)+µ)t−(x,ξ), for Reµ > −µ̃2

= H h(x− τ(x, ξ)ξ, ξ)e−(σ2(ξ)+µ)t−(x,ξ), (x, ξ) ∈ Γ+,

L3µ : D(TH) −→Wp

h 7−→ L2µh

(x, ξ) 7−→ (L3µh)(x, ξ) := h(x− t−(x, ξ)ξ, ξ)e−(σ3(ξ)+µ)t−(x,ξ), for Reµ > −µ̃3

= H h(x− τ(x, ξ)ξ, ξ)e−(σ3(ξ)+µ)t−(x,ξ), (x, ξ) ∈ Γ+,

where τ(x, ξ) := t+(x, ξ) + t−(x, ξ), for any (x, ξ) ∈ Ω× V.

Proof. Let µ ∈ %(T1|) ∩ %(T2|) ∩ %(TH +Ke +Kd +Kc33).

Before moving to find an expression of the operator L1µ, we will proceed with two
steps:

* Step1: we will express ker(µ− T1) as well:

ker(µ− T1) := {f ∈ D(T1) : (µ− T1)f = 0}

:=
{
f ∈ D(T1) : (x, ξ) 7−→ f(x, ξ) := f(x− t−(x, ξ)ξ, ξ)e−(σ1(ξ)+µ)t−(x,ξ), for Reµ > −µ̃1

}
.

* Step2: we will solve the equation

ΨU1
(L1µg) = ΨU2

(g), for (f, g) ∈ D(T1)×D(T2).
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Since L1µg ∈ ker(µ− T1), for g ∈ D(T2), then the following statement holds:

ΨU1
(L1µg) = ΨU2

(g) ⇐⇒ ΨU1
(f) = ΨU2

(g), f ∈ D(T1)

⇐⇒ f− := f |Γ− = g− = H h+ := H h|Γ+
, h ∈ D(TH)

⇐⇒ f(x− t−(x, ξ)ξ, ξ) = g(x− t−(x, ξ)ξ, ξ)

= Hh(x− τ(x, ξ)ξ, ξ), (x, ξ) ∈ Γ+.

Therefore, the required statement holds.

We can adopt the same reasoning to check the explicit expressions of L2µ and
L3µ. �

The perturbed arguments used on the theoretical part will be verified for such
physical model via some criterions involving the regularity definition of the collision
operator invested by M. Mokhtar-Kharroubi in [21] as follows:

Definition 4.1. A classical collision operator Kcij , 1 ≤ i, j ≤ 3, is said to be regular
if the following assertions are fulfilled.
(a1) {Kcij(x) : x ∈ Ω} is a set of collectively compact operators on Lp(V, dµ(ξ)), that

is, {Kcij(x)u : x ∈ Ω, ‖u‖Lp(V,dµ(ξ)) ≤ 1} is relatively compact in Lp(V, dµ(ξ)).
(a2) For each u′ ∈ Lq(V, dµ(ξ)), {Kcij(x)u′ : x ∈ Ω, ‖u′‖Lq(V,dµ(ξ)) ≤ 1} is relatively

compact in Lq(V, dµ(ξ)), where Lq(V, dµ(ξ)) is the dual space of Lp(V, dµ(ξ))
and q = p

p−1 .

We assume that the measure µ(·) satisfies the hypothesis:

(a3)

 The hyper planes have zero υ −measure, i.e.
for each e ∈ SN−1, υ{ξ ∈ RN , ξ.e = 0} = 0
where SN−1 denotes the unit sphere of RN .

Lemma 4.2. Assume that the class of elastic collision operators Ke satisfies the
following assertions:
(a4) For every u ∈ Lq(SN−1, dω), the subset{∫

SN−1

κe(x, ρ, ω, ω
′) u(ω′) dω′ : (x, ρ) ∈ Ω× I, ‖u‖Lp(SN−1,dω) ≤ 1

}
is relatively compact in Lp(SN−1, dω).

(a5) For every u′ ∈ Lq(SN−1, dω), the subset{∫
SN−1

κe(x, ρ, ω, .) u
′(ω) dω : (x, ρ) ∈ Ω× I

}
is relatively compact in Lq(SN−1, dω).

Thus, Keii may be regard as a bounded elastic collision operator, namely,

‖Ke‖ := ess sup
(x,ρ)∈Ω×I

‖Ke(x, ρ)‖L(Lp(SN−1,dω)).

Finally, following [29], we suppose for m ∈ {1, · · · , ν}, that: (a6) kernels κmd are
assumed to be bounded.

Before further proceed, we introduce

S :=
{
µ ∈ C : Reµ > −µ̃3+ ‖ K̃3 ‖

}
.
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Lemma 4.3. We fix µ ∈ %(T1|)∩ %(T2|)∩ S for which rσ((µ− TH − K̃3)−1Kc33) < 1
and we assume that:

(i) the assumptions (a1)− (a6) are fulfilled.
(ii) Ω is a convex and bounded subset of RN .
(iii) H is a compact operator on X p, for p > 1.
Then, we obtain the compactness criterion of the operators Uk(µ) and Vk(µ) in

X p, for p > 1 and 1 ≤ k ≤ 3.

Proof. The required statements may be obvious from the use of the compactness
arguments of the boundaries operator H, of the operators (µ − T1|)

−1Kc12, (µ −
T1|)

−1Kc13, (µ− T2|)
−1Kc23, (µ− T2|)

−1Kc21, derived by K. Latrach in [18], and of

the operators (µ − TH − K̃3)−1Kc33, (µ − TH − K̃3 −Kc33)−1Kc31, (µ − TH − K̃3 −
Kc33)−1Kc32 established in Proposition 3.5 in [1], for µ ∈ %(T1|)∩%(T2|)∩S such that

rσ((µ− TH − K̃3)−1Kc33) < 1 and from the property of the set K(X p), p > 1. �

The effectiveness and the applicability of the items (ii) and (iii) of Theorem 3.5
will be verified for such physical model in the required lemma.

Lemma 4.4. Let µ ∈ %(T1|) ∩ %(T2|) ∩ S, for which rσ((µ − TH − K̃3)−1Kc33) < 1
and we assume that:

(i) the assumptions (a1)− (a6) are fulfilled.
(ii) Ω is a convex and bounded subset of RN .
(iii) H is a compact operator on X p, for p > 1.
Then, I − ∆1(µ) and I − ∆2(µ) are two polynomially compact operators on X p,

p > 1, moreover, in such case, the following statements hold:

0 ∈ %(∆1(µ)) ∩ %(∆2(µ)) ⇐⇒ ∆1(µ) and ∆2(µ) are two invertible operators

⇐⇒ ∆1(µ) and ∆2(µ) are two injective operators.

Proof. Let µ ∈ %(T1|) ∩ %(T2|) ∩ S, for which rσ((µ− TH − K̃3)−1Kc33) < 1.
The criterions of polynomially compactness properties of the operators I −∆1(µ)

and I −∆2(µ) required directly from the use of Lemma 4.3.
Now, to rich the equivalence statement, we will proceed by steps only for the reverse

implication while the direct implication seems to be trivial from the definition.
* Step 1: We proof that 0 /∈ σp(∆1(µ)), where σp(.) denotes the punctual spectrum.

We will find the unknown function u solution of the equation (∆1(µ))u = 0.

Taking into account from Remark 3.2, we conclude that:

∆1(µ)u = 0 ⇐⇒ (µ− Ẽ|)−1Kc21 [−L1µ + (µ− Ã|)−1Kc12 ]u = u

⇐⇒ Kc21(µ− Ã|)−1[−(µ− Ã|)L1µ +Kc12 ]u = (µ− Ẽ|)u

⇐⇒
(
µ− Ẽ| −Kc21(µ− Ã|)−1Kc12

)
u = 0

⇐⇒ u = 0

⇐⇒ ker(∆1(µ)) = {0}.

* Step2: We will proof that ∆2(µ) is invertible.
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In fact, we rewrite the operator I −∆2(µ) as well:

I −∆2(µ) := (µ−K)−1Kc31(µ− T1|)
−1
[
(µ− T1|)[L1µL3µ − L2µ] +Kc13

]
−
[
(µ−K)−1

(
Kc32 −Kc31(µ− T1|)

−1[−(µ− T1|)L1µ +Kc12]
)]

×∆1(µ)−1
[
(µ− T2|)

−1
(
−(µ− T2|)L3µ +Kc23

)
−(µ− T2|)

−1Kc21(µ− T1|)
−1
(

(µ− T1|)[L1µL3µ − L2µ] +Kc13

)]
.

According to Remark 3.2, the last equality is written as:

I −∆2(µ) := (µ−K)−1Kc31(µ− T1|)
−1Kc13

−(µ−K)−1Kc32∆1(µ)−1(µ− T2|)
−1
[
Kc23 −Kc21(µ− T1|)

−1Kc13

]
+(µ−K)−1Kc31(µ− T1|)

−1Kc12

×∆1(µ)−1(µ− T2|)
−1
[
Kc23 −Kc21(µ− T1|)

−1Kc13

]
. (6)

This shows in view of Lemma 4.3 and Eq. (2.9) in [1], that (6) obeys to the

following inequality for µ ∈ %(T1|) ∩ %(T2|) ∩ S ⊂ %(T1|) ∩ %(T2|) ∩ %(TH + K̃), such

that rσ((µ− TH − K̃)−1Kc33) < 1:

‖I −∆2(µ)‖ ≤ ‖ Kc33 ‖
Re µ+ µ̃3− ‖ K̃ ‖

(‖ Kc31 ‖ B1+ ‖ Kc32 ‖ B2) ,

where Bk is a bounded operator for k ∈ {1, 2}.
Moreover, lim

Re µ→+∞
‖ I −∆2(µ) ‖= 0, and therefore, we get:

lim
Re µ→+∞

rσ(I −∆2(µ)) = 0, since rσ(I −∆2(µ)) ≤‖ I −∆2(µ) ‖ .

Consequently, we deduce that there exists µ0 ∈ S large enough for which the
operator I − (I −∆2(µ0)) := ∆2(µ0) is invertible.

Based on the theorem of Gohberg-Smulyan’s in [17, Theorem 11.4], in view the
compactness-valued assumption of the function I−∆2(µ) on the connected set S, we
claim the invertibility of ∆2(µ) for all µ ∈ S except for a countable subset contained
in S. Thus, 0 ∈ %(∆2(µ)). �

The eigenvalues associated to the physical model of transport equation with one
partly elastic diagonal collision operator modeled by (T.E) with specific boundary
condition (B.C) are localized in the the half plane as follows.

Theorem 4.5. Let µ ∈ %(T1|) ∩ %(T2|) ∩ S, for which rσ((µ− TH − K̃)−1Kc33) < 1,

H ∈ K(X p), for p > 1, and Ω is a convex and bounded subset of RN .
Assume that the assumptions (a1)− (a6) are fulfilled.
Then, we get:

σH(MT .E) ⊆
2
∪
i=1
σH(Ti|) ∪ σH(TH + K̃)

⊂
{
µ ∈ C : Reµ ≤ −min

(
µ̃1, µ̃2, µ̃3 − ‖K̃ ‖

)}
,

for σH(.) ∈ {σΦl
(.), σΦr

(.), σΦ(.), σWl
(.), σWr

(.), σW(.)}.
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Proof. Taking into account from Remark 4.1, Lemmas 4.1, 4.3 and 4.4, one has the
validity of the claim of Theorem 3.5 for this physical model. More generally, we
obtain:

σH(MT .E) = σH(M0T .E),

where M0T .E := diag (T1|, T2|, TH + K̃ +Kc33).
Following [1], in view of the assumptions, we have:

σ(TH + K̃ +Kc33) ∩
{
µ ∈ C : Reµ > −µ̃3+ ‖ K̃ ‖

}
consisting of at most isolated eigenvalues with finite algebraic multiplicity on X p.
Thus, the essential spectrum of TH + K̃ +Kc33 is given as follows:

σW(TH + K̃ +Kc33) = σW(TH + K̃) ⊂
{
µ ∈ C : Reµ ≤ −µ̃3+ ‖ K̃ ‖

}
.

As Tk|, k ∈ {1, 2}, is the streaming operator with vacuum boundaries condition, we
infer from that proceed that:

σW(Tk|) = {µ ∈ C : Reµ ≤ −µ̃k} .

Therefore, the following statement hold from what proceed:

σH(MT .E) ⊂
2
∪
i=1
σW(Ti|) ∪ σW(TH + K̃)

⊂
{
µ ∈ C : Re µ ≤ −min(µ̃1, µ̃2, µ̃3 + ‖K̃ ‖)

}
,

where σH(.) ∈ {σΦl
(.), σΦr

(.), σΦ(.), σWl
(.), σWr

(.), σW(.)}. �

5. Conclusion

We have introduced a new model of unbounded block 3×3 of operator matrix, named
one sided block 3×3 of operator matrix. Some new hypotheses are invested to provide
a fine decomposition of such model of operator matrix form. The relevance of such new
obtained decomposition form of such kind of operator matrix seems to be remarked
to derive sufficient criteria assuring the invertibility of such matrix form as well as a
new technique to present a fine expression of its resolvent. Our analysis is not just a
simple adaptation of the already handled unbounded block 3×3 operator matrix with
non diagonal domain case. But, there is a new structure and argumentation of the
analytical study of the accurate description of the eigenvalues of this operator matrix
shape model. As well, a new generic example of neutron transport equation with one
partly elastic diagonal collision operators is presented to clarify better contribution
of the well-posed theoretical results. Our contribution provide an amelioration and
an extension of the work done by I. Marzouk et al. in [20] to the case of unbounded
model of full 3× 3 block operator matrix defined with non diagonal domain.
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[16] A. Grothendieck, Sur les applications linéaires faiblement compactes d’ espaces du type C(K),
Canad. J. Math. 5 (1953), 129–173.

[17] H.G. Kaper, C.G. Lekkerkerker, J. Hejtmanek, Spectral methods in linear transport theory,

Operator Theory: Advances and Application 5, Birkhuser, Basel, 1982.
[18] K. Latrach, Compactness results for transport equations and applications, Math. Models Meth-

ods Appl. Sci. 11 (2001), 1181–1202.

[19] G. Leugering, A generation result for a class of linear thermo-viscoelastic material, In: (B.
Brosowski, E. Martensen (eds)) Dynamical problems in mathematical physics, Peter Lang,

Frankfurt, 1983.
[20] I. Marzouk, I. Walha, New approach on the study of operator matrix, Georgian Math. J. 31

(2023), no. 2, 315–330.
[21] M. Mokhtar-Kharroubi, Mathematical topics in neutron transport theory: New aspects, Ad-

vances in Mathematics for Applied Sciences 46, World Scientific, Singapore, 1997.
[22] M.Z. Nashed (Ed.), Generalized Inverses and Applications, Proceedings of an Advanced Seminar

Sponsored by the Mathematics Research Center, the University of Wisconsin-Madison, October
8-10, 1973 (No. 32), Elsevier, 2014.

[23] T. Nishida, A. Matsumura, The initial value problem for the equations of motion of compressible,
viscous and heat-conductiong fluids, Proc. Jap. Acad., Ser. A 55 (1979), 337–342.

[24] A. Pelczynski, On strictly singular and strictly cosingular operators. I. Strictly singular and

strictly cosingular operators in L(µ)-spaces, Bull. Acad. Polon. Sci. 13 (1965), 13–36.

[25] A. Pelczynski, Strictly singular and strictly cosingular operators in C(X) spaces. II. Strictly
singular and strictly cosingular operators in L(µ)-spaces, Bull. Acad. Polon. Sci. 13 (1965),

37–41.
[26] R.S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516–541.
[27] D.L. Russel, A comparison of certain elastic dissipation mechanisms via decoupling and projec-

tion techniques, Quart. Appl. Math. XLIX (1991), 373–396.
[28] D.L. Russel, A general framework for the study of indirect damping mechanism in elastic sys-

tems, J. Math. Anal. Appl. 173 (1993), 205–232.



DESCRIPTIVE ANALYSIS OF NEW MODEL OF UNBOUNDED 3× 3 OPERATOR MATRIX525

[29] M. Sbihi, Spectral theory of neutron transport semigroups with partly elastic collision operators,

J. Math. Physics 47 (2006), 123502.

[30] I. Walha, On the M-essential spectra of two-group transport equations, Math. Methods Appl.
Sci. 37 14, (2014), 2135–2149.

[31] G. Strohmer, About the resolvent of an operator from fluid dynamics, Math. Z. 194 (1987),

183–191.
[32] W.B. Vasantha Kandasamy, K. Ilanthenral, F. Smarandache, Special type of fixed points of

MOD matrix operators, EuropaNova, Bruxelles, 2016.

(Ines Marzouk, Ines Walha) University of Sfax, Faculty of Sciences of Sfax, Department

of Mathematics, BP1171, Sfax 3000, Tunisia

E-mail address: inesmarzouk2015@gmail.com, ines walha@yahoo.fr


	1. Introduction
	2. Framework and basic definitions
	3. Principal and main results
	4. Example of neutron transport equation with one partly elastic diagonal collision operator
	5. Conclusion
	References

