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Abstract. In this paper, we investigate the analytical solutions for systems of nonlinear time-
fractional partial differential equations by using Khalouta-Daftardar-Jafari method (KHDJM).

The fractional derivatives are described in Caputo sense. We discuss the method in general and

provide examples for the illustration purpose. Also we provide some results for the convergence
of Khalouta-Daftardar-Jafari method. The results in this work show that the proposed method

is an effective tool for the solutions of systems of nonlinear time-fractional partial differential

equations.
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1. Introduction

Over the past decades, many problems in mathematical physics and engineering such
as plasma physics, fluid dynamics, hydrodynamics, nanotechnology, and electromag-
netic waves have been successfully formulated through systems of nonlinear fractional
partial differential equations. Therefore, it is very important to find efficient methods
for solving systems of nonlinear partial differential equations. Many researchers have
introduced new methods in the literature where several transforms coupled with semi-
analytical techniques have been used to solve these systems. The coupled method of
natural transform and Adomian decomposition method called the natural decom-
position method (NDM) was introduced in [5] for solving time-fractional nonlinear
system of KdV equation, and presents the approximate solution in the form of an infi-
nite series. In [7], Ali Khalouta proposed two different methods based on coupling the
new general transform with homotopy perturbation method and variational iteration
method called homotopy perturbation transform method (HPTM) and variational it-
eration transform method (VITM), respectively, to resolve time-fractional system of
nonlinear equations of unsteady flow of a polytropic gas in two dimensions, and the
solution is presented in the form of the Mittag-Leffler function. In [11], Saadeh et al.
used a coupled method of the Laplace transform and residual power series method
called Laplace residual power series method (LRPSM) to expand the solution of the
nonlinear time-fractional coupled Hirota–Satsuma and KdV equations in the form
of a rapidly convergent series. In [1], Agarwal et al. applied a coupled method of
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the Elzaki transform and homotopy analysis method called homotopy analysis Elzaki
transform method (HAETM) to find an approximate analytical solution of space-time
fractional coupled Burger’s equations. In [8], Ali Khalouta proposed a new hybrid
method of Elzaki transform and differential transform method called Elzaki differen-
tial transform method (EDTM) to solve the fractional SIS epidemic model involving
Caputo and Caputo-Fabrizio fractional derivatives.

Our objective of this work is to couple the Khalouta transform method and the
Daftardar-Jafari method for solving general systems of nonlinear time-fractional par-
tial differential equations. This method is called the Khalouta-Daftardar-Jafari method
(KHDJM). The KHDJM has reduced the computational workload compared with
other existing methods in the literature. The convergence and absolute truncation
error of the proposed method also provided in this paper.

This paper is organized in six sections. In the second section, we present some
preliminaries and basic definitions related to fractional calculus and Khalouta trans-
form method. In the third section, we give the main principle of the KHDJM for
solving general systems of nonlinear time-fractional partial differential equations. In
the fourth section, we study the convergence analysis of KHDJM. To demonstrate
the efficiency and accuracy of the current method, two numerical applications are
presented in the fifth section with the use of the results of the third section. Finally,
in the sixth section, we conclude this paper with some remarks.

2. Preliminaries and results

We give in this section some fundamental definitions and results about fractional
calculus and Khalouta transform for use in this study.

Definition 2.1. [10] The Riemann-Liouville fractional integral of a function X (ϑ, ξ)
is defined as

IαξX (ϑ, ξ) =
1

Γ(α)

∫ ξ

0

(ξ − ε)α−1X (ϑ, ε)dε, if α > 0, (1)

and

IαξX (ϑ, ξ) = X (ϑ, ξ), if α = 0, (2)

where Γ(.) represents the the gamma function.

Definition 2.2. [10] The Caputo time-fractional derivative of a function X (ϑ, ξ) is
defined as

DαξX (ϑ, ξ) =
1

Γ(n− α)

∫ ξ

0

(ξ − ε)n−α−1X (n)(ϑ, ε)dε, if n− 1 < α < n, (3)

and

DαξX (ϑ, ξ) = X (n)(ϑ, ξ), if α = n, (4)

Definition 2.3. [10] The Mittag-Leffler function for one parameter is described as
follows

Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, α, z ∈ C, Re(α) ≥ 0. (5)

Now, we show the main results related to the Khalouta transform of the Riemann-
Liouville fractional integral and the Caputo fractional derivative.
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Definition 2.4. [9] The Khalouta transform of a function X (ϑ, ξ) of exponential
order is defined by the following integral

KH [X (ϑ, ξ)] = K(ϑ, s, γ, η) =
s

γη

∫ ∞
0

exp

(
− sξ
γη

)
X (ϑ, ξ)dξ, s, γ, η > 0, (6)

where the function X (ϑ, ξ) is defined on the set

A =
{
X (ϑ, ξ) : ∃M,κ1, κ2 > 0, |X (ϑ, ξ)| < M exp (κj |ξ|) , if ξ ∈ (−1)

j × [0,∞)
}
,

(7)

Theorem 2.1. [9] The basic properties of the Khalouta transform are as follows.
1) If X (ϑ, ξ) and Y(ϑ, ξ) are defined on the set A, then for all constants a and b,

we have
KH [aX (ϑ, ξ) + bY(ϑ, ξ)] = aKH [X (ϑ, ξ)] + bKH [Y(ϑ, ξ)] . (8)

2) If the nth derivative of X (ϑ, ξ) with respect to ξ is X (n)(ϑ, ξ), then its Khalouta
transform is given as

KH
[
X (n)(ϑ, ξ)

]
=

(
s

γη

)n
K(ϑ, s, γ, η)−

n−1∑
k=0

(
s

γη

)n−k
X (n)(ϑ, 0), n ≥ 1. (9)

3) If the Khalouta transform of X (ϑ, ξ) and Y(ϑ, ξ) are K(ϑ, s, γ, η) and H(ϑ, s, γ, η)
respectively, defined on the set S, then

KH [(X ∗ Y) (ϑ, ξ))] =

∫ ∞
0

X (ϑ, ε)Y(ξ − ε)dε =
γη

s
K(ϑ, s, γ, η)H(ϑ, s, γ, η), (10)

where KH [(X ∗ Y) (ϑ, ξ))] is the Khalouta convolution of the functions X (ϑ, ξ) and
Y(ϑ, ξ).

4) The Khalouta transforms of some special functions are as follows

KH [1] = 1,

KH [ξ] =
γη

s
,

KH
[
ξn

n!

]
=

(γη
s

)n
, n = 0, 1, 2, ... (11)

KH
[

ξα

Γ (α+ 1)

]
=

(γη
s

)α
, α > −1,

Proof. The proof of this theorem is found in [9]. �

Theorem 2.2. Let K(ϑ, s, γ, η) be the Khalouta transform of the function X (ϑ, ξ) with
respect to ξ. Then the Khalouta transform of Riemann-Liouville fractional integral of
order α > 0, is defined as

KH
[
IαξX (ϑ, ξ)

]
=
(γη
s

)α
K(ϑ, s, γ, η). (12)

Proof. Applying the Khalouta transform to equation (1) gives

KH
[
IαξX (ϑ, ξ)

]
= KH

[
1

Γ(α)

∫ ξ

0

(ξ − ε)α−1X (ϑ, ε)dε

]

= KH
[

1

Γ(α)
ξα−1 ∗ X (ϑ, ξ)

]
. (13)



KHALOUTA-DAFTARDAR-JAFARI METHOD 529

Using Theorem 2.1 leads to

KH
[
IαξX (ϑ, ξ)

]
=

γη

s
KH

[
ξα−1

Γ(α)

]
KH [X (ϑ, ξ)]

=
γη

s

(γη
s

)α−1

K(ϑ, s, γ, η)

=
(γη
s

)α
K(ϑ, s, γ, η). (14)

Therefore, the proof is complete. �

Theorem 2.3. Let K(ϑ, s, γ, η) be the Khalouta transform of the function X (ϑ, ξ) with
respect to ξ. Then the Khalouta transform of the Caputo time-fractional derivative of
order n− 1 < α ≤ n, n ∈ Z+, is defined as

KH
[
DαξX (ϑ, ξ)

]
=

(
s

γη

)α
K(ϑ, s, γ, η)−

n−1∑
k=0

(
s

γη

)α−k
X (k)(ϑ, 0). (15)

Proof. First, we put

Z(ϑ, ξ) = X (n)(ϑ, ξ). (16)

Therefore, the Caputo time-fractional derivative (3) can be written as follows

KH
[
DαξX (ϑ, ξ)

]
=

1

Γ(n− α)

∫ ξ

0

(ξ − ε)n−α−1X (n)(ϑ, ε)dε

=
1

Γ(n− α)

∫ ξ

0

(ξ − ε)n−α−1Z(ϑ, ε)dε

= In−αξ Z(ϑ, ξ). (17)

Applying the Khalouta transform to equation (17) and using Theorem 2.2, we get

KH
[
DαξX (ϑ, ξ)

]
= KH

[
In−αξ Z(ϑ, ξ)

]
=
(γη
s

)n−α
H(ϑ, s, γ, η), (18)

where H(ϑ, s, γ, η) is the Khalouta transform of the function Z(ϑ, ξ) with respect to
ξ.

Applying the Khalouta transform to equation (16) and using Theorem 2.1, we get

KH [Z(ϑ, ξ)] = KH
[
X (n)(ϑ, ξ)

]
,

H(ϑ, s, γ, η) =

(
s

γη

)n
K(ϑ, s, γ, η)−

n−1∑
k=0

(
s

γη

)n−k
X (k)(ϑ, 0). (19)

Substituting equation (19) into equation (18), leads to

KH
[
DαξX (ϑ, ξ)

]
=

(γη
s

)n−α(( s

γη

)n
K(ϑ, s, γ, η)−

n−1∑
k=0

(
s

γη

)n−k
X (k)(ϑ, 0)

)

=

(
s

γη

)α
K(ϑ, s, γ, η)−

n−1∑
k=0

(
s

γη

)α−k
X (k)(ϑ, 0). (20)

Therefore, the proof is complete. �
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3. Principle of the KHDJM

We present in this section the main principle of the KHDJM to solve systems of
nonlinear time-fractional partial differential equations.

Theorem 3.1. Consider the following general system of nonlinear time-fractional
partial differential equations{ DαξX (ϑ, ξ) = L(X (ϑ, ξ)) +N (X (ϑ, ξ),Y(ϑ, ξ)) + F(ϑ, ξ), n− 1 < α ≤ n

DβξY(ϑ, ξ) = P(Y(ϑ, ξ)) +M(X (ϑ, ξ),Y(ϑ, ξ)) + G(ϑ, ξ), n− 1 < β ≤ n , n ∈ N∗

(21)
under the initial conditions{

X (k)(ϑ, 0) = Xk(ϑ)
Y(k)(ϑ, 0) = Yk(ϑ)

, k = 0, 1, 2, ..., n− 1, (22)

where Dαξ and Dβξ are the Caputo time-fractional derivative operators of the func-

tions X (ϑ, ξ) and Y(ϑ, ξ) respectively, L,P are linear operators, N ,M are nonlinear
operators and F(ϑ, ξ),G(ϑ, ξ) are known continuous functions.

Using KHDJM, the solution of the system (21) can be expressed as an infinite
series as follows 

X (ϑ, ξ) =
∞∑
i=0

Xi(ϑ, ξ)

Y(ϑ, ξ) =
∞∑
i=0

Yi(ϑ, ξ)
. (23)

Proof. Applying the Khalouta transform on both sides of (21), we get KH
[
DαξX (ϑ, ξ)

]
= KH [L(X (ϑ, ξ)) +N (X (ϑ, ξ),Y(ϑ, ξ)) + F(ϑ, ξ)]

KH
[
DβξY(ϑ, ξ)

]
= KH [P(Y(ϑ, ξ)) +M(X (ϑ, ξ),Y(ϑ, ξ)) + G(ϑ, ξ)]

. (24)

Using Theorem 2.3 and initial conditions (22), (24) becomes

KH [X (ϑ, ξ)] =
n−1∑
k=0

(
γη
s

)k X (k)(ϑ, 0) +
(
γη
s

)αKH [F(ϑ, ξ)]

+
(
γη
s

)αKH [L(X (ϑ, ξ)) +N (X (ϑ, ξ),Y(ϑ, ξ))]

KH [Y(ϑ, ξ)] =
n−1∑
k=0

(
γη
s

)k Y(k)(ϑ, 0) +
(
γη
s

)β KH [G(ϑ, ξ)]

+
(
γη
s

)β KH [P(Y(ϑ, ξ)) +M(X (ϑ, ξ),Y(ϑ, ξ))]

. (25)

Taking the inverse Khalouta transform to both sides of (25) to get{
X (ϑ, ξ) = R(ϑ, ξ) + KH−1

[(
γη
s

)αKH [L(X (ϑ, ξ)) +N (X (ϑ, ξ),Y(ϑ, ξ))]
]

Y(ϑ, ξ) = T (ϑ, ξ) + KH−1
[(
γη
s

)β KH [P(Y(ϑ, ξ)) +M(X (ϑ, ξ),Y(ϑ, ξ))]
] ,

(26)
where R(ϑ, ξ) and T (ϑ, ξ) represents the terms arising from the source terms and the
prescribed initial conditions.
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Further, we apply the iterative method introduced by Daftardar-Gejji and Jafari
[3], which represents solutions X (ϑ, ξ) and Y(ϑ, ξ) in infinite series of components

X (ϑ, ξ) =
∞∑
i=0

Xi(ϑ, ξ),

Y(ϑ, ξ) =
∞∑
i=0

Yi(ϑ, ξ),
(27)

Since L and P are linear operators, so we have

L

( ∞∑
i=0

Xi(ϑ, ξ)

)
=

∞∑
i=0

L (Xi(ϑ, ξ)) , (28)

P

( ∞∑
i=0

Yi(ϑ, ξ)

)
=

∞∑
i=0

P (Yi(ϑ, ξ)) , (29)

and the nonlinear operators N and M can be decomposed as

N

( ∞∑
i=0

Xi(ϑ, ξ),Yi(ϑ, ξ)

)
= N (X0(ϑ, ξ),Y0(ϑ, ξ)) +

+

∞∑
i=1

N
 i∑
j=0

Xj(ϑ, ξ),
i∑

j=0

Yj(ϑ, ξ)

−N
i−1∑
j=0

Xj(ϑ, ξ),
i−1∑
j=0

Yj(ϑ, ξ))

 , (30)

M

( ∞∑
i=0

Xi(ϑ, ξ),Yi(ϑ, ξ)

)
=M (X0(ϑ, ξ),Y0(ϑ, ξ)) +

+

∞∑
i=1

M
 i∑
j=0

Xj(ϑ, ξ),
i∑

j=0

Yj(ϑ, ξ)

−M
i−1∑
j=0

Xj(ϑ, ξ),
i−1∑
j=0

Yj(ϑ, ξ))

 . (31)

Substituting equations (27)–(31) into (26) , we obtain

∞∑
i=0

Xi(ϑ, ξ) = R(ϑ, ξ) + KH−1

((γη
s

)α
KH

[ ∞∑
i=0

L (Xi(ϑ, ξ)) +N (X0(ϑ, ξ),Y0(ϑ, ξ))

+

∞∑
i=1

N
 i∑
j=0

Xj(ϑ, ξ),
i∑

j=0

Yj(ϑ, ξ)

−N
i−1∑
j=0

Xj(ϑ, ξ),
i−1∑
,j=0

Yj(ϑ, ξ))


 ,

(32)

∞∑
i=0

Yi(ϑ, ξ) = T (ϑ, ξ) + KH−1

((γη
s

)β
KH

[ ∞∑
i=0

P (Yi(ϑ, ξ)) +M (X0(ϑ, ξ),Y0(ϑ, ξ))

+

∞∑
i=1

M
 i∑
j=0

Xj(ϑ, ξ),
i∑

j=0

Yj(ϑ, ξ)

−M
i−1∑
j=0

Xj(ϑ, ξ),
i−1∑
j=0

Yj(ϑ, ξ))


 .

(33)
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Using equations (32) and (33), we define the following iterative formula{
X0(ϑ, ξ) = R(ϑ, ξ)
Y0(ϑ, ξ) = T (ϑ, ξ)

,{
X1(ϑ, ξ) = KH−1

[(
γη
s

)αKH [L (X0(ϑ, ξ)) +N (X0(ϑ, ξ),Y0(ϑ, ξ))]
]

Y1(ϑ, ξ) = KH−1
[(
γη
s

)αKH [L (Y0(ϑ, ξ)) +N (X0(ϑ, ξ),Y0(ϑ, ξ))]
] , (34)

Xm+1(ϑ, ξ) = KH−1

[(
γη
s

)αKH

[
L (Xm(ϑ, ξ)) +N

(
m∑
j=0

Xj(ϑ, ξ),
m∑
j=0

Yj(ϑ, ξ)

)

−N

(
m−1∑
j=0

Xj(ϑ, ξ),
m−1∑
j=0

Yj(ϑ, ξ)

)]]

Ym+1(ϑ, ξ) = KH−1

[(
γη
s

)β KH

[
P (Ym(ϑ, ξ)) +M

(
m∑
j=0

Xj(ϑ, ξ),
m∑
j=0

Yj(ϑ, ξ)

)

−M

(
m−1∑
j=0

Xj(ϑ, ξ),
m−1∑
j=0

Yj(ϑ, ξ)

)]]
.

Therefore, the approximate analytical solution of system (21), is given by
X (ϑ, ξ) = lim

m→∞

m∑
i=0

Xi(ϑ, ξ) =
∞∑
i=0

Xi(ϑ, ξ)

Y(ϑ, ξ) = lim
m→∞

m∑
i=0

Yi(ϑ, ξ) =
∞∑
i=0

Yi(ϑ, ξ)
.

Therefore, the proof is complete. �

4. Convergence analysis of the KHDJM

We study in this section the convergence of the KHDJM, when it is used in system
(21).

Theorem 4.1. Let

{
Xi(ϑ, ξ)
Yi(ϑ, ξ)

and

{
X (ϑ, ξ)
Y(ϑ, ξ)

be in Banach space B. Then the

KHDJM series solution


∞∑
i=0

Xi(ϑ, ξ)
∞∑
i=0

Yi(ϑ, ξ)
defined by (23) converges to the exact solution

of system (21) provided that

{
0 < % < 1
0 < θ < 1

and

{
X0(ϑ, ξ)
Y0(ϑ, ξ)

∈ B are bounded.

Proof. Considering the partial sum sequences {Sn(ϑ, ξ)}∞n=0 and {S ′n(ϑ, ξ)}∞n=0 of the
form {

S0(ϑ, ξ) = X0(ϑ, ξ)
S ′0(ϑ, ξ) = Y0(ϑ, ξ)

,{
S1(ϑ, ξ) = X0(ϑ, ξ) + X1(ϑ, ξ)
S ′1(ϑ, ξ) = Y0(ϑ, ξ) + Y1(ϑ, ξ)

,{
S2(ϑ, ξ) = X0(ϑ, ξ) + X1(ϑ, ξ) + X2(ϑ, ξ)
S ′2(ϑ, ξ) = Y0(ϑ, ξ) + Y1(ϑ, ξ) + Y2(ϑ, ξ)

,
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...{
Sn(ϑ, ξ) = X0(ϑ, ξ) + X1(ϑ, ξ) + X2(ϑ, ξ) + ...+ Xn(ϑ, ξ)
S ′n(ϑ, ξ) = Y0(ϑ, ξ) + Y1(ϑ, ξ) + Y2(ϑ, ξ) + ...+ Yn(ϑ, ξ)

.

To achieve the desired result, we will prove that {Sn(ϑ, ξ)}∞n=0 and {S ′n(ϑ, ξ)}∞n=0

be Cauchy sequences in B.

From the last hypothesis of the theorem, we have

{
% ∈ (0, 1)
θ ∈ (0, 1)

then
‖Sn+1(ϑ, ξ)− Sn(ϑ, ξ)‖ ≤ ‖Xn+1(ϑ, ξ)‖ ≤ % ‖Xn(ϑ, ξ)‖

≤ %2 ‖Xn−1(ϑ, ξ)‖ ≤ ... ≤ %n+1 ‖X0(ϑ, ξ)‖∥∥S ′n+1(ϑ, ξ)− S ′n(ϑ, ξ)
∥∥ ≤ ‖Yn+1(ϑ, ξ)‖ ≤ θ ‖Yn(ϑ, ξ)‖

≤ θ2 ‖Yn−1(ϑ, ξ)‖ ≤ ... ≤ θn+1 ‖Y0(ϑ, ξ)‖

.

For any n,m ∈ N with n ≥ m, we have

‖Sn(ϑ, ξ)− Sm(ϑ, ξ)‖ = ‖Sn(ϑ, ξ)− Sn−1(ϑ, ξ) + Sn−1(ϑ, ξ)− Sn−2(ϑ, ξ)
+...+ Sm+1(ϑ, ξ)− Sm(ϑ, ξ)‖

≤ ‖Sn(ϑ, ξ)− Sn−1(ϑ, ξ)‖+ ‖Sn−1(ϑ, ξ)− Sn−2(ϑ, ξ)‖
+...+ ‖Sm+1(ϑ, ξ)− Sm(ϑ, ξ)‖

≤ %n ‖X0(ϑ, ξ)‖+ %n−1 ‖X0(ϑ, ξ)‖+ ...+ %m+1 ‖X0(ϑ, ξ)‖
= %m+1

(
1 + %+ ...+ %n−m−1

)
‖X0(ϑ, ξ)‖

≤ %m+1
(

1−%n−m

1−%

)
‖X0(ϑ, ξ)‖

‖S ′n(ϑ, ξ)− S ′m(ϑ, ξ)‖ =
∥∥S ′n(ϑ, ξ)− S ′n−1(ϑ, ξ) + S ′n−1(ϑ, ξ)− S ′n−2(ϑ, ξ)

+...+ S ′m+1(ϑ, ξ)− S ′m(ϑ, ξ)
∥∥

≤
∥∥S ′n(ϑ, ξ)− S ′n−1(ϑ, ξ)

∥∥+
∥∥S ′n−1(ϑ, ξ)− S ′n−2(ϑ, ξ)

∥∥
+...+

∥∥S ′m+1(ϑ, ξ)− S ′m(ϑ, ξ)
∥∥

≤ θn ‖Y0(ϑ, ξ)‖+ θn−1 ‖Y0(ϑ, ξ)‖+ ...+ θm+1 ‖Y0(ϑ, ξ)‖
= θm+1

(
1 + θ + ...+ θn−m−1

)
‖Y0(ϑ, ξ)‖

≤ θm+1
(

1−θn−m

1−θ

)
‖Y0(ϑ, ξ)‖

.

Since

{
0 < % < 1
0 < θ < 1

, we have

{
1− %n−m < 1
1− θn−m < 1

, then{
‖Sn(ϑ, ξ)− Sm(ϑ, ξ)‖ ≤ %m+1

1−% ‖X0(ϑ, ξ)‖
‖S ′n(ϑ, ξ)− S ′m(ϑ, ξ)‖ ≤ θm+1

1−θ ‖Y0(ϑ, ξ)‖
.

Since

{
X0(ϑ, ξ)
Y0(ϑ, ξ)

is bounded, then

{
‖X0(ϑ, ξ)‖ <∞
‖Y0(ϑ, ξ)‖ <∞ .

So  lim
n,m→∞

‖Sn(ϑ, ξ)− Sm(ϑ, ξ)‖ = 0

lim
n,m→∞

‖S ′n(ϑ, ξ)− S ′m(ϑ, ξ)‖ = 0
.

Hence, {Sn(ϑ, ξ)}∞n=0 and {S ′n(ϑ, ξ)}∞n=0 are Cauchy sequences in Banach space B.
It concludes that the solution of system (21) in series is convergent.

Therefore, the proof is complete. �
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Theorem 4.2. The maximum absolute truncation error of the series solution (23)
for system (21) is estimated to be

∥∥∥∥X (ϑ, ξ)−
j∑
i=0

Xi(ϑ, ξ)
∥∥∥∥ ≤ %j+1

1−% ‖X0(ϑ, ξ)‖∥∥∥∥Y(ϑ, ξ)−
j∑
i=0

Yi(ϑ, ξ)
∥∥∥∥ ≤ θj+1

1−θ ‖Y0(ϑ, ξ)‖
.

Proof. Let the series


j∑
i=0

Xi(ϑ, ξ)
j∑
i=0

Yi(ϑ, ξ)
be finite. Then



∥∥∥∥X (ϑ, ξ)−
j∑
i=0

Xi(ϑ, ξ)
∥∥∥∥ ≤

∥∥∥∥∥ ∞∑
i=j+1

Xi(ϑ, ξ)

∥∥∥∥∥
≤

∞∑
i=j+1

‖Xi(ϑ, ξ)‖ ≤
∞∑

i=j+1

%j ‖X0(ϑ, ξ)‖

≤ %j+1
(
1 + %+ %2 + ...

)
‖Xi(ϑ, ξ)‖

≤ %j+1

1−% ‖X0(ϑ, ξ)‖∥∥∥∥Y(ϑ, ξ)−
j∑
i=0

Yi(ϑ, ξ)
∥∥∥∥ ≤

∥∥∥∥∥ ∞∑
i=j+1

Yi(ϑ, ξ)

∥∥∥∥∥
≤

∞∑
i=j+1

‖Yi(ϑ, ξ)‖ ≤
∞∑

i=j+1

%j ‖Y0(ϑ, ξ)‖

≤ %j+1
(
1 + %+ %2 + ...

)
‖Y0(ϑ, ξ)‖

≤ θj+1

1−θ ‖Y0(ϑ, ξ)‖

.

Therefore, the proof is complete. �

5. Numerical applications

We demonstrate in this section, the validity and effectiveness of the results obtained
using KHDJM to find the exact solution of some special cases of systems of nonlinear
time-fractional partial differential equations (21).

Example 5.1. Consider the following system of nonlinear time-fractional partial
differential equations{ DαξX (ϑ, ξ) = Xϑϑ(ϑ, ξ) + 2X (ϑ, ξ)Xϑ(ϑ, ξ)− (X (ϑ, ξ)Y(ϑ, ξ))ϑ

DβξY(ϑ, ξ) = Yϑϑ(ϑ, ξ) + 2Y(ϑ, ξ)Yϑ(ϑ, ξ)− (X (ϑ, ξ)Y(ϑ, ξ))ϑ
, (35)

under the initial conditions {
X (ϑ, 0) = sin(ϑ)
Y(ϑ, 0) = sin(ϑ)

, (36)

where Dαξ X (ϑ, ξ) and DβξY(ϑ, ξ) are the Caputo time-fractional derivatives of order
0 < α ≤ 1 and 0 < β ≤ 1 respectively.

For α = β = 1 the exact solution of system (35) is given by [2]{
X (ϑ, ξ) = e−ξ sin(ϑ)
Y(ϑ, ξ) = e−ξ sin(ϑ)

. (37)
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Applying the Khalouta transform to system (35) and use Theorem 2.3 and initial
conditions (36) to get

KH [X (ϑ, ξ)] = sin(ϑ) +
(
γη
s

)αKH
[
Xϑϑ(ϑ, ξ) + 2X (ϑ, ξ)Xϑ(ϑ, ξ)

−(X (ϑ, ξ)Y(ϑ, ξ))ϑ

]
KH [Y(ϑ, ξ)] = sin(ϑ) +

(
γη
s

)β KH
[
Yϑϑ(ϑ, ξ) + 2Y(ϑ, ξ)Yϑ(ϑ, ξ)
−(X (ϑ, ξ)Y(ϑ, ξ))ϑ

] . (38)

Taking the inverse Khalouta transform of (38), this yields
X (ϑ, ξ) = sin(ϑ) + KH−1

[(
γη
s

)αKH
[
Xϑϑ(ϑ, ξ) + 2X (ϑ, ξ)Xϑ(ϑ, ξ)

−(X (ϑ, ξ)Y(ϑ, ξ))ϑ

]]
Y(ϑ, ξ) = sin(ϑ) + KH−1

[(
γη
s

)β KH
[
Yϑϑ(ϑ, ξ) + 2Y(ϑ, ξ)Yϑ(ϑ, ξ)
−(X (ϑ, ξ)Y(ϑ, ξ))ϑ

]] .

The KHDJM then implies that we have the following iteration{
X0(ϑ, ξ) = sin(ϑ)
Y0(ϑ, ξ) = sin(ϑ)

,{
X1(ϑ, ξ) = − sin(ϑ) ξα

Γ(α+1)

Y1(ϑ, ξ) = − sin(ϑ) ξβ

Γ(β+1)

,

X2(ϑ, ξ) = sin(ϑ) ξ2α

Γ(2α+1) + 2 sin(ϑ) cos(ϑ)
(
− ξ2α

Γ(2α+1) + Γ(2α+1)
Γ(α+1)Γ(α+1)

ξ3α

Γ(3α+1)

+ ξα+β

Γ(α+β+1) −
Γ(β+α+1)

Γ(β+1)Γ(α+1)
ξ2α+β

Γ(2α+β+1)

)
Y2(ϑ, ξ) = sin(ϑ) ξ2β

Γ(2β+1) + 2 sin(ϑ) cos(ϑ)
(
− ξ2β

Γ(2β+1) + Γ(2β+1)
Γ(β+1)Γ(β+1)

ξ3β

Γ(3β+1)

+ ξα+β

Γ(α+β+1) −
Γ(α+β+1)

Γ(α+1)Γ(β+1)
ξ2β+α

Γ(2β+α+1)

) ,

...

Thus, the series solution of system (35) is written as

X (ϑ, ξ) = sin(ϑ)
(

1− ξα

Γ(α+1) + ξ2α

Γ(2α+1) + ...
)

+ 2 sin(ϑ) cos(ϑ)
(
− ξ2α

Γ(2α+1)

+ Γ(2α+1)
Γ(α+1)Γ(α+1)

ξ3α

Γ(3α+1) + ξα+β

Γ(α+β+1) −
Γ(β+α+1)

Γ(β+1)Γ(α+1)
ξ2α+β

Γ(2α+β+1) + ...
)

Y(ϑ, ξ) = sin(ϑ)
(

1− ξβ

Γ(β+1) + ξ2β

Γ(2β+1) + ...
)

+ 2 sin(ϑ) cos(ϑ)
(
− ξ2β

Γ(2β+1)

+ Γ(2β+1)
Γ(β+1)Γ(β+1)

ξ3β

Γ(3β+1) + ξα+β

Γ(α+β+1) −
Γ(α+β+1)

Γ(α+1)Γ(β+1)
ξ2β+α

Γ(2β+α+1) + ...
) .

(39)
If α = β in (39), then the series solution of system (35) is given by X (ϑ, ξ) = sin(ϑ)

(
1− ξα

Γ(α+1) + ξ2α

Γ(2α+1) + ...
)

= sin(ϑ)Eα(−ξα)

Y(ϑ, ξ) = sin(ϑ)
(

1− ξβ

Γ(β+1) + ξ2β

Γ(2β+1) + ...
)

= sin(ϑ)Eβ(−ξβ)
, (40)

where Eα(−ξα) and Eβ(−ξβ) are the Mittag Leffler functions defined by (5).
When α = β = 1 in (40), we obtain{

X (ϑ, ξ) = e−ξ sin(ϑ)
Y(ϑ, ξ) = e−ξ sin(ϑ)

,

which is the exact solution given in (37).
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The two-dimensional plots of the approximate and exact solutions of X (ϑ, ξ) =
Y(ϑ, ξ) using the KHDJM for system (35) with different values of α = β is given
in Figure 1. Furthermore, the values of approximate solutions obtained by KHDJM,
exact solutions, and absolute errors of X (ϑ, ξ) = Y(ϑ, ξ) for system (35) with different
values of α = β are provided in Table 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Exact solution

α=β=1

α=β=0.9

α=β=0.8

α=β=0.7

Figure 1. Two-dimensional plots representation of the approximate
and exact solutions X (ϑ, ξ) = Y(ϑ, ξ) of system (35) at ϑ = 1.

ξ α = 0.7 α = 0.8 α = 0.9 α = 1 Exact solution |XExact −XKHDJM |
0.01 0.45902 0.46670 0.47160 0.45604 0.45604 3.9886× 10−13

0.03 0.43682 0.44948 0.45870 0.46526 0.46526 9.6600× 10−11

0.05 0.42006 0.43523 0.44706 0.45604 0.45604 1.2382× 10−9

0.07 0.40598 0.42260 0.43620 0.44701 0.44701 6.6372× 10−9

0.09 0.39362 0.41109 0.42593 0.43816 0.43816 2.3242× 10−8

Table 1. Comparison of numerical values of the approximate and
exact solutions X (ϑ, ξ) = Y(ϑ, ξ) of system (35) for distinct values of
fractional parameters α = β.

Example 5.2. Consider the following system of nonlinear time-fractional partial
differential equations{ DαξX (ϑ, ξ) = −Xϑϑ(ϑ, ξ)− 2X (ϑ, ξ)Xϑ(ϑ, ξ)− (X (ϑ, ξ)Y(ϑ, ξ))ϑ

DβξY(ϑ, ξ) = −Yϑϑ(ϑ, ξ)− 2Y(ϑ, ξ)Yϑ(ϑ, ξ)− (X (ϑ, ξ)Y(ϑ, ξ))ϑ
, (41)

under the initial conditions {
X (ϑ, 0) = eϑ

Y(ϑ, 0) = −eϑ , (42)

where Dαξ X (ϑ, ξ) and DβξY(ϑ, ξ) are the Caputo time-fractional derivatives of order
0 < α ≤ 1 and 0 < β ≤ 1 respectively.
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For α = β = 1 the exact solution of system (41) is given by [4]{
X (ϑ, ξ) = eϑ−ξ

Y(ϑ, ξ) = −eϑ−ξ . (43)

Applying the Khalouta transform to system (41) and use Theorem 2.3 and initial
conditions (42) to get

KH [X (ϑ, ξ)] = eϑ −
(
γη
s

)αKH
[
Xϑϑ(ϑ, ξ) + 2X (ϑ, ξ)Xϑ(ϑ, ξ)

+(X (ϑ, ξ)Y(ϑ, ξ))ϑ

]
KH [Y(ϑ, ξ)] = −eϑ −

(
γη
s

)β KH
[
Yϑϑ(ϑ, ξ) + 2Y(ϑ, ξ)Yϑ(ϑ, ξ)

+(X (ϑ, ξ)Y(ϑ, ξ))ϑ

] . (44)

Taking the inverse Khalouta transform of (44), this yields
X (ϑ, ξ) = eϑ −KH−1

[(
γη
s

)αKH
[
Xϑϑ(ϑ, ξ) + 2X (ϑ, ξ)Xϑ(ϑ, ξ)

+(X (ϑ, ξ)Y(ϑ, ξ))ϑ

]]
Y(ϑ, ξ) = −eϑ −KH−1

[(
γη
s

)β KH
[
Yϑϑ(ϑ, ξ) + 2Y(ϑ, ξ)Yϑ(ϑ, ξ)

+(X (ϑ, ξ)Y(ϑ, ξ))ϑ

]] ,

The KHDJM then implies that we have the following iteration{
X0(ϑ, ξ) = eϑ

Y0(ϑ, ξ) = −eϑ ,

{
X1(ϑ, ξ) = −eϑ ξα

Γ(α+1)

Y1(ϑ, ξ) = eϑ ξβ

Γ(β+1)

,

X2(ϑ, ξ) = eϑ ξ2α

Γ(2α+1) + 2e2ϑ
(

ξ2α

Γ(2α+1) −
Γ(2α+1)

Γ(α+1)Γ(α+1)
ξ3α

Γ(+α+1)

− ξα+β

Γ(α+β+1) + Γ(α+β+1)
Γ(α+1)Γ(β+1)

ξ2α+β

Γ(2α+β+1)

)
Y2(ϑ, ξ) = −eϑ ξ2β

Γ(2β+1) + 2e2ϑ
(

ξ2β

Γ(2β+1) −
Γ(2β+1)

Γ(β+1)Γ(β+1)
ξ3β

Γ(3β+1)

− ξα+β

Γ(α+β+1) + Γ(α+β+1)
Γ(β+1)Γ(α+1)

ξ2β+α

Γ(2β+α+1)

) ,

Thus, the series solution of system (41) is written as

X (ϑ, ξ) = eϑ
(

1− ξα

Γ(α+1) + ξ2α

Γ(2α+1) + ...
)

+ 2e2ϑ
(

ξ2α

Γ(2α+1)

− Γ(2α+1)
Γ(α+1)Γ(α+1)

ξ3α

Γ(+α+1) −
ξα+β

Γ(α+β+1) + Γ(α+β+1)
Γ(α+1)Γ(β+1)

ξ2α+β

Γ(2α+β+1) + ...
)

Y(ϑ, ξ) = −eϑ
(

1− ξβ

Γ(β+1) + ξ2β

Γ(2β+1) + ...
)

+ 2e2ϑ
(

ξ2β

Γ(2β+1)

− Γ(2β+1)
Γ(β+1)Γ(β+1)

ξ3β

Γ(3β+1) −
ξα+β

Γ(α+β+1) + Γ(α+β+1)
Γ(β+1)Γ(α+1)

ξ2β+α

Γ(2β+α+1) + ...
) .

(45)
If α = β in (45), then the series solution of system (41) is given by X (ϑ, ξ) = eϑ

(
1− ξα

Γ(α+1) + ξ2α

Γ(2α+1) + ...
)

= eϑEα(−ξα)

Y(ϑ, ξ) = −eϑ
(

1− ξβ

Γ(β+1) + ξ2β

Γ(2β+1) + ...
)

= −eϑEβ(−ξβ)
, (46)

where Eα(−ξα) and Eβ(−ξβ) are the Mittag Leffler functions defined by (5).
When α = β = 1 in (46), we obtain{

X (ϑ, ξ) = eϑ−ξ

Y(ϑ, ξ) = −eϑ−ξ .

which is the exact solution given in (43).
The two-dimensional plots of the approximate and exact solutions of X (ϑ, ξ) and

Y(ϑ, ξ) using the KHDJM for system (41) with different values of α = β is given in
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Figure 1. Furthermore, the values of approximate solutions obtained by KHDJM, ex-
act solutions, and absolute errors of X (ϑ, ξ) and Y(ϑ, ξ) for system (41) with different
values of α = β are provided in Table 2 and 3, respectively.
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Figure 2. Two-dimensional plots representation of the approximate
and exact solutions X (ϑ, ξ) and Y(ϑ, ξ) of system (41) at ϑ = 1.

ξ α = 0.7 α = 0.8 α = 0.9 α = 1 Exact solution |XExact −XKHDJM |
0.01 1.5785 1.6050 1.6218 1.6323 1.6323 1.3716× 10−12

0.03 1.5022 1.5457 1.5774 1.6000 1.6000 3.3220× 10−10

0.05 1.4446 1.4967 1.5374 1.5683 1.5683 4.2580× 10−9

0.07 1.3961 1.4533 1.5001 1.5373 1.5373 2.2825× 10−8

0.09 1.3537 1.4137 1.4648 1.5068 1.5068 7.9928× 10−8

Table 2. Comparison of numerical values of the approximate and
exact solutions X (ϑ, ξ) of system (41) for distinct values of fractional
parameter α.

ξ β = 0.7 β = 0.8 β = 0.9 β = 1 Exact solution |YExact − YKHDJM |
0.01 −1.5785 −1.6050 −1.6218 −1.6323 −1.6323 1.3716× 10−12

0.03 −1.5022 −1.5457 −1.5774 −1.6000 −1.6000 3.3220× 10−10

0.05 −1.4446 −1.4967 −1.5374 −1.5683 −1.5683 4.2580× 10−9

0.07 −1.3961 −1.4533 −1.5001 −1.5373 −1.5373 2.2825× 10−8

0.09 −1.3537 −1.4137 −1.4648 −1.5068 −1.5068 7.9928× 10−8

Table 3. Comparison of numerical values of the approximate and
exact solutions Y(ϑ, ξ) of system (41) for distinct values of fractional
parameters β.



KHALOUTA-DAFTARDAR-JAFARI METHOD 539

6. Conclusions

The Khalouta-Daftardar-Jafari method was successfully applied to find the analytical
solution of systems of nonlinear time-fractional partial differential equations. The re-
liability of the method and reduced computational workload give this method wider
applicability. Also, the behavior of the solution can be formally determined by analyt-
ical approximate. Furthermore, we proved the convergence of the solutions. Finally,
some numerical applications are included to demonstrate the validity and applicability
of the proposed technique.

Systems of nonlinear time-fractional partial differential equations are a very hot
and important topic, so it will be very interesting to use KHDJM to solve other types
of systems and see if this mehtod is suitable and effective mathematical tool for resolve
these systems.
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