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Creep formulation of a bilateral contact problem with friction

Thierry-Vincent Hoarau-Mantel, Ángel Rodŕıguez-Arós, and Juan
Manuel Viaño

Abstract. We consider a mathematical model which describes the bilateral contact between
a deformable body and an obstacle, the so-called foundation. The body is assumed to have a
viscoelastic behavior with long-term memory that we describe with a creep-type constitutive
law. The contact takes into account the effects of friction, which are modelled with the
Tresca’s law. Also, the effects of inertia are neglected, thus a quasistatic model is considered.
We present two alternative yet equivalent weak formulations of the problem and establish
existence and uniqueness results for both formulations. The proofs are based on arguments
on time-dependent variational inequalities and fixed point. We also study the behavior of the
solution with respect to the creep operator and establish a convergence result.
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1. Introduction

In a number of publications (see for instance [10, 15]), the viscoelastic models with
long-term memory are presented in the so-called creep formulation, that is the strain
tensor is determined by the history of the stress tensor. In this case we have

εij(t) = Cijklσkl(u(t)) +
∫ t

0

Dijkl(t− s)σkl(u(s))ds, (1)

where C = (Cijkl) represents the fourth order tensor of elastic compliance and D =
(Dijkl) is the creep compliance tensor. Since in this case the stress tensor cannot
be eliminated, there is a need to use new variational formulations, different from
that used in [11], in order to study the corresponding contact problem. In [13], two
different but equivalent formulations of the Signorini unilateral frictionless contact
problem for viscoelastic materials with long-term memory in its creep version were
studied. Existence and uniqueness of the weak solutions for both formulations were
obtained and also the continuous dependence of that solutions with respect to the
creep operator was established.
All the references above are concerned with frictionless problems. But there is an
increasing number of studies of frictional contact problems. A survey of contact prob-
lems taking into account friction can be found in [6] for viscoelastic and viscoplastic
constitutive laws. Specifically, Tresca’s friction law may be found in [5, 9], and more
recently has been used in [1, 2, 14].
This work is intended to be a continuation of [13], since we use (1) as constituve law
and follow the general structure of [13]. Nevertheless the notation and certains results
introduced therein are recalled here as they are needed. We consider two different yet
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equivalent variational formulations of the contact problem, which lead to evolutionary
systems for the displacement and stress field. But in this case the contact problem
is bilateral and the friction on the contact boundary is modelled with the Tresca’s
friction law. We prove the unique solvability of the systems and therefore we deduce
the existence of the unique weak solution to the contact problem. The proofs are
based on results on time-dependent variational inequalities and fixed point. We also
discuss the continuous dependence of the solution with respect to the creep tensor
and derive a convergence result.
The paper is organized as follows. In Section 2 we state the mechanical problem and
present the notation and preliminary material. In Section 3 we list the assumptions
imposed on the problem data and derive the variational formulations to the model.
We present our main existence and uniqueness results in Section 4 and the convergence
result in Section 5.

2. Problem statement and preliminaries

We consider a viscoelastic body which occupies a domain Ω ⊂ IRd (d = 2, 3 in appli-
cations) with outer Lipschitz surface Γ that is divided into three disjoint measurable
parts Γi, i = 1, 2, 3, such that meas (Γ1) > 0. Let [0, T ] be the time interval of inter-
est, where T > 0, and let ν denote the unit outer normal on Γ. The body is clamped
on Γ1 × (0, T ) and therefore the displacement field vanishes there. A volume force of
density f0 acts in Ω×(0, T ) and surface tractions of density f2 act on Γ2×(0, T ). We
assume that the body forces and tractions vary slowly in time, so the inertial terms
may be neglected in the equation of motion, leading to a quasistatic problem. The
body is in bilateral contact with a rigid obstacle, the so-called foundation, thus only
tangential sliding is allowed on Γ3×(0, T ). Friction is modelled with the Tresca’s law.
With these assumptions, denoting by Sd the space of second order symmetric tensors
on IRd, the classical formulation of the contact problem of the viscoelastic body is the
following.

Problem 2.1. Find a displacement field u : Ω × [0, T ] −→ IRd and a stress field
σ : Ω× [0, T ] −→ Sd such that

ε(u(t)) = Cσ(t) +
∫ t

0

D(t− s)σ(s) ds in Ω, (2)

Divσ(t) + f0(t) = 0 in Ω, (3)
u(t) = 0 on Γ1, (4)

σ(t)ν = f2(t) on Γ2, (5)



uν(t) = 0, |στ (t)| ≤ g,
|στ (t)| < g ⇒ u̇τ (t) = 0,
|στ (t)| = g ⇒ ∃λ ≥ 0 s.t. στ (t) = −λu̇τ (t)

on Γ3, (6)

u(0) = u0 in Ω. (7)

for all t ∈ [0, T ].

In (2)–(7) and below, in order to simplify the notation, we do not indicate explicitly
the dependence of various functions on the variable x ∈ Ω ∪ Γ. Equation (2) repre-
sents the creep viscoelastic constitutive law, equation (3) is the equilibrium equation,
while conditions (4) and (5) are the displacement and traction boundary conditions,
respectively. The first expression in (6) represents the bilateral contact condition, in
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which uν denotes the normal displacement, while the remaining expressions represent
the Tresca’s friction law, in which στ denotes the tangential stress on the contact
surface and u̇τ is the derivative with respect to the time variable of the tangential
displacement.
To study the mechanical problem (2)–(7) we introduce the notation we shall use and
some preliminary material. For further details we refer the reader to [6, 7]. We denote
by “ · ” and | · | the inner product and the Euclidean norm on Sd and IRd, respectively.
Here and everywhere in this paper the indices i, j, k, l run between 1 and d and the
summation convention over repeated indices is adopted.
We also use the spaces

H = {u = (ui) | ui ∈ L2(Ω) }, Q = {σ = (σij) | σij = σji ∈ L2(Ω) },
H1 = {u = (ui) ∈ H | ε(u) ∈ Q }, Q1 = {σ ∈ Q | Div σ ∈ H },

where ε : H1 −→ Q and Div : Q1 −→ H are the deformation and divergence opera-
tors, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Divσ = (σij,j).

Here the index that follows a comma indicates a partial derivative with respect to the
corresponding component of the independent variable. The spaces H, Q, H1 and Q1

are real Hilbert spaces endowed with the canonical inner products given by

(u,v)H =
∫

Ω

uivi dx, (σ, τ )Q =
∫

Ω

σijτij dx,

(u, v)H1 = (u, v)H + (ε(u), ε(v))Q, (σ, τ )Q1 = (σ, τ )Q + (Div σ,Div τ )H .

The associated norms on these spaces are denoted by ‖ · ‖H , ‖ · ‖Q, ‖ · ‖H1 and ‖ · ‖Q1 ,
respectively.
For every element v ∈ H1 we still write v for the trace γv of v on Γ and we denote
by vν and vτ the normal and tangential components of v on the boundary Γ given by

vν = v · ν, vτ = v − vνν. (8)

We also denote by σν the trace of the element σ ∈ Q1 on Γ and by σν , στ its normal
and tangential traces, respectively. Note that when σ is a regular (say C1) function
then

σν = (σν) · ν, στ = σν − σνν, (9)

and the following Green’s formula holds:

(σ, ε(v))Q + (Div σ, v)H =
∫

Γ

σν · v da ∀v ∈ H1. (10)

Keeping in mind the boundary conditions (4) and (6), we introduce the closed sub-
space of H1 defined by

V = { v ∈ H1 | v = 0 a.e. on Γ1, vν = 0 a.e. on Γ3 }. (11)

Since meas (Γ1) > 0, Korn’s inequality holds: there exists a constant CK > 0 which
depends only on Ω and Γ1 such that

‖ε(v)‖Q ≥ CK‖v‖H1 ∀v ∈ V. (12)

A proof of Korn’s inequality (12) may be found in [8, p. 79]. Over the space V , we
use the inner product

(u,v)V = (ε(u), ε(v))Q, ∀u, v ∈ V. (13)
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It follows from (12) that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V and therefore
(V, ‖ · ‖V ) is a real Hilbert space.
We also need the space of fourth order tensor fields

Q∞ = { E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω)},
which is a real Banach space with the norm

‖E‖Q∞ = max
0≤i,j,k,l≤d

‖Eijkl‖L∞(Ω).

Finally, if (X, ‖ · ‖X) is a real Banach space, we denote by C([0, T ];X) the space of
continuous functions from [0, T ] to X, which is also a Banach space with the usual
norm ‖ · ‖C([0,T ];X) and we denote by W 1,2(0, T ; X) the Sobolev space of continuous
functions with time derivative L2 -summable. If (X, ‖ · ‖X) is a real Banach space or,
furthermore, (X, (·, ·)X) is a real Hilbert space, the space W 1,2(0, T ; X) inherits that
structure.

3. Variational formulations

In this section we list the assumptions imposed on the data and derive two variational
formulations of the mechanical problem (2)–(7).
We assume that the elasticity and relaxation tensors satisfy

C ∈ Q∞, (14)

∃ α > 0 such that Cξ · ξ ≥ α|ξ|2 ∀ξ ∈ Sd, a.e. in Ω, (15)
D ∈ W 1,2(0, T ;Q∞). (16)

We also assume that the force and traction densities satisfy

f0 ∈ W 1,2(0, T ; H), f2 ∈ W 1,2(0, T ; L2(Γ2)d). (17)

Also, we assume that the friction bound verifies

g ∈ L∞(Γ3), g ≥ 0 a.e. on Γ3. (18)

Finally, the initial condition is such that

u0 ∈ V. (19)

Next, we denote by f(t) the element of V given by

(f(t), v)V = (f0(t),v)H + (f2(t),v)L2(Γ2)d ∀v ∈ V, t ∈ [0, T ], (20)

and we note that conditions (17) imply

f ∈ W 1,2(0, T ;V ). (21)

We define the seminorm j : V → IR+ given by

j(v) =
∫

Γ3

g|vτ |da ∀ v ∈ V, (22)

which is continuous with the norm of V . Finally, for all t ∈ [0, T ], we denote the set
of admissible stress fields given by

Σ(t) = { τ ∈ Q | (τ , ε(v))Q + j(v) ≥ (f(t),v)V ∀v ∈ V }. (23)

Using (8)–(11), (20) and (22) it is straightforward to show that if u and σ are two
regular functions satisfying (3)–(7) then u(t) ∈ V , σ(t) ∈ Q1, and

(σ(t), ε(v)− ε(u̇(t)))Q + j(v)− j(u̇(t))

≥ (f(t),v − u̇(t))V ∀v ∈ V, a.e. in (0,T).
(24)
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Taking now v = 2u(t) and v = 0 in (24), both in V , we find

(σ(t), ε(u̇(t)))Q + j(u̇(t)) = (f(t), u̇(t))V a.e. in (0,T). (25)

If we sum (24) and (25) we see, by (23), that σ(t) ∈ Σ(t) a.e. in (0, T ) and we obtain
from (24) and (23) the following evolutionary variational inequality:

σ(t) ∈ Σ(t), (τ − σ(t), ε(u̇(t)))Q ≥ 0 ∀ τ ∈ Σ(t), (26)

a.e. in (0, T ). The initial condition (7) is equivalent to σ(0) = σ0, where σ0 may be
obtained as

σ0 = C−1ε(u0). (27)
Moreover, we assume that

σ0 ∈ Σ0. (28)
The inequalities (24), (26), combined with (2) and (7) or (27), lead us to consider the
following two variational problems.

Problem 3.1. Find a displacement field u : [0, T ] → V and a stress field σ : [0, T ] →
Q1 such that

ε(u(t)) = Cσ(t) +
∫ t

0

D(t− s)σ(s) ds ∀ t ∈ [0, T ], (29)

(σ(t), ε(v)− ε(u̇(t)))Q + j(v)− j(u̇(t)) (30)
≥ (f(t), v − u̇(t))V ∀v ∈ V a.e. in (0,T),

u(0) = u0. (31)

Problem 3.2. Find a displacement field u : [0, T ] → V and a stress field σ : [0, T ] →
Q1 such that

ε(u(t)) = Cσ(t) +
∫ t

0

D(t− s)σ(s) ds ∀ t ∈ [0, T ], (32)

σ(t) ∈ Σ(t), (τ − σ(t), ε(u̇(t)))Q ≥ 0 ∀ τ ∈ Σ(t), (33)
a.e. in (0, T),

σ(0) = σ0. (34)

We remark that Problems 3.1 and 3.2 are formally equivalent to the mechanical
problem (2)–(7). Indeed, if {u, σ} represents a regular solution of the variational
problem 3.1 or 3.2, using the arguments of [5], it follows that {u, σ} satisfies (2)–(7).
For this reason, we may consider Problems 3.1 and 3.2 as variational formulations of
the mechanical problem (2)–(7).

4. Existence and uniqueness results

The main results of this section concern the unique solvability and the equivalence of
the variational problems 3.1 and 3.2. They are stated as follows.

Theorem 4.1. Assume (14)–(19) and (28). Then there exists a unique solution
{u, σ} to Problem 3.1. Moreover, the solution satisfies

u ∈ W 1,2(0, T ; V ), σ ∈ W 1,2(0, T ; Q1). (35)

Theorem 4.2. Assume (14)–(19) and (28). Let {u,σ} be a couple of functions which
satisfies (35). Then {u, σ} is a solution of the variational problem 3.1 if and only if
{u, σ} is a solution of the variational problem 3.2.
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Theorem 4.3. Assume (14)–(19) and (28). Then there exists a unique solution
{u, σ} to Problem 3.2. Moreover, the solution satisfies (35).

Theorems 4.1 and 4.3 state the unique solvability of Problems 3.1 and 3.2, respectively,
while Theorem 4.2 expresses the equivalence of these variational problems. From these
theorems we conclude that the mechanical problem (2)–(7) has a unique weak solution
which solves both Problems 3.1 and 3.2.
Notice also that the strong coupling between the integral equation (29) and the time-
dependent variational inequality (30) make Problem 3.1 a rather difficult mathemat-
ical model. On the other hand, the coupling between the equation (32) and the
inequality (33) is weak since, using (32), we can eliminate the displacement field to
obtain a variational formulation of the problem, in term of the stress. For this reason,
we start with the proof of Theorem 4.3. Moreover, since Theorem 4.1 is a consequence
of Theorems 4.2 and 4.3, we only need to provide the proofs of Theorems 4.3 and 4.2.
In the following we voluntary omit the details of the various proofs. We refer the
reader to [12].
To prove Theorem 4.3 we suppose in what follows that the assumptions (14)–(19)
and (28) hold. We first observe that the variational inequality (33) is defined over
the time-dependent convex set Σ(t). Let us use a change of variable to convert the
variational inequality into one associated with a fixed convex set. To this end, let us
define σf : [0, T ] → Q by

σf (t) = ε(f(t)) ∀ t ∈ [0, T ]. (36)

Then, using the regularity (21) of f , we obtain σf ∈ W 1,2(0, T ; Q). Moreover, since

(σf (t), ε(v))Q = (f(t), v)V ∀v ∈ V, t ∈ [0, T ], (37)

it follows from (20) that

Div σf (t) + f0(t) = 0 ∀ t ∈ [0, T ],

and using (17) we find Div σf ∈ L2(0, T ; H). We conclude that

σf ∈ W 1,2(0, T ; Q1). (38)

We can now express Σ(t) = Σ0 + {σf (t)} for all t ∈ [0, T ], where

Σ0 = { τ ∈ Q | (τ , ε(v))Q + j(v) ≥ 0 ∀v ∈ V } (39)

is the auxiliar convex set of reference stress fields which is time independent. Note
that for any given t ∈ [0, T ], Σ(t) is a translation of Σ0. The value of the translation
is that of σf (t). We now introduce

σ̄ = σ − σf ; (40)
σ̄0 = σ0 − σf (0); (41)

and consider the following variational problem.

Problem 4.1. Find u : [0, T ] → V and σ̄ : [0, T ] → Q1 such that

ε(u(t)) = Cσ̄(t) + Cσf (t) +
∫ t

0

D(t− s)σ̄(s) ds (42)

+
∫ t

0

D(t− s)σf (s) ds ∀ t ∈ [0, T ],

σ̄(t) ∈ Σ0, (τ − σ̄(t), ε(u̇(t)))Q≥ 0 ∀ τ ∈ Σ0, a.e. in (0, T ) (43)
σ̄(0) = σ̄0. (44)
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Using (38) and (40) we get the following result.

Lemma 4.1. The couple {u, σ} is a solution to Problem 3.2 with regularity u ∈
W 1,2(0, T ; V ), σ ∈ W 1,2(0, T ;Q1) iff the couple {u, σ̄} is a solution to Problem 4.1
with regularity u ∈ W 1,2(0, T ; V ), σ̄ ∈ W 1,2(0, T ; Q1).

We turn now to Problem 4.1 and show its well-posedness by using a fixed point
argument. To this end we introduce the set

W = {η ∈ W 1,2(0, T ; Q)|η(0) = 0}. (45)

Let η ∈ W and consider the following auxiliary problem.

Problem 4.2. Find uη : [0, T ] → V and ση : [0, T ] → Q1 such that

ε(uη(t)) = Cση(t) + Cσf (t) + η(t) ∀t ∈ [0, T ] (46)
ση(t) ∈ Σ0, (τ − ση(t), ε(u̇η(t)))Q ≥ 0 ∀ τ ∈ Σ0, a.e. in (0, T), (47)

ση(0) = σ̄0. (48)

The unique solvability of Problem 4.2 is based on an abstract result which can be
found in [3, p. 189] or [4, p. 72]. Then we have

Lemma 4.2. Problem 4.2 has a unique solution {uη, ση} such that uη ∈ W 1,2(0, T ;V )
and ση ∈ W 1,2(0, T ; Q1).

In the next step we consider the operator Λ : W →W defined by

Λη(t) =
∫ t

0

D(t− s)(ση(s) + σf (s)) ds ∀η ∈ W, t ∈ [0, T ]. (49)

Keeping in mind assumption (16) it is easy to check that if η ∈ W then Λη ∈ W,
that is the operator Λ is well defined. We have the following result.

Lemma 4.3. The operator Λ has a unique fixed point η∗ ∈ W.

The proof of Lemma 4.3 is based on various estimates and the Banach fixed point
Theorem.

We now have all the ingredients to prove Theorem 4.3.

Proof of Theorem 4.3
Existence. Let η∗ ∈ W be the fixed point of Λ and let {uη∗ , ση∗} be the solution of
Problem 4.2 for η = η∗. We can prove that the couple (u, σ̄), where u = uη∗ and
σ̄ = ση∗ is a solution of Problem 4.1. To conclude the existence part of Theorem 4.3
we use Lemma 4.1.
Uniqueness. The uniqueness part of Theorem 4.3 follows now from the uniqueness of
the fixed point of the operator Λ defined by (49). Alternatively, it can be obtained
directly from the Gronwall’s inequality and several algebra. 2

Proof of Theorem 4.2.
In order to let this paper in a reasonable length we do not give the details of this
proof, which is based on various algebra and convex analysis. We refer again to [12].
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5. A convergence result

Now we investigate the behavior of the solution to Problems 3.1 and 3.2 when the
creep compliance operator converges to zero. To this end, we assume in what follows
that (14)–(17) hold and let (Dθ)θ>0 be a family of operators which satisfy

Dθ ∈ W 1,2(0, T ;Q∞) ∀θ > 0, (50)

lim
θ→0

‖Dθ −D‖W 1,2(0,T ;Q∞) = 0. (51)

We consider the following variational problem.

Problem 5.1. Find a displacement field uθ : [0, T ] → V and a stress field σθ :
[0, T ] → Q1 such that

ε(uθ(t)) = Cσθ(t) +
∫ t

0

Dθ(t− s)σθ(s) ds ∀t ∈ [0, T ], (52)

σθ(t) ∈ Σ(t), (τ − σθ(t), ε(u̇θ(t)))Q ≥ 0 ∀ τ ∈ Σ(t), (53)
a.e. in (0, T ).

σθ(0) = σ0. (54)

Clearly, Problem 5.1 represents the variational formulation of the frictional contact
problem (2)–(7) in the case when the viscoelastic constitutive law (2) is replaced
by the viscoelastic constitutive law (52). Moreover, by Theorem 4.3 it follows that
Problem 5.1 has a unique solution, denoted {uθ, σθ}, with regularity (35).

We have the following convergence result.

Theorem 5.1. Assume (14)–(17), (50) and (51). Let {u, σ} and {uθ,σθ} be the
solutions of Problems 3.2 and 5.1, respectively. Then

lim
θ→0

{‖uθ − u‖C(0,T ;V ) + ‖σθ − σ‖C(0,T ;Q1)} = 0. (55)

Theorem 5.1 represents a continuous dependence result of the weak solution of the
frictional contact problem (2)–(7) with respect to the creep compliance operator. In
addition to the mathematical interest in this result, it is of importance in applications,
as it indicates that small inaccuracies in the creep compliance operator lead to small
inaccuracies in the solution. In particular, if D = 0 and Dθ → 0 in W 1,2(0, T ;Q∞)
as θ → 0, it follows that the solution of the Problem 5.1 converges to the solution
of a frictional elastic contact problem. In other words, the elastic frictional contact
problem problem may be viewed as a limiting case of viscoelastic frictionless contact
problem.
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[13] M. Sofonea, A. D. Rodŕıguez–Arós and J. M. Viaño, Creep Formulation of the Signorini Fric-
tionless Contact Problem. Advances in Nonlinear Variational Inequalities, 6 (2003), 23–24.
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