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Infinity Weak Solutions for a Nonlocal Fractional Problem
with Different Boundary Conditions

Hamza El-houari, Hicham Moussa, and Hajar Sabiki

Abstract. In this paper, we investigate two nonlinear equations of fractional type under
different external conditions. The first part of this study aims to prove the existence of an

infinite number of solutions for nonlocal elliptic problems with non-homogeneous Neumann

boundary conditions. The proof is guaranteed by exploiting the correct oscillatory behavior
of non-smooth terms. The second section of the paper examines a class of nonlocal elliptic

problems in which non-smooth components exhibit a mixed effect of concave and convex
nonlinearity at Dirichlet boundary conditions. The nonlinearities do not satisfy Ambrosetti-

Rabinowitz and monotonicity conditions. Our framework is a Fractional Orlicz-Sobolev space.

To establish the main result, we apply variational approaches paired with Ekeland’s variational
principle.

2020 Mathematics Subject Classification. Primary: 35J60. Secondary: 35S15, 58E30.

Key words and phrases. Fractional Orlicz-Sobolev spaces; nonlocal problems; variational
methods; Ekeland’s variational principle.

1. Introduction

This work deals with the analysis of problems{
(−∆)sa(.)u+ a(|u|)u = fλ(x, u) inΩ,

B(u) = 0 on RN\Ω,
(1.1)

where B(u) is a boundary conditions chosen later and Ω is a bounded open domain in
RN (N ≥ 3) with smooth boundary ∂Ω, s ∈ (0, 1), λ is a positive parameter, (−∆)sa(.)

is the nonlocal fractional a(.)-Laplacian operator introduced in [16] and defined as

(−∆)sa(.)u(x) = p.v.

∫
RN

a
(
|Dsu|

)
Dsu

dy

|x− y|N
, for all x ∈ RN ,

where Dsu =
u(x)− u(y)

|x− y|s
, is the s-Hölder quotient and a : R+ → R+ is a non-

decreasing and right continuous function, with

a(0) = 0, a(t) > 0 for t > 0 and lim
t→∞

a(t) =∞, (1.2)

which partnered with the function ϕ : R→ R defined by

ϕ(t) =

{
a(|t|)t for t 6= 0

0 for t = 0,
(1.3)
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is such that is an odd, increasing homeomorphism from R onto itself.
In this study, we employ appropriate variational methods in the fractional Orlicz-
Sobolev space W sLA(Ω) to establish the existence and multiplicity of a weak solution
to the problem (1.1). The space W sLA(Ω) was introduced by Bonder et al. in [16].
Currently, the fractional Orlicz-Sobolev space serves as an extension of the traditional
fractional Sobolev space W s,p(Ω) (see [1, 7, 23, 28, 43]). Consequently, several authors
such as [3, 10, 11, 17, 26] have extended various properties of fractional Sobolev spaces
to fractional Orlicz-Sobolev spaces. The applicability of fractional Orlicz-Sobolev
spaces in various branches of mathematics has captured considerable interest and has
been the subject of research in multiple directions. While it is impossible to cover
every aspect of the subject in this study, we will present a few instances for those
interested. For example, we refer to [19, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 46].

The aim of this paper is to investigate problem (1.1) under various boundary
conditions. The first one is when B(u) = Na(u), referred to as the non-homogeneous
Neumann boundary condition, and (1.1) is rewritten as follows:{

(−∆)sa(.)u+ a(|u|)u = fλ(x, u) inΩ,

Na(u) = 0 on RN\Ω,
(1.4)

where Na is defined by

Nau(x) =

∫
Ω

a
(
|Dsu|

)
Dsu

dy

|x− y|N
, x ∈ RN\Ω, (1.5)

which can be considered as the natural generalization of the non-local derivative
presented in [24]. Here, we choose the nonlinearity function fλ(x, u) = λf(x, u),
where f : Ω× R→ R is a continuous function such that f(x, 0) = 0 for almost every
x ∈ Ω. The second case is when B(u) represents Dirichlet-type boundary conditions,
and (1.1) is rewritten as follows:{

(−∆)sa(.)u+ a(|u|)u = fλ(x, u) inΩ,

u = 0 on RN\Ω.
(1.6)

Here, we consider the nonlinearity function fλ with a slowly growing principal part,
incorporating a critical Orlicz-Sobolev lower term related to the principal part. Specif-
ically, fλ(x, u) = λg(u) + f(x, u), where g is an odd, increasing homeomorphism from
R to R. In the past decades, problems associated with elliptic equations such as

−∆u = fλ(x, u) x ∈ Ω,

have been extensively investigated with various types of nonlinearities. For instance,
in [20], the authors examined the following problem:

−∆u = λuq + up inΩ,

u > 0 inΩ,

B(u) = 0 on ∂Ω,

(1.7)

where B(u) represents a mixed Dirichlet-Neumann boundary condition. They estab-
lished results regarding the existence and multiplicity of solutions for problem (1.7).
Ambrosetti et al. in [6] demonstrated the existence and multiplicity of solutions to the
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semilinear elliptic boundary value problem with concave and convex nonlinearities,
specifically, 

−∆u = λuq + up inΩ,

u > 0 inΩ,

u = 0 on ∂Ω,

(1.8)

with 0 < q < 1 < p ≤ (N + 2)/(N − 2). Afterward, many authors extended the
results presented in (1.7) and (1.8) to the general class of functions known as Young
functions, as seen in [40]. The authors investigated the following problem:{

−div(φ(|∇u|)∇u) = g(u) + λf(x, u) inΩ,

u = 0 on ∂Ω,

they used a variational approach to obtain a non-negative solution for the above
problem. Also in [41], the authors show the existence and multiplicity of solutions for
problems like {

−div(φ(|∇u|)∇u) = λf(x, u) inΩ,

u = 0 on ∂Ω.

In [14] the authors established the multiplicity result for the following eigenvalue
nonhomogeneous Neumann problem{

−div(φ(|∇u|)∇u) + φ(|u|)u = λf(x, u) inΩ,
∂u
∂ν = 0 on ∂Ω.

Non-local elliptic problems involving fractional a(·)-Laplacian operators with Dirichlet-
type boundary conditions have become more common in recent years, as seen in
[8, 31, 46, 47].
However, elliptic problems involving fractional a(.)-Laplacian operators and Neuman
boundary conditions have lately been attacked by a few researchers, see [12].

Our first finding in this paper is to extended non-homogeneous Neumann problem
(1.4) admits a sequence of pairwise different weak solutions on appropriate fractional
space W for a specific interval of values of the parameter λ. The space W is defined
by all mesurable functions w : RN → R such that∫

R2N\(Ωc)2
A(|Dsw|)dµ+

∫
Ω

A(w(x))dx <∞, with Ωc = RN\Ω.

In the first part of this study, we utilize multiple critical point theorems established
in [15], which can be viewed as extensions of Ricceri’s variational principle [52].

Theorem 1.1. Let J , I : X → R be two Gâteaux differentiable functionals in reflex-
ive real Banach space X, such that I is sequentially weakly upper semicontinuous,
J is strongly continuous, coercive and sequentially weakly lower semicontinuous. For
each r > infX J , let

ψ(r) := inf
w∈J−1(−∞,0)

supw∈J−1(−∞,r) I(v)− I(u)

r − J(w)
,

and

δ := lim
r→(infX J)+

inf ψ(r).
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If δ <∞ then for each λ ∈ (0, 1/δ), one of the following alternative holds:
(a1) A global minimum of J exists, as well as a local minimum of hλ := J − λI.
(a2) A sequence {wn} of pairwise distinct critical points (local minima) of hλ exists,
that converges weakly to a global minimum of J with limn→+∞ J(wn) = infX J .

We refer to [14, 48] and reference therein for more Neuman problems.

Next, we examine a class of non-local elliptic problems (1.6) with concave and
convex nonlinearities that do not satisfy the well-known Ambrosetti-Rabinowitz con-
dition. This type of problem has not been thoroughly investigated in the fractional
framework but has been studied in the classical framework, particularly in the Orlicz-
Sobolev space. For instance, da Silva et al. in [22] explored (1.6) with nonlinearities
of the form λa(x)|u|q−2u+ b(x)|u|l∗−2u, exhibiting critical behavior at infinity, where
l∗ = Nl/N − l with 1 < l < N , and a, b : Ω → R are two indefinite functions in
sign. They obtained a ground-state solution using the well-known Nehari method.
For other convex-concave nonlinearities, we refer the reader to [5, 13, 22, 44, 51] and
references therein. In this study, we establish the existence of at least two nontriv-
ial solutions to (1.6) for λ > 0 small enough. We employ functional techniques and
variational approaches, coupled with the Ekeland variational principle, on W sLA(Ω).

The following provides an overview of the organization of this work. We briefly
review certain features of Orlicz and fractional Orlicz-Sobolev spaces in Section 2.
Section 3 outlines the assumptions used in this study. In Section 4, we present the
main results of the problems (1.4), (1.6), along with their proofs.

2. Some preliminary results

The reader is referred to [2, 4, 12, 16, 49] for more details on Orlicz and fractional
Orlicz-Sobolev space.

We note by N the set of all N -functions and Ci (i ∈ N) a positive constant. Let a be

as in (1.2). We will use the following notation A(t) =
∫ t

0
ϕ(r) dr, for every t ∈ R, then,

A ∈ N and its complementary A given by this relationship A(t) := supr≥0{tr−A(r)},
is also in N. We point out that A ∈ ∆2 if for a certain constant k > 0,

A(2t) ≤ k A(t), for every t > 0. (2.1)

We observe that A and A satisfies the following Young’s inequality:

rt ≤ A(r) +A(t) for all t, r ≥ 0. (2.2)

Recall that A∗ ∈ N is defined by

(A∗)−1(t) =

∫ t

0

A−1(r)

r
N+s
N

dr for t ≥ 0,

where we mention that

(H0)

∫ 1

0

A−1 (t)

t1+ s
N

dt <∞ and (H∞)

∫ +∞

1

A−1 (t)

t1+ s
N

dt = +∞, for s ∈ (0, 1).

Let (M,A) ∈ N. The notation M ≺≺ A means that, for each ε > 0,

M(εt)

A(t)
→ 0 as t→∞. (2.3)
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The Orlicz space LA(Ω) is defined as the mesurable functions u : Ω → R such that∫
Ω

A
(
d|u(x)|)

)
dx < +∞ for some d > 0. The usual norm on LA(Ω) is

‖u‖A = inf
{
d > 0 /

∫
Ω

A
( |u(x)|

d

)
dx ≤ 1

}
.

Recall that, the Hölder inequality holds∫
Ω

|u(x)v(x)|dx ≤ 2||u||A||v||A for all u ∈ LA(Ω) and v ∈ LA(Ω).

One major inequality in LA(Ω) is:∫
Ω

A
( |u(x)|
||u||A

)
dx ≤ 1 for all u ∈ LA(Ω) \ {0}. (2.4)

After this, we list a few inequalities that will be used for our proofs. The proof is
provided in [42].

Lemma 2.1. Let A ∈ N, then these assertions are equivalent:
1)

1 < l := inf
t>0

ta(t)

A(t)
≤ sup

t>0

ta(t)

A(t)
:= m < +∞. (2.5)

2)

min{tl, tm}A(ρ) ≤ A(ρt) ≤ max{tl, tm}A(ρ), ∀t, ρ ≥ 0. (2.6)

3) A ∈ ∆2.

Lemma 2.2. If A ∈ N satisfies (2.5) then we have

min{||u||lA, ||u||mA } ≤
∫

Ω

A(|u|)dx ≤ max{||u||lA, ||u||mA }, ∀u ∈ LA(Ω). (2.7)

Lemma 2.3. Let A be the complement of A, l = l
l−1 and m = m

m−1 , If A ∈ N and

(2.5) hold, then A satisfies:
1)

min{tl, tm}A(ρ) ≤ A(ρt) ≤ max{tl, tm}A(ρ), ∀t, ρ ≥ 0. (2.8)

2)

min{||u||l
A
, ||u||m

A
} ≤

∫
Ω

A(|u|)dx ≤ max{||u||l
A
, ||u||m

A
}, ∀u ∈ LA(Ω). (2.9)

Lemma 2.4. We have A ≺≺ A∗, i.e, lim
t→∞

A(kt)

A∗(t)
= 0, ∀k > 0.

Remark 2.5. By Lemma 2.1, Lemma 2.3 and (2.5), we show that (A,A) ∈ ∆2.

We now look at the definition of the fractional Orlicz-Sobolev spaces W sLA(Ω),
which defined as the mesurable functions u ∈ LA(Ω) such that∫

Ω×Ω

A
(
d|Dsw|

)
|x− y|−Ndxdy <∞ for some d > 0.

This space is equipped with the norm,

||u||s,A = ||u||A + [u]s,A, (2.10)
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where [.]s,A is the Gagliardo semi-norm, defined by

[u]s,A = inf

{
d > 0 :

∫
Ω×Ω

A

(
|Dsw|
d

)
|x− y|−Ndxdy ≤ 1

}
.

We put Υ(w) :=

∫
Ω×Ω

A(|Dsw|)dµ+

∫
Ω

A(|w|)dx, Ψ1(w) :=

∫
Ω

F (x,w)dx and Ψ2(w) :=∫
Ω

G(w)dx, for all x ∈ Ω, w ∈W sLA(Ω).

Γ(w) :=

∫
R2N\(Ωc)2

A(|Dsw|)dµ +

∫
Ω

A(|w|)dx, Φ(w) :=

∫
Ω

F (x,w)dx. for all x ∈ Ω,

w ∈W, where F (x, t) :=
∫ t

0
f(x, r)dr, G(t) :=

∫ t
0
g(r)dr and dµ = dxdy

|x−y|N .

Lemma 2.6. ([9] Lemma 3, [45] Lemma 3.4) The functions Υ,Ψi=1,2 : W sLA(Ω)→ R
are well defined and its the C1(W sLA(Ω),R) and we have

〈Υ′(w), w〉 =

∫
Ω×Ω

a
(
|Dsw|

)
DswDswdµ+

∫
Ω

a
(
|w|
)
wwdx, (2.11)

〈Ψ′1(w), w〉 =

∫
Ω

f(x,w)wdx,

〈Ψ′2(w), w〉 =

∫
Ω

g(w)wdx,

for all w ∈W sLA(Ω).

Lemma 2.7. ([53] Proposition 4.1) The functions Γ,Φ : W→ R are well defined and
its the C1(W,R) and we have

〈Γ′(w), w〉 =

∫
R2N\(Ωc)2

a
(
|Dsw|

)
DswDswdµ+

∫
Ω

a
(
|w|
)
wwdx, (2.12)

〈Φ′(w), w〉 =

∫
Ω

f(x,w)wdx,

for all w ∈W.

Proposition 2.8. [9] The following norms

||w||s,A = ||w||A + [w]s,A,

||w||max = max{||w||A, [w]s,A},

||w|| = inf{λ > 0 : Υ
(w
λ

)
≤ 1}, (2.13)

are equivalents on W sLA(Ω). i.e,

||w|| ≤ 2||w||max ≤ 2||w||s,A ≤ 4||w||. (2.14)

To deal with problem (1.6) under consideration, we choose

W s
0LA(Ω) :=

{
u ∈W s,A(RN ) : u = 0 a.e RN \ Ω

}
.

In these spaces the generalized Poincaré inequality reads as follows (see [10])

||u||A ≤ C1[u]s,A, ∀u ∈W s
0LA(Ω). (2.15)

We have (W s
0LA(Ω), [u]s,A) is a Banach space whose norm is equivalent to ||u||s,A.

Also is a separable (resp. reflexive) space if and only if A ∈ ∆2 (resp. (A,A) ∈
∆2 ×∆2). Furthermore if A ∈ ∆2 and A(

√
t) is convex, then the space W s

0LA(Ω) is
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uniformly convex (see [16]).
The fractional a(·)-Laplacian operator specified in (1) is defined between W s

0LA(Ω)
and its dual space (W s

0LA(Ω))∗. This is confirmed by ([16], Theorem 6.12), where
the following expression is derived:

〈G′(w), v〉 =

∫
Ω×Ω

a
(
|Dsw|

)
DswDsvdµ = 〈(−∆)sa(.)w, v〉, (2.16)

for all w, v ∈W s
0LA(Ω), where G(w) :=

∫
Ω×Ω

A(|Dsw|)dµ.

Lastly, the following proposition will be useful in the subsequent developments.

Lemma 2.9. ([12] Lemma 3.6, Lemma 4.1) The following properties are true:
1)

G
(

u

[u]s,A

)
≤ 1, for allu ∈W s

0LA(Ω) \ {0}.

2)

min{[u]ls,A, [u]ms,A} ≤ G(u) ≤ max{[u]ls,A, [u]ms,A}, for all u ∈W s
0LA(Ω).

3)

min{||u||l, ||u||m} ≤ Υ(u) ≤ max{||u||l, ||u||m}, for all u ∈W s
0LA(Ω).

Lemma 2.10. [18] Suppose that A(
√
t) is convex, uk ⇀ u in W s

0LA(Ω) and

lim sup〈G′(uk), uk − u〉 ≤ 0.

Then uk → u ∈W s
0LA(Ω).

Now, recall that the natural space to look for (weak) solutions of (1.4) is given by

W :=
{
u : RN → R mesurable :

∫
R2N\(Ωc)2

A(|Dsw|)dµ+

∫
Ω

A(w(x))dx <∞
}
.

This is a reflexive Banach space with respect to the norm (see [24])

||w||s,A,∗ = ||w||A + [w]s,A,∗ (2.17)

where

[w]s,A,∗ := inf
{
d > 0 :

∫
R2N\(Ωc)2

A
( |Dsw|

d

)
dµ ≤ 1

}
.

Remark 2.11. Ω× Ω ⊂ R2N\(Ωc)2, then ||w||s,A ≤ ||w||s,A,∗ for all w ∈W.

Lemma 2.12. Let w ∈W. Then∫
R2N\(Ωc)2

A(|Dsw|)dµ+

∫
Ω

A(|w|)dx ≥ ||w||ls,A,∗, if ||w||s,A,∗ < 1.

∫
R2N\(Ωc)2

A(|Dsw|)dµ+

∫
Ω

A(|w|)dx ≥ ||w||ms,A,∗, if ||w||s,A,∗ > 1.

Proof. by some argument in lemma 2.3 in [50], we proof this Lemma. �

Proposition 2.13. Let w ∈ W and assume that Γ(w) ≤ r, for some 0 < r < 1.
Then, one has ||w||s,A,∗ < 1.
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Proof. Let w ∈ W. By (2.13), if Γ(w) ≤ r holds, then ||w||s,A,∗ ≤ 1. Now, claim
that ||w||s,A,∗ 6= 1. Arguing by contradiction, assume that there exists w ∈ W with
||w||s,A,∗ = 1 and Γ(w) ≤ r holds. Let us take β ∈ (0, 1), for all x ∈ Ω, we have

Γ(w) = Γ
(β
β
w
)

=

∫
R2N\(Ωc)2

A
(β
β
|Dsw|

)
dµ+

∫
Ω

A
(β
β
|w(x)|

)
dx

≥ βm
[∫

R2N\(Ωc)2
A
( |Dsw|

β

)
dµ+

∫
Ω

A
( |w(x)|

β

)
dx

]
.

(2.18)

Set v = w(x)
β . Then we have ||v||s,A,∗ = 1

β > 1. By Lemma 2.12, we infer that∫
R2N\(Ωc)2

A
(
|Dsv|

)
dµ+

∫
Ω

A
(
|v(x)|

)
dx ≥ ||v||ls,A,∗ > 1. (2.19)

Combining (2.18) and (2.19) we deduce that∫
R2N\(Ωc)2

A
(
|Dsw|

)
dµ+

∫
Ω

A
(
|w(x)|

)
dx ≥ βm.

Letting β ↗ 1 in the above inequality we obtain∫
R2N\(Ωc)2

A
(
|Dsw|

)
dµ+

∫
Ω

A
(
|w(x)|

)
dx ≥ 1.

that contradicts condition Γ(w) ≤ r. The proof is complete. �

3. Hypotheses

Related to functions A, f and g, our hypotheses are the following:
(A1):

1 < li := inf
t>0

tϕ(t)

A(t)
≤ sup

t>0

tϕ(t)

A(t)
:= ni < +∞.

(A2): The function t→ A(
√
t) where t ∈ [0,+∞) is convex.

(A3): There exist τ(x) ∈ L1(Ω) such that, for all σ ∈ [0, 1],

A(σt) ≤ C2A(t) + τ(x), ∀(x, t) ∈ Ω× R,

where A(x, t) := mA(t)− tϕ(t). For the function f :
(f1) |f(x, t)| ≤ C3(1 + h(|t|)), for all x ∈ Ω and t ∈ R, where h : R → R is an

odd, increasing homeomorphism function from R to R, H(t) :=
∫ t

0
h(r)dr satisfies

H ≺≺ A∗ and h0 := inft>0
th(t)
H(t) > m.

(f2) lim supt→0
f(x,t)
ϕ(|t|) < 1

λ1
uniformly for almost all x ∈ Ω where λ1 is defined in

Lemma 2.3 [8].

(f3) lim|t|→∞
f(x,t)
|t|m−2t = +∞ uniformly for almost all x ∈ Ω.

(f4) There exist C2 ≥ 1 and ρ(x) ∈ L1(Ω) such that, for all σ ∈ [0, 1],

F (x, σt) ≤ C2F (x, t) + ρ(x), ∀(x, t) ∈ Ω× R,

where F (x, t) := tf(x, t)−mF (x, t).
For the function g:
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(g1) G ≺ A(∞), limt→0
A(t)
G(t) = 0.

We set

B := lim
ζ→0+

inf

∫
Ω

max
t≤ζ

F (x, t)dx

ζm
and D := lim

ζ→0+
sup

Φ(ζ)

ζl
.

The embedding below (cf. [10, 12]) will be used in this paper:

W s
0LA(Ω)

cpt
↪→ LB(Ω) and W

cpt
↪→ LB(Ω) if B ≺≺ A∗.

In particular, by Lemma 2.4, (g1) and (f1) we have, G ≺ A ≺≺ A∗ and H ≺≺ A∗.
Then

W s
0LA(Ω)

cpt
↪→ LA(Ω), W s

0LA(Ω)
cpt
↪→ LG(Ω) and W s

0LA(Ω)
cpt
↪→ LH(Ω). (3.1)

Moreover, if s′l > N . Then

W s
0LA(Ω)

cpt
↪→ L∞(Ω),

i.e, there exists a constant c > 0 such that

|w|∞ ≤ c||w|| w ∈W s
0LA(Ω), (3.2)

where |w|∞ := sup
x∈Ω

|w(x)| and 0 < s′ < s < 1.

At this point we set the definition of our weak solution, we say that w ∈ W is a
weak solution for problem (1.4) if∫

R2N\(Ωc)2
a
(
|Dsw|

)
DswDswdµ+

∫
Ω

a
(
|w|
)
wwdx− λ

∫
Ω

f(x,w)wdx = 0,

for all w ∈W and w ∈W s
0LA(Ω) is a weak solution for problem (1.6) if∫

Ω×Ω

a
(
|Dsw|

)
DswDswdµ+

∫
Ω

a
(
|w|
)
wwdx− λ

∫
Ω

g(w)wdx−
∫

Ω

f(x,w)wdx = 0,

for all w ∈W s
0LA(Ω).

4. Main results

Our main results are stated below

Theorem 4.1. Let f : Ω × R → R, be a continuous function, A ∈ N satisfies
(A1)-(A3) and let α > 0 such that

lim
t→0+

A(t)

tl
< α. (4.1)

Further, assume

lim
ζ→0+

inf

∫
Ω

max
t≤ζ

F (x, t)dx

ζm
<

(2c)−m

α|Ω|
lim
ζ→0+

sup
Φ(ζ)

ζl
. (4.2)

Then, for every λ belonging to]
α|Ω|D−1, (2c)−mB−1

[
,
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problem (1.4) admits a sequence of pairwise distinct weak solutions which strongly
converges to zero in W.

Theorem 4.2. Given A satisfies (A1)-(A3), f satisfies (f1)-(f4) and g satisfies (g1).
Then there exists λ∗ > 0 such that, for each λ ∈ (0, λ∗), problem (1.6) has two
nontrivial weak solutions.

For any λ > 0, we defined the Euler functional Lλ : W→ R associated to problem
(1.4) by

Lλ(w) := Γ(w)− λΦ(w), for all w ∈W.

We can observe that, according to Lemma 2.7 we have that Lλ ∈ C1(W,R) with the
derivative given by

〈L′λ(w), w〉 =

∫
R2N\(Ωc)2

a
(
|Dsw|

)
DswDswdµ+

∫
Ω

a
(
|w|
)
wwdx− λ

∫
Ω

f(x,w)wdx.

(4.3)

And the Euler functional Iλ : W s
0LA(Ω)→ R associated to problem (1.6) is as follows

Iλ(w) := Υ(w)− λΨ1(w)−Ψ2(w), for all w ∈W s
0LA(Ω).

By Lemma 2.6 we have that Iλ ∈ C1(W s
0LA(Ω),R) with the derivative given by

〈I ′λ(w), w〉 =

∫
Ω×Ω

a
(
|Dsw|

)
DswDswdµ+

∫
Ω

a
(
|w|
)
wwdx

−λ
∫

Ω

g(w)wdx−
∫

Ω

f(x,w)wdx.
(4.4)

Hence, finding weak solutions for problem (1.4) (resp. (1.6)) is equivalent to find
critical points for the functional Lλ (resp. Iλ).

Proof of Theorem 4.1. We can seek for weak solutions of problem (1.4) by applying
Theorem 1.1. For that let {cn} be a real sequence such that limn→∞ cn = 0 and

B := lim
n→∞

∫
Ω

max
t≤cn

F (x, t)dx

cmn
.

Put rn =
(
cn
2c

)m
for all n ∈ N. Then, by Lemmas 2.12 and Proposition 2.13, we can

deduce that {
v ∈W : Γ(v) < rn

}
⊆
{
v ∈W : ||v||s,A,∗ <

cn
2c

}
.

Because of the Remark 2.11 and (3.2), we infer that

|v|∞ ≤ c||v||s,A,∗. (4.5)

According to (2.14),

|v(x)| ≤ |v|∞ ≤ c||v||s,A ≤ 2c||v||s,A,∗ ≤ cn, ∀x ∈ Ω.

Hence {
v ∈W : ||v||s,A,∗ <

cn
2c

}
⊆
{
v ∈W : |v| < cn

}
.
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Considering that Γ(u0) = 0 and Φ(u0) = 0, where u0(x) = 0 for all x ∈ Ω, for all
n ∈ N one has

ψ(rn) = inf
Γ(v)<rn

sup
Γ(v)<rn

Φ(v)− Φ(u)

rn − Γ(u)
≤

sup
Γ(v)<rn

Φ(v)

rn
=

sup
Γ(v)<rn

∫
Ω

F (x, v)dx

rn

≤

∫
Ω

max
|t|<cn

F (x, t)dx

rn

≤ (2c)m ×

∫
Ω

max
|t|<cn

F (x, t)dx

cmn
.

Therefore, from the assumption (4.2) one has B < +∞, we obtain

δ ≤ lim
n→∞

inf ψ(rn) ≤ (2c)mB < +∞.

Now, take

λ ∈
]
α|Ω|D−1, (2c)−mB−1

[
,

At this point we will show that 0, that is the unique global minimum of Γ, is not a
local minimum of Lλ. For this goal, let {ζn} be a real sequence of positive numbers
such that limn→∞ ζn = 0 and

lim
n→∞

Φ(ζn)

ζn
= D. (4.6)

From the Neuman boundary condition,

Nawn(x) =

∫
Ω

a
(
|Dswn|

)
Dswn

dy

|x− y|N
= 0, x ∈ RN\Ω,

and the continuous of the function a, implies that Dswn = wn(x)−wn(y)
|x−y|s = 0. Hence

wn(x) = wn(y) for all x, y ∈ Ω × Ω. Now, For each n ∈ N, put wn(z) := ζn, for all
z ∈ Ω. Clearly wn ∈W, for each n ∈ N and wn → 0 as n→∞. Hence

Γ(wn) =

∫
R2N\(Ωc)2

A(|Dswn|)µ+

∫
Ω

A(|wn|)dz =

∫
Ω

A(|wn|)dz = A(ζn)|Ω|.

Moreover, from hypothesis (4.1), taking into account that limn→∞ wn = 0 one

A(wn) < αwln,

for every n ≥ n0. If D <∞, let ε ∈
]
α|Ω|
λD , 1

[
. By (4.6) there exists nε such that

Φ(ζn) > εDζln, ∀n > nε.

Hence

Lλ(wn) = Γ(wn)− λΦ(wn)

≤ αwln|Ω| − λεDwln = wln(α|Ω| − λεD) < 0,

for every n ≥ max{n0, nε}. On the other hand, if D = +∞ let us consider β > α|Ω|
λ .

By (4.6) there exists nβ such that

Φ(ζn) > βζln, ∀n > nβ .
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Moreover,

Lλ(wn) = Γ(wn)− λΦ(wn)

≤ αwln|Ω| − λβwln = wln(α|Ω| − λβ) < 0,

for every n ≥ {n0, vβ}. As a consequence, Lλ < 0 for any n large enough. Since
Lλ(0) = Γ(0) − λΦ(0) = 0, i.e 0 isn’t a local minimum of Lλ. Further, because
Γ has zero as a unique global minimum. By Theorem 1.1 we have the existence of
a sequence {vn} of critical points of the functional Lλ, pairwise distinct, such that
limn→∞ Γ(vn) = 0. By the Lemma 2.12 we have ||vn||ms,A,∗ ≤ Γ(vn) for every n large

enough. Thus limn→∞ ||vn|||s,A,∗ = 0 and this completes the proof.

Proof of Theorem 4.2. First, consider X as a real Banach space and I ∈ C1(X,R).
We say I satisfies the Cc condition if any sequence {wn} ⊂ X such that I(wn) → c
and ||I ′(wn)||X∗(1 + ||wn||) → 0 as n → ∞ has a convergent subsequence. {wn} is
called a Cerami sequence at the level c ∈ R. Now, we can mentioned the following
Lemma

Lemma 4.3. ([21]) Let I ∈ C1(X,R) fulfilling the Cc conditions. If
(i) I(θ) = 0.
(ii) There exist two constants τ > 0, η > 0, such that I(w) ≥ η for any w ∈ X with
||w|| = τ .
(iii) There exists a function w̃ ∈ X such that ||w̃|| > τ and I(w̃) < 0.
Then I has a critical value c ≥ η, i.e., there exists u ∈ X such that I(u) = c and
I ′(u) = θ.

Lemma 4.4. Given that (A1), (f1), (f2) and (g1) hold, then there exist positive
constants λ∗, τ, η, such that, for each λ ∈ (0, λ∗), Jλ(w) ≥ η, for any w ∈W s

0LA(Ω),
with ||w|| = τ .

Proof. By (3.1), there exists C4 such that,

||w||G ≤ C4||w||, ||w||H ≤ C4||w||, ∀w ∈W s
0LA(Ω). (4.7)

Let 0 < τ < min{1, 1/C4} for any w ∈ Sτ := {w ∈ W s
0LA(Ω) : ||w|| = τ}, using (4.7)

we infer that ||w||G < 1 and ||w||H < 1. Moreover, by (2.4) we deduced

∫
Ω

G(w)dx <

1. On other hand, by using condition (f2), there exist ε0 ∈ (0, 1) and δ > 0 such that

|F (x, t)| ≤ (
1− ε0
λ1

)A(t), ∀x ∈ Ω, |t| < δ. (4.8)

Since H(t)/t is increasing on [δ,∞). By condition (f1) which combined with (4.8),
we get

|F (x, t)| ≤
(1− ε0

λ1

)
A(t) + C5H(t), ∀x ∈ Ω, t ∈ R. (4.9)

According to, (4.9),

Iλ(w) =

∫
Ω×Ω

A
(
|Dsw|

)
dµ+

∫
Ω

A
(
|w|
)
dx− λ

∫
Ω

G(w)dx−
∫

Ω

F (x,w)dx.

≥
∫

Ω×Ω

A
(
|Dsw|

)
dµ+

∫
Ω

A
(
|w|
)
dx− λ

∫
Ω

G(w)dx−
∫

Ω

|F (x,w)|dx.

≥
∫

Ω×Ω

A
(
|Dsw|

)
dµ+

∫
Ω

A
(
|w|
)
dx− λ− (

1− ε0
λ1

)

∫
Ω

A(w)dx− C5

∫
Ω

H(w)dx.
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Using Lemma 2.3 in [8], Lemma 2.9,

Iλ(w) ≥
∫

Ω×Ω

A
(
|Dsw|

)
dµ+

∫
Ω

A
(
|w|
)
dx− λ− (1− ε0)

∫
Ω×Ω

A
(
|Dsw|

)
dµ

−C5

∫
Ω

H(w)dx

> ε0

∫
Ω×Ω

A
(
|Dsw|

)
dµ+ ε0

∫
Ω

A
(
|w|
)
dx− λ− C5||w||h0

H

≥ ε0Ψ(w)− λ− C6||w||h0

≥ ε0||w||m − λ− C6||w||h0

= ||w||m(ε0 − C6||w||h0−m)− λ.
(4.10)

Denote ψ(τ) = ε0−C6τ
h0−m, by h0 > m, we get, limτ→0+ ψ(τ)→ ε0 > 0. Therefore,

choose τ > 0 small enough such that ψ(τ) > ε0/2. Set λ∗ := ε0τ
m/4 > 0, η := ε0τ

m/4.
For all w ∈ Sτ and λ ∈ (0, λ∗), applying (4.10), we obtain

Iλ(w) ≥ ε0τm/4 > 0 = η.

�

Lemma 4.5. Given that (A1), (f1), (f3), and (g1) hold. Then, for any λ > 0, τ > 0,
there exists a function wλ, w̃λ ∈W s

0LA(Ω) such that
(i) ||wλ|| > τ and limt→+∞ Iλ(wλ) = −∞.
(ii) ||w̃λ|| < τ and limt→0 Iλ(w̃λ) < 0.

Proof. Let K > 0. It follows from (f3) that there exists a constant CK > 0 such that

F (x, t) ≥ K|t|m − CK ∀(x, t) ∈ Ω× R. (4.11)

Let us choose a compact set S, S̃ ⊂ Ω where |S|, |S̃| > 0, it is possible to define
w0, w̃0 ∈ C∞c (Ω) \ {0} such that w0(x) = 1 for x ∈ S, 0 ≤ w0(x) ≤ 1 for x ∈ Ω and

w̃0 = 1 for x ∈ S̃, 0 ≤ w̃0(x) ≤ 1 for x ∈ Ω. Thus by Theorem 7 in [10] we have
w0, w̃0 ∈ W s

0LA(Ω). Let t > 1 be large enough to make ||tw0|| > 1, by (4.11), the
Proposition 2.8 and the Lemma 2.9, we have

Iλ(tw0) =

∫
Ω×Ω

A(t|Dsw0|)dµ+

∫
Ω

A
(
t|w0|

)
dx− λ

∫
Ω

G(tw0)dx−
∫

Ω

F (x, tw0)dx

≤ tm[w0]ms,A + tm||w0||mA −Ktm
∫

Ω

|w0|mdx+ CK |Ω|

≤ 2tm||w0||mmax −Ktm
∫

Ω

|w0|mdx+ CK |Ω|

≤ tm
(

2||w0||mmax −K
∫
S

|w0|mdx
)

+ CK |Ω|

= tm
(

2||w0||mmax −K|S|
)

+ CK |Ω|.

From Proposition 2.8,

Iλ(tw0) ≤ tm
(

2||w0||m −K|S|
)

+ CK |Ω|.
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Since K > 0 is arbitrary we can choose K :=
3||w0||m

|S|
,

Iλ(tw0) ≤ −tm||w0||m + CK |Ω|.

Due to ||w0|| > 0, we infer that Iλ(tw0) → −∞ as t → +∞. Taking t large enough
such that t > max{1, τ+1

||w0||}, set wλ = tw0, which completes the proof. For (ii). Take

t ∈ (0, δ) where δ given in (4.8) such tha ||tw̃0|| < 1 and ||tw̃0||G < 1, by (4.8) we
have

|F (x, tw̃0)| ≤ (
1− ε0
λ1

)A(tw̃0), ∀x ∈ Ω.

From Lemma 2.3 in [8], we have

Iλ(tw̃0) =

∫
Ω×Ω

A
(
t|Dsw̃0|

)
dµ+

∫
Ω

A
(
t|w̃0|

)
dx− λ

∫
Ω

G(tw̃0)dx−
∫

Ω

F (x, tw̃0)dx

≤
∫

Ω×Ω

A
(
t|Dsw̃0|

)
dµ+

∫
Ω

A
(
t|w̃0|

)
dx− λ

∫
Ω

G(tw̃0)dx

+ (
1− ε0
λ1

)

∫
Ω

A(tw̃0)dx

≤(2 + λ1 − ε0)

∫
Ω×Ω

A
(
t|Dsw̃0|

)
dµ− λ

∫
Ω

G(tw̃0)dx

According to Lemma 2.9, we infer that

Iλ(tw̃0) ≤ (2 + λ1 − ε0)A(t)

∫
Ω×Ω

max{|Dsw̃0|l, |Dsw̃0|m}dµ− λ
∫
S̃

G(t)dx

≤ (2 + λ1 − ε0)A(t)||w̃0||lW s,l(Ω) − λG(t)|S̃|
= G(t)

[
C̃ A(t)
G(t) − λ|S̃|

]
,

(4.12)

where C̃ = (2 + λ1 − ε0)||w̃0||lW s,l(Ω). According to (g1), we get the result for a small

t and for w̃λ = tw̃0 < τ . �

Lemma 4.6. Given that (A1), (g1), and (f1)-(f4) hold. Then, for every λ > 0, the
functional Iλ satisfies Cc-condition for any c > 0.

Proof. Given λ > 0, c > 0. Let {un} ⊂ W s
0LA(Ω) be a Cerami sequence at the level

c of Iλ, i.e.,

Iλ(un)→ c and ||I ′λ(un)||(W s
0 LA(Ω))∗(1 + ||un||)→ 0 as n→∞. (4.13)

First, we shall show that {un} is bounded. Otherwise, there is a subsequence, still
denoted by {un}, such that limn→∞ ||un|| =∞ and ‖un‖ > 1 for all n ∈ N. We denote

wn(x) = un(x)
||un|| , x ∈ Ω. Then {wn} ⊂ W s

0LA(Ω) and ||wn(x)|| = 1 for every n ∈ N.

On other hand, assume that there exists {w} ⊂ W s
0LA(Ω) such that wn ⇀ w. From

(3.1), it follows that

||wn − w||L1 → 0, ||wn − w||G → 0, ||wn − w||H → 0 as n→∞. (4.14)

wn(x)→ w(x) a.ex ∈ Ω, n→∞. (4.15)

Claim: w(x) = 0 a.e x ∈ Ω.
|Ω0| := {x ∈ Ω : w(x) 6= 0} > 0. Given x ∈ Ω0, (4.15) implies that |un(x)| =
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|wn(x)| × ||un|| → ∞ as n → ∞. Furthermore, by (f3) we obtain that, for given
x ∈ Ω0,

F (x, un(x))

||un||m
=
F (x, un(x))

|un|m
|wn(x)|m →∞, n→∞. (4.16)

From (f3) and the continuity of F on Ω×R, there exists a constant C > 0 such that

F (x, t) ≥ C ∀(x, t) ∈ Ω× R,

which implies that

F (x, un(x))− C
||un||m

=
F (x, un(x))− C

|un|m
|wn(x)|m ≥ 0, ∀x ∈ Ω. (4.17)

From (4.13), it follows that

c+o(1) = Iλ(un) =

∫
Ω×Ω

A(|Dsun|)dµ+

∫
Ω

A(|un|)dx−λ
∫

Ω

G(|un|)dx−
∫

Ω

F (x, un)dx.

Dividing the above equality by ||un||m, by using Lemma 2.9 and the fact that ||un|| >
1,

lim
n→∞

inf

∫
Ω

F (x, un(x))

||un||m
dx =

lim
n→∞

inf

∫
Ω

F (x, un(x))dx

||un||m

= lim
n→∞

inf

[∫
Ω×Ω

A(|Dsun|)dµ+

∫
Ω

A(|un|)dx

||un||m
−
λ

∫
Ω

G(|un|)dx

||un||m
− c+ o(1)

||un||m

]

≤ lim
n→∞

inf

[∫
Ω×Ω

A(|Dsun|)dµ+

∫
Ω

A(|un|)dx

||un||m
− c+ o(1)

||un||m

]
≤ 1.

(4.18)

By Fatou’s lemma and (4.15),(4.16),(4.17) and (4.18)

∞ =

∫
Ω0

lim
n→∞

F (x, un(x))− C
||un||m

dx

≤ lim
n→∞

inf

∫
Ω0

F (x, un(x))− C
||un||m

dx ≤ lim
n→∞

inf

∫
Ω

F (x, un(x))− C
||un||m

dx

≤ lim
n→∞

inf

∫
Ω

F (x, un(x))dx

||un||m
− lim
n→∞

sup

∫
Ω

C1dx

||un||m

= lim
n→∞

inf

∫
Ω

F (x, un(x))dx

||un||m
≤ 1.

(4.19)

Consequently, we get a contradiction, which implies that w(x) = 0 a.e. x ∈ Ω. Since
Iλ(tun) is continuous on [0, 1] for each n ∈ N , there exists tn ∈ [0, 1] such that

I(tnun) = max
t∈[0,1]

I(tun).

Due to ||I ′λ(un)||(W s
0 LA(Ω))∗(1 + ||un||)→ 0, we deduce

〈I ′λ(un)(tnun), tnun〉 → 0, n→∞. (4.20)
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Take {sk}∞k=1 ⊂ (1,∞) with sk → +∞ as k → ∞. Then, for each n, k ∈ N, one has
||skun|| = sk > 1. From (4.14) and the claim, combining conditions (g1) and (f1), we
deduce∫

Ω

F (x, skwn(x))dx ≤ C
∫

Ω

[|skwn|+H(skwn)]dx

≤ C(||skwn||L1 + ||skwn||H)→ 0, n→∞,
(4.21)

and ∫
Ω

G(skwn(x))dx ≤ ||skwn||G → 0, n→∞. (4.22)

Due to limn→∞ ||un|| =∞, given k ∈ N, there exists nk ≥ k. For all n ≥ nk ≥ k, one
has ||un|| > sk, i.e, 0 < sk

||un|| < 1. From the fact that ||skwn|| > 1, Lemma 2.9 and

(4.21), (4.22), for large n ∈ N,

Iλ(tnun) = max
t∈[0,1]

Iλ(tnun) ≥ Iλ(
sk
||un||

un) = Iλ(skwn)

=

∫
Ω×Ω

A(sk|Dswn|)dµ+

∫
Ω

A(sk|wn|)dx− λ
∫

Ω

G(sk|wn|)dx−
∫

Ω

F (x, skwn)dx

≥ ‖skwn‖l − λ
∫

Ω

G(sk|wn|)dx−
∫

Ω

F (x, skwn)dx

≥ 1

2
‖skwn‖l =

1

2
slk. (4.23)

Let sk = ‖uk‖η > 1, where η ∈ (ml ,+∞) is a constant. For all n ≥ nk ≥ k, one has

Iλ(tnun) ≥ 1

2
||uk||ηl. (4.24)

Applying (4.20), for large n ∈ N

Iλ(tnun) = Iλ(tnun)− 1

m
〈I ′λ(tnun), un〉+ o(1)

=

∫
Ω×Ω

A(tn|Dsun|)dµ+

∫
Ω

A(tn|un|)dx− λ
∫

Ω

G(tn|un|)dx

−
∫

Ω

F (x, tnun)dx− 1

m

∫
Ω×Ω

a
(
tn|Dsu|

)
|tnDsun|2dµ

−
∫

Ω

a
(
tn|un|

)
(tnun)2dx+

λ

m

∫
Ω

g(tnun)tnundx+
1

m

∫
Ω

tnunf(x, un)dx

=
1

m

∫
Ω×Ω

A(tn|Dsun|)dx+
1

m

∫
Ω

F (x, tnun)dx

+
λ

m

∫
Ω

[
g(tnun)tnun −mG(tnun)︸ ︷︷ ︸

<0

]
dx+ o(1).

Due to (f3), (f4), and (A2),

Iλ(tnun) ≤ 1

m

∫
Ω×Ω

[
C2A(|Dsun|) + τ(x)

]
dµ+

1

m

∫
Ω

[
C2F (x, un) + ρ(x)

]
dx+ o(1)
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=
C2

m

[ ∫
Ω×Ω

A(|Dsun|)dµ+

∫
Ω

F (x, un)dx
]

+ C ′3 + o(1)

= C2Iλ(un)− C2

m
〈I ′λ(un), un〉+ C2λ

∫
Ω

[
G(un)− 1

m
ung(un)

]
dx+ C ′3 + o(1)

≤ C2c+ C2λ
(
1− 1

m

) ∫
Ω

G(2un)dx+ C ′3 + o(1)

≤ C4 + C4

∫
Ω

A(2un)dx ≤ C4 + C4||un||m.

Combined with (4.24), we have 1
2 ||uk||

ηl − C4||un||m ≤ C4. Letting k → ∞, then
n ≥ nk ≥ k →∞. From ηl > m, we get ∞ ≤ C2. This contradiction shows that {un}
is bounded, that is, supn∈N ||un|| := K0 <∞.
Taking into account the reflexivity of W s

0LA(Ω) and the Eberlein-Smulian theorem,
we may assume that un ⇀ u ∈W s

0LA(Ω). By using (3.1), we obtain

||un − u||L1 → 0, ||un − u||G → 0, ||un − u||H → 0, as n→∞. (4.25)

Using (f1) and Hölder’s inequality, we have∣∣∣λ ∫
Ω

g(un)(un − u)dx+

∫
Ω

f(x, un)(un − u)dx
∣∣∣

≤ λ
∫

Ω
|g(un)(un − u)|dx+

∫
Ω

[
C|un − u|+ C|h(x, un)(un − u)|

]
dx

≤ 2λ‖g(un)‖G̃‖un − u‖G + C‖un − u‖L1 + 2C||h(un)||H ||un − u||H .

(4.26)

Now, we will show that both ||g(un)||G and ||h(un)||H are bounded. Applying Lemma
2.1 ∫

Ω

G(g(un))dx ≤
∫

Ω

ung(un) ≤
∫

Ω

G(2un)dx

≤ C4 +

∫
Ω

A(2un)dx ≤ C4 + C4 + ||un||m <∞.
(4.27)

The definition of ||.||G yields that ||g(un)||G ≤ C4 + C4K
m
0 . On the other hand, due

to H ≺≺ A∗, then for all α > 0 there exists Kα such that

H(t) ≤ A∗(αt) +Kα, t ≥ 0. (4.28)

By Lemma 2.4 [42], we have m∗ := supt>0
tA′∗(t)
A∗(t)

≤ Nm
N−m < ∞. Since W s

0LA(Ω) ↪→
LA∗(Ω), ∫

Ω

H(h(un))dx ≤
∫

Ω

H(2un)dx ≤ Kα|Ω|+
∫

Ω

A∗(un)dx

≤ C5 + C5||un||m
∗

A∗ ≤ C6 + C6K
m∗

0 <∞.

Hence, ||h(un)||H ≤ C6 + C6K
m∗

0 <∞. Combining (4.25) and (4.26), we have∫
Ω

g(un)(un − u)dx+

∫
Ω

f(x, un)(un − u)dx→ 0, as n→∞. (4.29)

From (4.13), it follows that

∫
Ω×Ω

a
(
|Dsun|

)
|Dswn||Dswn − Dsu|2dµ → 0 as n →

∞. Lemma 2.10 implies that limn→∞ ||un − u|| = 0. Therefore, Iλ satisfies Cc-
condition. �
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Conclusion of the proof of Theorem 4.2. Let λ∗ > 0, η > 0 and τ > 0 are
constants defined in Lemma 4.4. For all λ ∈ (0, λ∗), Lemma 4.5, Lemma 4.6 show
that the functional Iλ satisfies all the assumptions of Lemma 4.3. Then Iλ has
a critical value c ≥ η > 0. Thus problem (1.4) has a nontrivial weak solution w
with Iλ(w) = c. We now prove that there is another weak solution w̃ 6= w. Let
Bτ := {w ∈ W s

0LA(Ω) : ||w|| ≤ τ}, Uτ := {W s
0LA(Ω) ∈ W s

0LA(Ω) : ||w|| < τ}.
Applying Lemma 4.5, we deduce that

−∞ < c̃ := inf
Bτ
Iλ(w) < 0.

For every σ ∈ (0, infSτ Iλ(w)− infUτ Iλ(w)) by the Ekeland variational principle [25],
there exists wσ ∈ Bτ such that

Iλ(wσ) ≤ inf
Bτ
Iλ(w) + σ

and

Iλ(wσ) < Iλ(w) + σ||wσ − w||, ∀w 6= wσ. (4.30)

Therefore,

Iλ(wσ) ≤ inf
Bτ
Iλ(w) + σ < inf

Uτ
Iλ(w) + inf

Sτ
Iλ(w)− inf

Uτ
Iλ(w) = inf

Sτ
Iλ(w),

which implies wσ ∈ Uτ . Now, ∀v ∈ B1, take h ∈ (0, τ − ||wσ||), then wσ + hv ∈ Bτ .
By (4.30), we have

Iλ(wσ)− Iλ(wσ + hv) ≤ σh||v||.
Dividing the above inequality by h and letting h→ 0+, one has

〈I ′λ(wσ), v〉 ≥ −σ||v||.
Replacing v with −v in the above inequality, we deduce 〈I ′λ(wσ), v〉 ≤ σ||v||. Therfore
〈I ′λ(wσ), v〉 ≥ σ. Summarizing, there exist {w̃n}∞n=1 ⊂ Uτ such that Iλ(w̃n)→ c̃ and
||Iλ(w̃n)|| ≤ 1

n → 0 as n→∞. From the Eberlein-Smulian theorem, we may assume
w̃n converges to w̃ ∈ Bτ . 4.29 and Lemma 2.10 implies that limn→∞ ||w̃n − w̃|| = 0.
Since Iλ ∈ C1(W s

0LA(Ω),R) and ||I ′λ(w̃n)|| → 0, one has I ′λ(w̃) = limn→∞ I ′λ(w̃n) =
θ and I ′λ(w̃) = c̃, so w̃ 6= θ and w̃ 6= w, which completes the proof.
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