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Abstract. In this paper, the concept of asymptomatic density of order (α, β) (where (α, β)
are real numbers such that 0 < α ≤ β ≤ 1) has been used to introduce the concepts of sta-

tistical convergence of order (α, β) for complex uncertain sequences: the notions of statistical

convergence in mean of order (α, β), statistical convergence in measure of order (α, β), statis-
tical convergence in distribution of order (α, β), almost surely statistical convergence of order

(α, β), uniformly almost surely statistical convergence of order (α, β) for complex uncertain

sequences. Also, relationships among those introduced concepts have been studied.
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1. Introduction

The idea of convergence of sequence is one of the widely discussed topics in mathemat-
ics. It took a long time to have the modern definition of convergence used in calculas.
However, mathematicians were not satisfied with this usual concept of convergence.
A more general idea of convergence called statistical convergence was proposed by
Fast [5] and Schoenberg [13]. The notion of asymptomatic density or natural density
of any subset of natural numbers has been introduced to define the statistical conver-
gence of a sequence of real or complex numbers. For a more detailed study related to
statistical convergence, one may refer to Connor [4], Friday [6], and Salat [14]. While
applying statistical convergence in approximation theory, Gadjiev and Orhan [7] in-
troduced the idea of the order of statistical convergence of a sequence. The idea of
the order of statistical convergence has been generalized by Altinok and Et [2] using
two parameters α, β, where α and β are two real numbers such that 0 < α ≤ β ≤ 1.
In [2], it has been shown that the statistical convergence of order (α, β) is well defined
for α ≤ β, but not well defined for α > β. The statistical convergence of order (α, β)
reduces to usual statistical convergence when α = β = 1.

In real life, we often face indeterminacy, i.e., our lack of ability to determine the
outcome of a particular phenomenon. When a large amount of sample is available,
then we can fit a probability distribution to understand the nature of that phenom-
enon. However, due to technical or economic difficulties, an appropriate amount of
data is not always available, and in such a case, we can not fit the probability distri-
bution of such phenomenon. To overcome this difficulty, Liu [8], introduced the idea
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of uncertainty theory with the notion of belief degree function. However, belief degree
should not be misinterpreted as subjective probability [8]. Liu [8] defined uncertain
space on which uncertain measure has been defined. He [8] has defined uncertain
variables also. An uncertainty distribution of an uncertain variable has been defined
in [8] to study the behavior of an uncertain variable. Liu [8] also introduced conver-
gence concepts of uncertain sequence (sequence of uncertain variables): convergence
in mean, convergence in measure, convergence in distribution, and almost surely con-
vergence. Later Peng [12] introduced the idea of a complex uncertain variable. You
[20] proposed a new idea of convergence called uniformly almost surely convergence
and discussed its relationships with the convergence concepts introduced by Liu [8].
Many exciting results about these convergence concepts can be found in [3].

Most recently, Tripathy and Nath [16] have introduced the idea of statistical con-
vergence of complex uncertain sequences, and they have studied relationships among
those convergence concepts. This work has generalized the idea of convergence of
complex uncertain sequences.

However, the idea of the density of a subset of natural numbers of order (α, β) has
not yet been used in convergence concepts of uncertain sequences. In this paper, the
idea of statistical convergence of complex uncertain sequences of order (α, β) (where
α and β are two real numbers such that 0 < α ≤ β ≤ 1) has been introduced, and
also relationships among those introduced concepts have been studied.

2. Definitions and Preliminaries

In this section few basic definitions, theorems, and fundamental concepts used through-
out this paper will be procured. At first, let us have the definitions of natural or
asymptomatic density of a subset of natural numbers, statistical convergence of a real
or complex sequence and asymptomatic density of order (α, β) of a subset of natural
numbers.

Definition 2.1. [14] The asymptomatic (or natural) density of a set A ⊆ N is defined

as δ(A) = lim
n→∞

| {k ≤ n | k ∈ A} |
n

, whenever the limit exists. The vertical bars

denote the cardinality of the under lying set.

Definition 2.2. [14] A sequence (xn) of real numbers is called statistically convergent
to a number ξ provided that for every ε > 0, δ({k ∈ N :| xk − ξ |≥ ε}) = 0.

Definition 2.3. [2] For 0 < α ≤ β ≤ 1, the asymptomatic density of order (α, β) or

the (α, β) density of a set A ⊆ N is defined as δ(α,β)(A) = lim
n→∞

| {k ≤ n | k ∈ A} |β

nα
,

whenever the limit exists.
Now, let us have some axioms, basic definitions of uncertainty theory used in this
paper.

Definition 2.4. [8] Let L be a σ − algebra on a non-empty set Γ. A real valued set
function M is called an uncertain measure if it satisfies the following axioms:
Axiom 1. M(Γ) = 1 (Normality Axiom)
Axiom 2. M(A) +M(Ac) = 1 for each A ∈ L (Duality Axiom)

Axiom 3. M(

∞⋃
n=1

An) ≤
∞∑
n=1

M{An}, for every countable sequence {An} in L,
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(Subadditivity Axiom)
The triplet (Γ, L,M) is called an uncertainty space, and each element A in L is called
an event.

Definition 2.5. [8] An uncertain variable ξ is a measurable function from an uncer-
tainty space (Γ, L,M) to the set of real numbers, i. e. for any Borel set B of real
numbers, the set {γ ∈ Γ | ξ(γ) ∈ B} is an event.

Definition 2.6. [8] The uncertainty distribution Φ of an uncertain variable ξ is
defined by

Φ(x) = M{ξ ≤ x} = M(γ ∈ Γ | ξ(γ) ≤ x),

for all x ∈ R.

Definition 2.7. [8] Let ξ be an uncertain variable. The expected value of ξ is defined
as

E(ξ) =

∫ ∞
0

M{ξ ≥ x}dx+

∫ 0

−∞
M{ξ ≤ x}dx,

provided that the integral exists.
Now, we shall procure concepts and theorems on complex uncertain variables, first

proposed by Peng [12]. The complex uncertain variable is mainly used to model a
complex uncertain quantity.

Definition 2.8. [12] A complex uncertain variable ζ is a measurable function from
an uncertainty space (Γ, L,M) to the set of complex numbers, i.e. for any Borel set
B of complex numbers, the set {γ ∈ Γ | ζ(γ) ∈ B} is an event.

Theorem 2.1. [12] A variable ζ from an uncertainty space (Γ, L,M) to the set of
complex numbers is a complex uncertain variable if and only if Re(ζ) and Im(ζ) are
uncertain variables where Re(ζ) and Im(ζ) represent the real and the imaginary parts
of ζ respectively.

Definition 2.9. [12] The complex uncertainty distribution Φ of a complex uncertain
variable ζ is a function from C to [0, 1] defined by

Φ(c) = M{Re(ζ) ≤ Re(c), Im(ζ) ≤ Im(c)},

for any c ∈ C.

Theorem 2.2. [12] A function Φ : C → [0, 1] is an uncertainty distribution if and
only if it is increasing with respect to the real part Re(c) and imaginary part Im(c)
such that
(i) lim

x→−∞
Φ(x+ iy) 6= 1, lim

y→−∞
Φ(a+ iy) 6= 1, for any a, b ∈ R

(ii) lim
x→+∞,y→∞

Φ(x+ iy) 6= 0,

where i =
√
−1 is the imaginary unit.

Now, we shall mention the definitions of several types of convergence concepts of
complex uncertain variables, first proposed by Chen, Ning and Wang [3].

Definition 2.10. [3] The complex uncertain sequence {ζn} is said to be convergent
almost surely to ζ if there exists an event Λ with M{Λ} = 1 such that
lim
n→∞

| ζn(γ)− ζ(γ) |= 0 for every γ ∈ Λ. In that case we write ζn → ζ a.s.
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Definition 2.11. [3] The complex uncertain sequence {ζn} is said to be convergent
in measure to ζ if lim

n→∞
M{|| ζn − ζ ||≥ ε} = 0 for every ε > 0.

Definition 2.12. [3] The complex uncertain sequence {ζn} is said to be convergent
in mean to ζ if lim

n→∞
E[|| ζn − ζ ||] = 0.

Definition 2.13. [3] Let Φ1,Φ2, · · · be the complex uncertainty distributions of com-
plex uncertain variables ζ1, ζ2, · · · . respectively. The complex uncertain sequence {ζn}
is said to be convergent in distribution to ζ if lim

n→∞
Φn(c) = Φ(c) for all c ∈ C at which

Φ is continuous.

Definition 2.14. [3] The complex uncertain sequence {ζn} is said to be convergent
uniformly almost surely (u.a.s.) to ζ if there exists a sequence of events {E′k},
M{E′k} → 0 such that {ζn} converges uniformly to ζ in Γ− E′k, for any fixed
k ∈ N.

Finally, we are mentioning the definition of statistical convergence of complex un-
certain sequence, first proposed by Tripathy and Nath [16].

Definition 2.15. [16] The complex uncertain sequence {ζn} is said to be statistically
convergent almost surely (s.a.s.) to ζ if for every ε > 0 there exists an event Λ with

M{Λ} = 1 such that lim
n→∞

| {k ≤ n :| ζk(γ)− ζ(γ) |≥ ε} |
n

= 0, for every γ ∈ Λ. In

that case we write ζn → ζ a.s.

Definition 2.16. [16] The complex uncertain sequence {ζn} is said to be statistically

convergent in measure to ζ if lim
n→∞

| {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} |
n

= 0, for every

ε, δ > 0.

Definition 2.17. [16] The complex uncertain sequence {ζn} is said to be statistically

convergent in mean to ζ if lim
n→∞

| {k ≤ n : E(| ζk(γ)− ζ(γ) |≥ ε)} |
n

= 0 for every

ε > 0.

Definition 2.18. [16] Let Φ1,Φ2, · · · be the complex uncertainty distributions of
complex uncertain variables ζ1, ζ2, · · · . respectively. The complex uncertain sequence
{ζn} is said to be statistically convergent in distribution to ζ if for every ε > 0,

lim
n→∞

| {k ≤ n :| Φk(c)− Φ(c) |≥ ε} |
n

= 0,

for all c ∈ C at which Φ is continuous.

Definition 2.19. [16] The complex uncertain sequence {ζn} is said to be statistically
convergent uniformly almost surely (u.a.s.) to ζ if for every ε > 0 there exists δ > 0
and a sequence of events {E′k},M{E′k} → 0 such that,

lim
n→∞

| {k ≤ n :|M(E′k)− 0 |≥ ε} |
n

= 0

and

lim
n→∞

| {k ≤ n :| ζk(γ)− ζ(γ) |≥ δ} |
n

= 0,

for every γ ∈ Γ− Ek such that M(Ek) ≥ ε.
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3. Main Results

In this section, we have introduced five convergence concepts of order (α, β) (where
α, β are real numbers such that 0 < α ≤ β ≤ 1) for a complex uncertain sequence.
We have also studied relationships among those introduced concepts.

3.1. Definitions.

Definition 3.1. A complex uncertain sequence {ζn} is said to be statistically con-

vergent in mean of order (α, β) to ζ if lim
n→∞

| {k ≤ n : E[|| ζk − ζ ||] ≥ ε} |β

nα
= 0, for

every ε > 0.

Definition 3.2. A complex uncertain sequence {ζn} is said to be statistically con-
vergent in measure of order (α, β) to ζ if

lim
n→∞

| {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} |β

nα
= 0, for every ε, δ ≥ 0.

Definition 3.3. Let Φ1,Φ2, · · · be the complex uncertainty distributions of complex
uncertain variables ζ1, ζ2, · · · . respectively. The complex uncertain sequence {ζn} is
said to be statistically convergent in distribution of order (α, β) to ζ if for every ε >
0,

lim
n→∞

| {k ≤ n :| Φk(c)− Φ(c) |≥ ε} |β

nα
= 0,

for all c ∈ C at which Φ is continuous.

Definition 3.4. The complex uncertain sequence {ζn} is said to be statistically con-
vergent almost surely of order (α, β) to ζ if there exist some α, β satisfying 0 < α ≤
β ≤ 1, such that for every ε > 0 there exists an event Λ with M{Λ} = 1 such that
for every γ ε Λ,

lim
n→∞

| {k ≤ n :| ζk(γ)− ζ(γ) |≥ ε} |β

nα
= 0.

Definition 3.5. A complex uncertain sequence {ζn} is said to be statistically con-
vergent uniformly almost surely of order (α, β) to ζ if there exists some α, β satisfying
0 < α ≤ β ≤ 1, such that for every ε > 0 there exists δ > 0 and a sequence {Ek} of
events such that,

lim
n→∞

| {k ≤ n : M(Ek) ≥ ε} |β

nα
= 0

and

lim
n→∞

| {k ≤ n :| ζk(γ)− ζ(γ) |≥ ε} |β

nα
= 0,

for every γ ∈ Γ− Ek such that M(Ek) ≥ ε.

3.2. Relationships among statistical convergence concepts of order (α, β).

Theorem 3.1. For a complex uncertain sequence {ζn}, statistical convergence in
mean of order (α, β) to ζ implies statistical convergence of {ζn} in measure of order
(α, β) to ζ.
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Proof. Let {ζn} be a complex uncertain sequence, statistically convergent in mean of
order (α, β) to ζ. For every ε > 0,

lim
n→∞

| {k ≤ n : E[|| ζk − ζ ||] ≥ ε} |β

nα
= 0.

From Markov’s inequality, we have

M(|| ζk − ζ ||) ≥ ε) ≤
E(|| ζk − ζ ||)

ε
,

for every ε > 0 and for all k ∈ N. Hence, for every ε > 0, δ > 0, and n ∈ N,

{k ≤ n : M(|| ζk − ζ ||) ≥ ε) ≥ δ} ⊆ {k ≤ n : E[|| ζk − ζ ||] ≥ δε}

⇒| {k ≤ n : M(|| ζk − ζ ||) ≥ ε) ≥ δ} | ≤ | {k ≤ n : E[|| ζk − ζ ||] ≥ δε} |

⇒ | {k ≤ n : M(|| ζk − ζ ||) ≥ ε) ≥ δ} |β

nα
≤ | {k ≤ n : E[|| ζk − ζ ||] ≥ δε} |β

nα
.

Statistical convergence in mean of order (α, β) implies that the sequence on RHS
converges to zero. Thus, we have

lim
n→∞

| {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} |β

nα
= 0

Hence, statistically convergence in mean of order (α, β) implies statistical convergence
of {ζn} in measure of order (α, β). 2

Remark 3.1. However, statistical convergence in measure of order (α, β) does not
imply statistical convergence in mean of order (α, β). Let us consider the following
example.

Example 3.1. Let us consider the uncertainty space (Γ, L,M) where Γ = {γ1, γ2, γ3, ...}
and L is the power of set of Γ. Let us consider the uncertain measure M defined as

M{Λ} =


sup
γn∈Λ

1

(n+ 1)
if sup

γn∈Λ

1

(n+ 1)
< 0.5

1− sup
γn∈Λc

1

(n+ 1)
if sup

γn∈Λc

1

(n+ 1)
< 0.5

0.5, otherwise,

where Λ ∈ L. Let us consider a sequence {ζn} of complex uncertain variable defined
as

ζn(γ) =

{
(n+ 1)i, γ = γn

0, otherwise,

for all n ∈ N. Let ζ be another complex uncertain variable such that ζ ≡ 0.
Hence,

|| ζn(γ)− ζ(γ) ||=

{
(n+ 1), γ = γn

0, otherwise.

For n ≥ 2 and ε > 0

M(|| ζn−ζ ||≥ ε) = M({γ ∈ Γ :| ζn(γ)−ζ(γ) |≥ ε}) =

{
M{γn} = 1

(n+1) , (n+ 1) ≥ ε,
0, ε > (n+ 1).
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Hence, for every ε > 0,
lim
n→∞

M{|| ζn − ζ ||≥ ε} = 0.

For every ε > 0 and δ > 0, | {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} | is a finite number and
for 0 < β ≤ 1, | {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} |β is also a finite number. Hence, for
every ε > 0, δ > 0 and for any α, β satisfying 0 < α ≤ β ≤ 1,

lim
n→∞

| {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} |β

nα
= 0.

So, the complex uncertain sequence {ζn} statistically converges in measure of order
(α, β) to ζ. For n ≥ 2 the uncertainty distribution Φn of || ζn − ζ || is

Φn(x) = M(|| ζn − ζ ||≤ x) =


0 , x < 0,

1− 1
(n+1) , 0 ≤ x < (n+ 1),

1 , x ≥ (n+ 1),

where x ∈ R. Now,

E(|| ζn − ζ ||) =

∫ ∞
0

M(|| ζn − ζ ||≥ x)dx,

if the integral exists. Observe that, for P > (n+ 1)∫ P

0

M(|| ζn − ζ ||≥ x)dx =

∫ n+1

0

1

(n+ 1)
dx+

∫ P

n+1

0.dx = 1

⇒ lim
P→∞

[

∫ P

0

M(|| ζn − ζ ||≥ x)dx] = 1

E(|| ζn − ζ ||) =

∫ ∞
0

M(|| ζn − ζ ||≥ x)dx = 1, (n ≥ 2).

Let us choose ε = 0.5, α = β = 1. Then,

lim
n→∞

| {k ≤ n : E(|| ζk − ζ ||) ≥ 1
2} |

n
= 1 6= 0.

Thus, the complex uncertain sequence {ζn} is not statistically convergent in mean of
order (α, β) to ζ.

Theorem 3.2. Assume complex uncertain sequence {ζn} with real part {ξn} and
imaginary part {ηn} respectively, for n = 1, 2, · · · Suppose that, the complex uncertain
sequence {ζn} statistically converges in measure of order (α, β) to ζ = ξ + iη . Then
uncertain sequences {ξn} and {ηn} statistically convergence in measure of order (α, β)
to ξ and η respectively. Converse of the statement is true if β = 1 and 0 < α ≤ 1.

Proof. Let us assume that, for some α, β satisfying 0 < α ≤ β ≤ 1 and for any
δ > 0, ε > 0,

lim
n→∞

| {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} |β

nα
= 0. (1)

For any ε > 0

{γ ∈ Γ :| ζn(γ)− ζ(γ) |< ε} ⊆ {γ ∈ Γ :| ξn(γ)− ξ(γ) |< ε}
⇒M{γ ∈ Γ :| ξn(γ)− ξ(γ) |≥ ε} ≤M{γ ∈ Γ :| ζn(γ)− ζ(γ) |≥ ε}

⇒M{|| ξn − ξ ||≥ ε} ≤M{|| ζn − ζ ||≥ ε}.
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Hence for any δ > 0,

{k ≤ n : M(|| ξk − ξ ||≥ ε) ≥ δ} ⊆ {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ}.
For every n ∈ N,

| {k ≤ n : M(|| ξk − ξ ||≥ ε) ≥ δ} | ≤ | {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} | .
For any α, β satisfying 0 < α ≤ β ≤ 1,

⇒ | {k ≤ n : M(|| ξk − ξ ||≥ ε) ≥ δ} |β

nα
≤ | {k ≤ n : M({|| ζk − ζ ||≥ ε)} ≥ δ} |β

nα
(2)

Combining (3.1), (3.2), and letting n→∞, we have

lim
n→∞

| {k ≤ n : M(|| ξk − ξ ||≥ ε) ≥ δ} |β

nα
= 0.

Similarly, it can be proved that

lim
n→∞

| {k ≤ n : M(|| ηk − η ||≥ ε) ≥ δ} |β

nα
= 0.

To prove the converse part, let us assume that, for some α satisfying 0 < α ≤ 1 and
for any ε > 0, δ > 0,

lim
n→∞

| {k ≤ n : M(|| ξk − ξ ||≥ ε) ≥ δ} |
nα

= 0

and

lim
n→∞

| {k ≤ n : M(|| ηk − η ||≥ ε) ≥ δ} |
nα

= 0. (3)

Since, || ζk − ζ ||=
√
|| ξk − ξ ||2 + || ηk − η ||2, for every ε > 0 and n ∈ N we have,

{|| ζn − ζ ||≥ ε} ⊆ {|| ξn − ξ ||≥
ε√
2
} ∪ {|| ηn − η ||≥

ε√
2
}.

Applying subadditivity theorem we have,

M{|| ζn − ζ ||≥ ε} ≤M{|| ξn − ξ ||≥
ε√
2
}+M{|| ηn − η ||≥

ε√
2
}.

For any δ > 0, if M{|| ξn − ξ ||≥ ε√
2
} < δ

2 and M{|| ηn − η ||≥ ε√
2
} < δ

2 , then

M{|| ζn − ζ ||≥ ε} < δ. Hence, for any n ∈ N,
M{|| ζn − ζ ||≥ ε} < δ

⇒M{|| ξn − ξ ||≥
ε√
2
} ≥ δ

2
or M{|| ηn − η ||≥

ε√
2
} ≥ δ

2
.

For any n ∈ N,
{k ≤ n : M{(|| ζk − ζ ||≥ ε) ≥ δ}} ⊆ A(n) ∪B(n),

where A(n) = {k ≤ n : M(|| ξk− ξ ||≥ ε√
2
) ≥ δ

2} and B(n) = {k ≤ n : M(|| ηk−η ||≥
ε√
2
) ≥ δ

2}. Hence,

| {k ≤ n : M{(|| ζk − ζ ||≥ ε) ≥ δ}} |≤| A(n) | + | B(n) | (4)

since, | A(n) ∪B(n) |≤| A(n) | + | B(n) |. From (3.47) we have,

| {k ≤ n : M{(|| ζk − ζ ||≥ ε) ≥ δ}} |
nα

≤ | A(n) |
nα

+
| B(n) |
nα

, (5)
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where α is a real number satisfying 0 < α ≤ 1.
Combining (3.4) and (3.5) and letting n→∞ we have,

lim
n→∞

| {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} |β

nα
= 0.

2

Theorem 3.3. Assume a complex uncertain sequence {ζn} with real part {ξn} and
imaginary part {ηn} respectively, for n = 1, 2, · · · If the complex uncertain sequence
{ζn} statistically converges in measure of order (α, β) to ζ = ξ+ iη, then the complex
uncertain sequence {ζn} statistically converges in distribution of order (α, β) to ζ =
ξ + iη.

Proof. Let, c = a+ ib be a point of continuity of Φ, the complex uncertainty distribu-
tion of ζ. Let Φn be the complex uncertainty distribution of ζn. For any α > a, β > b,
we have
{ξn ≤ a, ηn ≤ b} = {ξn ≤ a, ηn ≤ b, ξ ≤ α} ∪ {ξn ≤ a, ηn ≤ b, ξ > α}
= {ξn ≤ a, ηn ≤ b, ξ ≤ α, η ≤ β} ∪ {ξn ≤ a, ηn ≤ b, ξ ≤ α, η > β} ∪ {ξn ≤ a, ηn ≤
b, ξ > α, η ≤ β} ∪ {ξn ≤ a, ηn ≤ b, ξ > α, η > β}
⇒ {ξn ≤ a, ηn ≤ b} ⊆ {ξ ≤ α, η ≤ β} ∪ {|| ξn − ξ ||≥ α − a} ∪ {|| ηn − η ||≥ β − b}.
Taking Uncertain measure M on both side and using subadditivity axiom,

Φn(a+ ib) ≤ Φ(α+ iβ) +M({|| ξn − ξ ||≥ α− a}) +M({|| ηn − η ||≥ β − b}). (6)

For every ε > 0 we have

lim
n→∞

| {k ≤ n : M(|| ξk − ξ ||≥ α− a) ≥ ε} |
n

= 0

and

lim
n→∞

| {k ≤ n : M(|| ηk − η ||≥ β − b) ≥ ε} |
n

= 0.

On R.H.S of (3.6) there are two sequences, statistically converging to zero. The
sum of two sequences is also a sequence, {un}, statistically converging to zero. By
Decomposition theorem, un = xn + yn, n ∈ N, where {xn} and {yn} are two real
sequences statistically converging to zero and statistically null respectively. Hence for
all n ∈ N (3.6) implies that

Φn(a+ ib) ≤ Φ(α+ iβ) + xn + yn.

Since, xn → 0, for every ε > 0, there exists k ∈ N such that 0 ≤ xn < ε for all n ≥ k.
Hence, for all n ≥ k,

Φn(c) ≤ Φ(α+ iβ) + ε+ yn ⇒ Φn(c)− yn ≤ Φ(α+ iβ) + ε

⇒ sup{Φn(c)− yn : n ≥ k} ≤ sup{Φ(α+ iβ) + ε : n ≥ k}.
For two subsets A,B of R existence of supA and existence of supB, imply that
sup(A+B) = sup(A) + sup(B). So, we have,

sup{Φn(c) : n ≥ k}+ sup{−yn : n ≥ k} ≤ Φ(α+ iβ) + ε.

Since, {yn} is statistically null and 0 ≤ yn ≤ 1, sup{−yn : n ≥ k} = 0. Thus,

sup{Φn(c) : n ≥ k} ≤ Φ(α+ iβ) + ε⇒Mn ≤ Φ(α+ iβ) + ε, (n ≥ k),

where Mn = sup{Φi(c) : i ≥ n}, n ∈ N. Letting n→∞, we get,

lim
n→∞

Mn ≤ Φ(α+ iβ) + ε.
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For every ε > 0. Hence,

lim
n→∞

sup Φn(c) ≤ Φ(α+ iβ).

Letting α+ iβ → a+ ib, from continuity of Φ we get,

lim
n→∞

sup Φn(c) ≤ Φ(c). (7)

For any x < a and y < b,
{ξ ≤ x, η ≤ y} = {ξn ≤ a, ξ ≤ x, η ≤ y} ∪ {ξn > a, ξ ≤ x, η ≤ y}
= {ξn ≤ a, ηn ≤ b, ξ ≤ x, η ≤ y} ∪ {ξn ≤ a, ηn > b, ξ ≤ x, η ≤ y} ∪ {ξn > a, ηn ≤
b, ξ ≤ x, η ≤ y} ∪ {ξn > a, ηn > b, ξ ≤ x, η ≤ y}
⇒ {ξ ≤ x, η ≤ y} ⊆ {ξn ≤ a, ηn ≤ b} ∪ {|| ξn − ξ ||≥ a− x} ∪ {|| ηn − η ||≥ b− y}.
Taking Uncertain measure M on both side and using subadditivity axiom,

Φ(x+ iy) ≤ Φn(a+ ib) +M({|| ξn − ξ ||≥ a− x}) +M({|| ηn − η ||≥ b− y})

⇒ Φ(x+ iy)− pn ≤ Φn(a+ ib) + qn,

where {pn} and {qn} are two real sequences statistically converging to zero and sta-
tistically null respectively. Since, pn → 0, for every ε > 0, there exists k ∈ N such
that 0 ≤ pn < ε or −ε < −pn ≤ 0, for all n ≥ k. Hence, for all n ≥ k,

Φ(x+ iy)− ε ≤ Φn(c) + qn

⇒ inf{Φ(x+ iy)− ε : n ≥ k} ≤ inf{Φn(c) + qn : n ≥ k}
⇒ Φ(x+ iy)− ε ≤ inf{Φn(c) + qn : n ≥ k}.

For two subsets A,B of R existence of inf(A) and existence of inf(B), imply that
inf(A+B) = inf(A) + inf(B). Since, {qn} is statistically null and 0 ≤ qn ≤ 1, inf{qn :
n ≥ k} = 0. Thus, for every ε > 0,

Φ(x+ iy)− ε ≤ inf{Φn(c) : n ≥ k}.
For all n ≥ k, we have

Φ(x+ iy)− ε ≤ mn,

where mn = inf{Φi(c) : i ≥ n}, n ∈ N. Letting n→∞, we get

Φ(x+ iy)− ε ≤ lim
n→∞

mn.

For every ε > 0. Hence,

Φ(x+ iy) ≤ lim
n→∞

mn ⇒ Φ(x+ iy) ≤ lim
n→∞

inf{Φn(c)}.

Letting x+ iy → c = a+ ib, from continuity of Φ we get,

Φ(c) ≤ lim
n→∞

inf{Φn(c)}. (8)

Combining (3.7) and (3.8) we have, lim
n→∞

Φn(c) = Φ(c), where c ∈ C is a point of

continuity of φ. So, for every ε > 0, | {k ≤ n :| Φk(c)−Φ(c) |≥ ε} | is a finite number.
So, for 0 < β ≤ 1, | {k ≤ n :| Φk(c)− Φ(c) |≥ ε} |β is also a finite number. For every
ε > 0, and for any α, β satisfying 0 < α ≤ β ≤ 1, it can be concluded that,

lim
n→∞

| {k ≤ n :| Φk(c)− Φ(c) |≥ ε} |β

nα
= 0.

Hence, the complex uncertain sequence {ζn} statistically converges in distribution of
order (α, β) to ζ = ξ + iη. 2
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Remark 3.2. However, statistical convergence in distribution of order (α, β) does
not imply statistical convergence in measure of order (α, β).

Example 3.2. Let us consider an uncertainty space (Γ, L,M) where Γ = {γ1, γ2}
with M(γ1) = M(γ2) = 1

2 . A complex uncertain variable is defined as

ζ(γ) =

{
i, γ = γ1,

−i, γ = γ2.

A sequence {ζn} of complex uncertain variable is defined as, ζn = −ζ for all n ∈ N
Hence,

ζn(γ) =

{
−i, γ = γ1,

i, γ = γ2.

If ζn = ξn + iηn, then we have,

ξn(γ) =

{
0, γ = γ1,

0, γ = γ2

and

ηn(γ) =

{
−1, γ = γ1,

1, γ = γ2.

Now, the uncertainty distribution Φn of ζn is defined as

Φn(c) = Φn(a+ ib) = M{(ξn ≤ a) ∩ (ηn ≤ b)}

⇒ Φn(c) =


0, a < 0, b ∈ R,
0, a ≥ 0, b < −1,
1
2 , a ≥ 0,−1 ≤ b < 1,

1, a ≥ 0, b ≥ 1,

for all c = a + ib ∈ C. Similarly, it can be shown that the uncertainty distribution
Φ of ζ is same as Φn on C i.e. Φn(c) = Φ(c) for all c = a + ib ∈ C. Thus, for every
ε > 0, and for any α, β satisfying 0 < α ≤ β ≤ 1,

lim
n→∞

| {k ≤ n :| Φk(c)− Φ(c) |≥ ε} |β

nα
= 0.

Hence, the complex uncertain sequence {ζn} statistically converges in distribution of
order (α, β) to ζ.
Now, let us check the convergence in measure of order (α, β). It is found that

ζn(γ)− ζ(γ) =

{
−2i, γ = γ1,

2i , γ = γ2,

for all n ∈ N. Thus, || ζn(γ) − ζ(γ) ||= 2, for all n ∈ N and for γ = γ1, γ2. Now, for
any ε > 0,

M [|| ζn − ζ ||≥ ε] = M{γ ∈ Γ :| ζn(γ)− ζ(γ) |≥ ε} =

{
1, ε ≤ 2,

0, ε > 2.

Let α = β = 1, ε = 0.5 and δ = 1. Then,

| {k ≤ n : M{|| ζk − ζ ||≥ ε} ≥ δ} |β

nα
=
| {k ≤ n : M{|| ζk − ζ ||≥ 0.5} ≥ 1} |

n
=
n

n
= 1.
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Hence, lim
n→∞

| {k ≤ n : M{|| ζk − ζ ||≥ 0.5} ≥ 1} |
n

= 1 6= 0. So, the complex uncertain

sequence {ζn} does not statistically converge in measure of order (α, β) to ζ.

3.3. Statistical convergence almost surely of order (α, β) and statistical
convergence in measure of order (α, β). Statistical convergence almost surely of
order (α, β) does not imply statistical converge in measure of order (α, β).

Example 3.3. Let us consider the uncertainty space (Γ, L,M) where Γ = {γ1, γ2, γ3, ...}
and L is the power of set of Γ. Let us consider the uncertain measure M defined as

M{Λ} =


sup
γn∈Λ

n

(2n+ 1)
if sup

γn∈Λ

n

(2n+ 1)
< 0.5,

1− sup
γn∈Λc

n

(2n+ 1)
if sup

γn∈Λc

n

(2n+ 1)
< 0.5,

0.5, otherwise,

where Λ ∈ L. Let us consider a sequence {ζn} of complex uncertain variable defined
as

ζn(γ) =

{
ni, γ = γn,

0, otherwise,

for all n ∈ N. Let ζ be another complex uncertain variable such that ζ ≡ 0. Hence,

|| ζn(γ)− ζ(γ) ||=

{
n, γ = γn,

0, otherwise.

Here, Λ = Γ with M{Λ} = 1. For any γj ∈ Λ(j ∈ N), ε > 0 and 0 < β ≤ 1,

| {k ∈ n : (| ζk(γj)− ζ(γj) |≥ ε)} |β=


0, n < j,

1, n ≥ j, j ≥ ε,
0, n ≥ j, j < ε.

Hence, for any α, β satisfying 0 < α < β ≤ 1

lim
n→∞

| {k ∈ n : (| ζk(γj)− ζ(γj) |≥ ε)} |β

nα
= 0.

So, {ζn} statistically converges almost surely of order (α, β) to ζ.
Now, for every n ∈ N,

M{|| ζn − ζ ||≥ ε} =

{
n

2n+1 , n ≥ ε,
0, n < ε.

Let us choose α = β = 1, ε = 1 and δ = 1
3 . Then,for every n ∈ N,

| {k ≤ n : M(|| ζk − ζ ||≥ 1) ≥ 1
3} |

n
=
| {k ≤ n : k

2k+1 ≥
1
3} |

n
=
n

n
= 1

⇒ lim
n→∞

| {k ≤ n : M(|| ζk − ζ ||≥ 1) ≥ 1
3} |

n
= 1.

Hence, {ζn} does not statistically converge in measure of order (α, β) to ζ.
If ζn = ξn + iηn, then we have, ξn(γ) = 0 for any γ = γj and

ηn(γ) =

{
n, γ = γn,

0, otherwise.
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Now, the uncertainty distribution Φn of ζn is defined as

Φn(c) = Φn(a+ ib) = M{(ξn ≤ a) ∩ (ηn ≤ b)}

⇒ Φn(c) =


0, a < 0, b ∈ R,
0, a ≥ 0, b < 0,

1− n
(2n+1) , a ≥ 0, 0 ≤ b < n,

1, a ≥ 0, b ≥ n,
for all c = a+ ib ∈ C. Now, the uncertainty distribution Φ of ζ is defined as

Φ(c) = Φ(a+ ib) = M{(ξ ≤ a) ∩ (η ≤ b)}

⇒ Φ(c) =

{
0, a < 0 or b < 0,

1, a ≥ 0, b ≥ 0,

for all c = a+ ib ∈ C. Let c = 1
2 + i 1

2 . Then, for every k ∈ N,

| φk(
1

2
+ i

1

2
)− φ(

1

2
+ i

1

2
) |=| 1− k

2k + 1
− 1 |= k

2k + 1
.

Hence,

| {k ≤ n :| φk( 1
2 + i 1

2 )− φ( 1
2 + i 1

2 ) |≥ 1
3}

n
=
| {k ≤ n : k

2k+1 ≥
1
3} |

n
= 1

⇒ lim
n→∞

| {k ≤ n : k
2k+1 ≥

1
3} |

n
= 1.

So, {ζn} does not statistically converge in distribution of order (α, β) to ζ i.e. statis-
tical convergence almost surely of order (α, β) does not imply statistical converge in
distribution of order (α, β).

3.4. Statistical convergence almost surely of order (α, β) and statistical
convergence in mean of order (α, β). Statistical convergence almost surely of
order (α, β) does not imply statistical convergence in mean of order (α, β).

Example 3.4. Let us consider the uncertainty space (Γ, L,M), where Γ = {γ1, γ2, γ3, ...}
and L is the power of set of Γ. Let us consider the uncertain measure M defined as

M{Λ} =
∑
γn∈Λ

1

2n
,

where Λ ∈ L. Let us consider a sequence {ζn} of complex uncertain variable defined
as

ζn(γ) =

{
i2n, γ = γn,

0, otherwise,

for all n ∈ N. Let ζ be another complex uncertain variable such that ζ ≡ 0. Hence,

|| ζn(γ)− ζ(γ) ||=

{
2n, γ = γn,

0, otherwise.
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Here, Λ = Γ with M{Λ} = 1. For any γj ∈ Λ(j ∈ N), ε > 0 and 0 < β ≤ 1,

| {k ≤ n : (| ζk(γj)− ζ(γj) |≥ ε)} |β=


0, n < j,

1, n ≥ j, 2j ≥ ε,
0, n ≥ j, 2j < ε.

Hence, for any α, β satisfying 0 < α < β ≤ 1

lim
n→∞

| {k ≤ n : (| ζk(γj)− ζ(γj) |≥ ε)} |β

nα
= 0.

So, {ζn} statistically converges almost surely of order (α, β) to ζ.
Let ξn =|| ζn − ζ ||, n ∈ N. So,

ξn(γ) =|| ζn(γ)− ζ(γ) ||=

{
2n, γ = γn,

0, otherwise.

The uncertainty distribution Φn of ξn =|| ζn − ζ || is defined as

Φn(x) = M{ξn ≤ x} =


0, x < 0,

1− 1
2n , 0 ≤ x < 2n,

1, x ≥ 2n,

for every x ∈ R. Now, for any n ∈ N,

E[ξn] = E[|| ζn − ζ ||] =

∫ ∞
0

M(|| ζn − ζ ||≥ x)dx =

∫ 2n

0

1

2n
dx = 1.

Let us choose ε = 1, α = β = 1. Then,

lim
n→∞

| {k ∈ n : E(|| ζk − ζ ||) ≥ 1} |
n

= 1 6= 0.

So, {ζn} does not statistically converge in mean of order (α, β) to ζ i.e. almost surely
statistical convergence of order (α, β) does not imply statistical convergence in mean
of order (α, β).

3.5. Statistical convergence almost surely of order (α, β) and statistical
convergence in distribution of order (α, β). Statistical convergence almost surely
of order (α, β) does not imply statistical convergence in distribution of order (α, β)
[see Example 3.3]. Let us consider the following example to show that statistical
convergence in distribution of order (α, β) does not imply statistical convergence
almost surely of order (α, β).

Example 3.5. Let us consider an uncertainty space (Γ, L,M) where Γ = {γ1, γ2}
with M{γ1} = M{γ2} = 1

2 . A complex uncertain variable is defined as

ζ(γ) =

{
i , γ = γ1,

−i, γ = γ2.

A sequence {ζn} of complex uncertain variable is defined as, ζn = −ζ for all n ∈ N.
Hence,

ζn(γ) =

{
i , γ = γ1,

−i, γ = γ2.
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It has been already shown in Example 2 that complex uncertain sequence {ζn} sta-
tistically converges in distribution of order (α, β) to ζ Now, let us check for almost
surely statistical convergence of order (α, β). It is found that

ζn(γ)− ζ(γ) =

{
−2i, γ = γ1,

2i, γ = γ2,

for all n ∈ N. Thus, | ζn(γ)− ζ(γ) |= 2 for all n ∈ N and for γ = γ1, γ2. Now, for any
ε > 0,

| {k ≤ n : (| ζk(γ)− ζ(γ) |≥ ε)} |=

{
n, ε ≤ 2,

0, ε > 2.

Hence,

lim
n→∞

| {k ≤ n : (| ζk(γ)− ζ(γ) |≥ 1)} |
n

= 1 6= 0.

So, the complex uncertain sequence {ζn} does not statistically almost surely (order
(α, β)) to ζ.

3.6. Sufficient conditions for almost surely statistical convergence of order
(α, β) and uniformly almost surely statistical convergence of order (α, β).

Proposition 3.4. Let {ζn} be a sequence of complex uncertain variables and ζ be a
complex uncertain variable. Suppose that for every ε > 0, δ > 0 and for some α, β
satisfying 0 < α < β ≤ 1 we have

lim
n→∞

| {k ≤ n : M(

∞⋂
j=k

∞⋃
i=j

|| ζi − ζ ||≥ ε) ≥ δ} |β

nα
= 0.

Then, {ζn} converges statistically almost surely (order (α, β)) to ζ.

Proof. Let ε be any positive real number. Then for every δ > 0 we have

lim
n→∞

| {k ≤ n : M(

∞⋂
j=k

∞⋃
i=j

|| ζi − ζ ||≥ ε) ≥ δ} |β

nα
= 0,

for some α, β satisfying 0 < α < β ≤ 1. Statistical convergence of order (α, β) implies
usual statistical convergence. Thus,

lim
n→∞

| {k ≤ n : M(

∞⋂
j=k

∞⋃
i=j

|| ζi − ζ ||≥ ε) ≥ δ} |

n
= 0

⇒ lim
n→∞

| {k ≤ n : M(

∞⋂
j=k

∞⋃
i=j

|| ζi − ζ ||≥ ε) < δ} |

n
= 1.

If p ∈ N is such that p /∈| {k ∈ N : M(

∞⋂
j=k

∞⋃
i=j

|| ζi − ζ ||≥ ε) < δ} |= B(say), then

{i ∈ N : i ≥ p} ∩B = φ. So, B is a finite set with density 1 which is not possible. So,
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every natural number k ∈ B. For every k ∈ N and δ > 0,

0 ≤M(

∞⋂
j=k

∞⋃
i=j

|| ζi − ζ ||≥ ε) < δ.

For fixed k0 ∈ N,

M(

∞⋂
j=k0

∞⋃
i=j

|| ζi − ζ ||≥ ε) = 0

⇒M(

∞⋂
j=k0

∞⋃
i=j

|| ζi − ζ ||< ε) = 1.

Let Λ =

∞⋃
j=k0

∞⋂
i=j

|| ζi − ζ ||< ε. Thus, we have an event Λ with M{Λ} = 1. For any

γ ∈ Λ there exists a natural number k1 ≥ k0 such that γ ∈
∞⋂
i=k1

(|| ζi − ζ ||< ε) i.e.

| ζi(γ)− ζ(γ) |< ε for all i ≥ k1. Thus, for any fixed γ ∈ Λ,

{i ∈ N : i ≥ k1} ⊆ {k ∈ N :| ζi(γ)− ζ(γ) |< ε}

⇒ {k ∈ N :| ζi(γ)− ζ(γ) |≥ ε} ⊆ {i ∈ N : i ≤ k1}.

So, {k ∈ N : | ζi(γ)− ζ(γ) |≥ ε} is a finite set for every γ ∈ Λ and every ε > 0. Thus,

for every ε > 0 there is an event Λ =

∞⋃
j=k0

∞⋂
i=j

(|| ζi − ζ ||< ε) with M{Λ} = 1, such

that for every γ ∈ Λ

lim
n→∞

| {k ≤ n :| ζk(γ)− ζ(γ) |≥ ε} |β

nα
= 0,

for some α, β satisfying 0 < α < β ≤ 1. Hence, {ζn} statistically almost surely
converges (order (α, β)) to ζ. 2

Proposition 3.5. Let {ζn} be a sequence of complex uncertain variables and ζ be a
complex uncertain variable. Suppose that for every ε > 0, δ > 0 and for some α, β
satisfying 0 < α < β ≤ 1 we have

lim
n→∞

| {k ≤ n : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ} |β

nα
= 0.

Then, {ζn} converges statistically almost surely (order (α, β)) to ζ.

Proof. Let δ be any positive real number. Then for every ε > 0 we have

lim
n→∞

| {k ≤ n : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ} |β

nα
= 0,
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for some α, β satisfying 0 < α < β ≤ 1. Statistical convergence of order (α, β) implies
usual statistical convergence. Thus,

lim
n→∞

| {k ≤ n : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ} |β

n
= 1.

Since, | {k ≤ n : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ} | is an infinite set and

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε} is a monotonically decreasing sequence of sets, {k ∈ N :

M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ} contains every natural number excepting first few

finite number of natural numbers. For each i ∈ N, let Ei =

∞⋃
n=i

{n :|| ζn − ζ ||≥ ε}.

Thus we have a sequence {Ek} of events. Now for any p ∈ N

p ∈ {k ∈ N : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) < δ} ⇒ p ∈ {k ∈ N : M(Ek) < δ}

⇒ {k ∈ N : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) < δ} ⊆ {k ∈ N : M(Ek) < δ}

⇒ {k ∈ N : M(Ek) ≥ δ} ⊆ {k ∈ N : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ}.

The set on R.H.S is a finite set for every ε > 0 and δ > 0. Hence, {k ∈ N : M(Ek) ≥ δ}
being a finite set, we have

lim
n→∞

| {k ≤ N : M(Ek) ≥ δ} |β

nα
= 0,

for some α, β satisfying 0 < α < β ≤ 1. Now, for fixed i ∈ N

Γ− Ei =

∞⋂
n=i

{n :|| ζn − ζ ||≥ ε},

γ ∈ Γ−Ei implies that | ζn(γ)− ζ(γ) |< ε for all n ≥ i. Thus, for fixed i ∈ N and any
γ ∈ Γ − Ei, {n ∈ N : n ≥ i} ⊆ {k ∈ N :| ζk(γ) − ζ(γ) |< ε}. Hence, for fixed i ∈ N,
arbitrary ε > 0, and any γ ∈ Γ − Ei, {k ∈ N :| ζk(γ) − ζ(γ) |≥ ε} is always a finite
set. So, for every γ ∈ Γ− Ei

lim
n→∞

| {k ∈ N : n :| ζn(γ)− ζ(γ) |≥ ε} |β

nα
= 0,

for some α, β satisfying 0 < α < β ≤ 1. Thus, {ζn} converges statistically almost
surely (order (α, β)) to ζ. 2
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Theorem 3.6. Let {ζn} be a sequence of complex uncertain variables and ζ be a
complex uncertain variable. Suppose that for every ε > 0, δ > 0 and for some α, β
satisfying 0 < α < β ≤ 1 we have

lim
n→∞

| {k ≤ n : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ} |β

nα
= 0.

Then, {ζn} converges statistically almost surely (order (α, β)) to ζ.

Proof. For any k ∈ N, ε > 0,

∞⋂
j=k

∞⋃
n=j

({n :|| ζn − ζ ||≥ ε}) ⊆
∞⋃
n=k

({n :|| ζn − ζ ||≥ ε}).

Taking uncertain measure M we get,

⇒M(

∞⋂
j=k

∞⋃
n=j

({n :|| ζn − ζ ||≥ ε}) ⊆M(

∞⋃
n=k

({n :|| ζn − ζ ||≥ ε}).

Hence for any δ > 0,

{k ≤ n : M(

∞⋂
j=k

∞⋃
n=j

{n :|| ζn−ζ ||≥ ε}) ≥ δ} ⊆ {k ≤ n : M(

∞⋃
n=k

({n :|| ζn−ζ ||≥ ε}) ≥ δ}

⇒

| {k ≤ n : M(

∞⋂
j=k

∞⋃
n=j

{n :|| ζn − ζ ||≥ ε}) ≥ δ} |β

nα

≤
| {k ≤ n : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ} |β

nα

⇒ lim
n→∞

| {k ≤ n : M(

∞⋂
j=k

∞⋃
n=j

{n :|| ζn − ζ ||≥ ε}) ≥ δ} |β

nα
= 0,

for some α, β satisfying 0 < α < β ≤ 1. Thus from Proposition 1 it can be concluded
that {ζn} converges statistically almost surely (order (α, β)) to ζ. 2

4. Sufficient condition for statistical convergence in measure of order (α, β)

Theorem 4.1. Let {ζn} be a sequence of complex uncertain variables and ζ be a
complex uncertain variable. Suppose that for every ε > 0, δ > 0 and for some α, β
satisfying 0 < α < β ≤ 1 we have

lim
n→∞

| {k ≤ n : M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ} |β

nα
= 0.

Then, {ζn} converges statistically in measure (order (α, β)) to ζ.



STATISTICAL CONVERGENCE OF COMPLEX UNCERTAIN SEQUENCE OF ORDER (α, β) 39

Proof. For any k ∈ N, ε > 0,

(|| ζk − ζ ||≥ ε) ⊆
∞⋃
n=k

({n :|| ζn − ζ ||≥ ε})

⇒M(|| ζk − ζ ||≥ ε) ⊆M(

∞⋃
n=k

{n :|| ζn − ζ ||≥ ε})

⇒ {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} ⊆ {k ≤ n : M(
∞⋃
n=k

{n :|| ζn − ζ ||≥ ε}) ≥ δ},

for any δ > 0. Thus, for some α, β satisfying 0 < α < β ≤ 1,

⇒ lim
n→∞

| {k ≤ n : M(|| ζk − ζ ||≥ ε) ≥ δ} |β

nα
= 0.

Hence, {ζn} converges statistically in measure (order (α, β)) to ζ. 2

5. Some Results

Let 0 < α1 ≤ α2 ≤ β1 ≤ β2 ≤ 1. Then,
(a) A complex uncertain sequence {ζn} statistically converges in mean of order (α1, β2)
to ζ implies that {ζn} statistically converges in mean of order (α2, β1) to ζ.
Proof. The inequality

| {k ≤ n : E[|| ζk − ζ ||] ≥ ε} |β1

nα2
≤ | {k ≤ n : E[|| ζk − ζ ||] ≥ ε} |β2

nα1

can be used to prove the result. 2

(b) A complex uncertain sequence {ζn} statistically converges in measure of order
(α1, β2) to ζ implies that {ζn} statistically converges in measure of order (α2, β1) to
ζ.
Proof. The inequality

| {k ≤ n : M(|| ζk − ζ ||≥ ε)} |β1

nα2
≤ | {k ≤ n : M(|| ζk − ζ ||≥ ε)} |β2

nα1

can be used to prove the result. 2

(c) A complex uncertain sequence {ζn} statistically converges in distribution of order
(α1, β2) to ζ implies that {ζn} statistically converges in distribution of order (α2, β1)
to ζ.
Proof. The inequality

| {k ≤ n :| Φk(c)− Φ(c) |≥ ε)} |β1

nα2
≤ | {k ≤ n :| Φk(c)− Φ(c) |≥ ε)} |β2

nα1

can be used to prove the result. 2

(d) A complex uncertain sequence {ζn} statistically converges almost surely of order
(α1, β2) to ζ implies that {ζn} statistically converges almost surely of order (α2, β1)
to ζ.
Proof. The inequality

| {k ≤ n :| ζk(γ)− ζ(γ) |≥ ε} |β1

nα2
≤ | {k ≤ n :| ζk(γ)− ζ(γ) |≥ ε} |β2

nα1
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can be used to prove the result. 2

(e) A complex uncertain sequence {ζn} statistically converges uniformly almost surely
of order (α1, β2) to ζ implies that {ζn} statistically converges uniformly almost surely
of order (α2, β1) to ζ.
Proof. The inequalities

| {k ≤ n : M(Ek) ≥ ε} |β1

nα2
≤ | {k ≤ n : M(Ek) ≥ ε} |β2

nα1

and

| {k ≤ n :| ζk(γ)− ζ(γ) |≥ ε} |β1

nα2
≤ | {k ≤ n :| ζk(γ)− ζ(γ) |≥ ε} |β2

nα1

can be used to prove the result. 2

6. Conclusion

This paper introduces ideas of statistical convergence of order (α, β) for a complex un-
certain sequence, and relationship among those presented concepts have been studied.
Sufficient conditions of almost surely statistical convergence of order (α, β), uniformly
almost surely statistical convergence of order (α, β), and statistical convergence in
measure of order (α, β) for complex uncertain sequence have been developed.
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