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An identification problem
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Abstract. This paper has the purpose to study an inverse problem related to a specific
boundary value problem of rainfall type infiltration into an isotropic, homogeneous, unsatu-
rated porous medium, in which saturation can be partially or totally reached after sometime.
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1. Statement of the problem

1.1. Mathematical model. Specific applications in soil sciences, hydrology or agri-
culture may require the study of inverse problems related to water infiltration in
soils. This paper has the purpose to study an inverse problem related to a boundary
value problem of rainfall type infiltration into an isotropic, homogeneous, unsatu-
rated porous medium, in which saturation can be partially or totally reached after
sometime.

The goal is to determine the rain rate that produced a certain moisture of the soil
θ0(x), measured in the flow domain, at the time T

θ0(x) = θobserved(x, T ).

Let Ω be an open bounded subset of RN (N = 1, 2, 3) with the boundary ∂Ω notation=
Γ piecewise smooth, let (0, T ) be a finite time interval and let x ∈ Ω represent the
vector x = (x1, x2, x3).

We consider Ω to be the cylinder Ω = {x; (x1, x2) ∈ D, 0 < x3 < L} where D is
an open bounded subset of RN−1 with smooth boundary and we assume that Γ is
composed of the disjoint boundaries Γu, Γlat and Γb, all sufficiently smooth, where
Γu = {x ∈ Γ; x3 = 0}, Γb = {x ∈ Γ;x3 = L}, Γ = Γu ∪ Γlat ∪ Γb.

We also denote Γα = Γlat ∪ Γb, where Γu ∩ Γα = ∅.
We shall deal with the diffusive form of the mathematical model of a rainfall

water infiltration into a soil with the boundary Γα semipermeable, consisting in the
Richards’ equation with initial and boundary data

∂θ

∂t
−∆β∗(θ) +

∂K(θ)
∂x3

= f in Q = Ω× (0, T ), (1)

θ(x, 0) = θ0(x) in Ω, (2)

(K(θ)i3 −∇β∗(θ)) · ν = u on Σu = Γu × (0, T ), (3)

(K(θ)i3 −∇β∗(θ)) · ν = αβ∗(θ) + f0 on Σα = Γα × (0, T ), (4)
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where ν is the outward normal to Γ, i3 is the unit vector along Ox3 downwards
directed, α : Γα → [αm, αM ] ⊂ R+ is a positive and continuous functions on Γα, −u
is the rain rate on Σu, positive due to the downward orientation of the Ox3 axis, f0

is given on Σα and β∗, K and β are defined as follows (see [8])

β∗(θ) =





ρθ, θ ≤ 0∫ θ

0

β(ξ)dξ, 0 < θ < θs

[K∗
s ,+∞), θ = θs,

, K∗
s = lim

θ↗θs

β∗(θ) (5)

K(θ) :=
{

0, θ ≤ 0
K(θ), 0 < θ ≤ θs

, β(θ) :=
{

0, θ ≤ 0
K(θ), 0 < θ ≤ θs.

(6)

Here:

K : [0, θs] → [0,Ks] is the nonlinear hydraulic conductivity which is monotonically
increasing and Lipschitz (in particular we can assume K ∈ C2([0, θs]);

β : [0, θs) → [ρ,+∞) is the nonlinear water diffusivity which is differentiable,
monotonically increasing and convex (in particular β ∈ C2([0, θs)).
For the mathematical study reasons these functions have been extended to the

negative axis, by continuity (see again [8]).
The functions β∗ and K satisfy:
(i) (β∗(θ)− β∗(θ))(θ − θ) ≥ ρ(θ − θ)2, ∀θ, θ ∈ (−∞, θs]
(ii) lim

θ→−∞
β∗(θ) = −∞.

(iiK)
∣∣K(θ)−K(θ)

∣∣ ≤ M
∣∣θ − θ

∣∣ , ∀θ, θ ≤ θs.

1.2. Control problem. We shall work under the realistic assumption, that is the
boundedness of the rain rate. So, let R ∈ L∞(Σu) be the upper bound of the rain
rate. The problem is to determine the water supply rate (rain rate) from the moisture
observation at the final time T .

For this case we envisage the fact that the flux −u may be produced at its turn by
a mechanism natural (in the case of a rain) or artificial (in the case of an irrigation
e.g.) which obeys a certain law. In this case we choose a simple law, by replacing
in fact the flux u by its velocity q assumed to be bounded by two given functions a
and b.

du

dt
= q, u(0) = u0, −R(x, 0) ≤ u0 ≤ 0 a.e. on Γu.

The initial data u0 may be known, so fixed, or may be unknown, hence arbitrary,
case that will be considered here. So, the identification problem to be solved is

(P ) min
(u0,q)∈UT

∫

Ω

(θ(x, T )− θ0(x))2dx,

where the admissible set reads as

UT =
{

(u0, q) ∈ L∞(Γu)× L∞(Σu);
du

dt
= q, u(0) = u0, u0 ∈ L2(Γu),

−R(x, 0) ≤ u0(x) ≤ 0 a.e. on Γu

}
,

(7)

where
q ∈ L∞(Σu), a(x) ≤ q(x, t) ≤ b(x) a.e. on Σu,

a, b ∈ L2(Γu), a(x) < b(x) a.e. on Γu.
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For the present study we assume in addition that the rain rates are regular, i.e.,
u ∈ L2(0, T ; H1(Γu)).

2. Functional framework

Let V = H1(Ω), with the norm defined by

‖ψ‖V =
(∫

Ω

|∇ψ|2 dx +
∫

Γα

α(x) |ψ|2 dσ

)1/2

. (8)

V
′
= (H1(Ω))

′
is its dual endowed with the scalar product

〈
θ, θ

〉
V ′ = (θ, ψ), ∀θ, θ ∈ V ′, (9)

where ψ ∈ V satisfies the boundary value problem

−∆ψ = θ,
∂ψ

∂ν
+ αψ = 0 on Γα,

∂ψ

∂ν
= 0 on Γu, (10)

We set

D(A) = {θ ∈ L2(Ω); ∃η ∈ V and η(x) ∈ β∗(θ(x)) a.e. x ∈ Ω}
and we define the multivalued operator A : D(A) ⊂ V ′ → V ′, by

(Aθ, ψ) =
∫

Ω

(
∇η · ∇ψ −K(θ)

∂ψ

∂x3

)
dx +

∫

Γα

αηψdσ, ∀ψ ∈ V.

Moreover, we define B ∈ L(L2(Γu); V
′
) and fΓ ∈ L2(0, T ;V

′
) by

Bu(ψ) = −
∫

Γu

uψdσ, ∀ψ ∈ V

fΓ(t)(ψ) = −
∫

Γα

f0ψdσ, ∀ψ ∈ V.

and with these notations we introduce the Cauchy problem

dθ

dt
+ Aθ 3 f + Bu + fΓ a.e. t ∈ (0, T ) (11)

θ(0) = θ0(x) in Ω, (12)

whose strong solution, if exists, satisfies (1)-(4) in the sense of distributions.
In order to prove the solution existence and uniqueness, the multivalued function

β∗ was approximated by the continuous function

β∗ε (θ) =
{

β∗(θ), θ < θs

K∗
s + (θ − θs)/ε, θ ≥ θs,

(13)

for each ε > 0, so that, besides the properties (i) (for θ ∈ R), (ii), β∗ε (θ) satisfies also

(iii) lim
θ→∞

β∗ε (θ) = +∞.

Also, in the approximating problem we extended K to the right of the saturation
value by the constant value Ks.

However, the proof of the existence of the free boundary requires some stronger
assumptions which apply for a smoother approximation β∗ε of class C3 a.e. on R. So,
we introduce the following function
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β∗ε (θ) =





ρmθ, θ < −δ

β∗ext(θ), − δ ≤ θ < 0
β∗(θ), 0 ≤ θ < θs − ε

β∗int(θ), θs − ε ≤ θ < θs

β∗(θs − ε) +
K∗

s − β∗(θs − ε)
ε

[θ − (θs − ε)], θ > θs

(14)

where ρm = (β∗ext)
′(−δ) > 0 and δ > 0. Here, β∗ext and β∗int are polynomial functions

of class C3 on the corresponding definition intervals.
Correspondingly, the approximating problem reads as

dθε

dt
+ Aεθε = f + Bu + fΓ a.e. t ∈ (0, T ) (15)

θε(0) = θ0(x) in Ω, (16)

where Aε : D(Aε) ⊂ V ′ → V ′ is the single-valued operator defined by

(Aεθ, ψ) =
∫

Ω

(
∇β∗ε (θ) · ∇ψ −K(θ)

∂ψ

∂x3

)
dx +

∫

Γα

αβ∗ε (θ)ψdσ, ∀ψ ∈ V

with the domain
D(Aε) = {θ ∈ L2(Ω); β∗ε (θ) ∈ V }.

Obviously the strong solution to (15)-(16) is the solution in the sense of distribu-
tions to the boundary value problem

∂θε

∂t
−∆β∗ε (θε) +

∂K(θε)
∂x3

= f in Q = Ω× (0, T ) (17)

θε(x, 0) = θ0(x) in Ω (18)

(K(θε)i3 −∇β∗ε (θε)) · ν = u on Σu = Γu × (0, T ) (19)

(K(θε)i3 −∇β∗(θε)) · ν = αβ∗ε (θε) + f0 on Σα = Γα × (0, T ). (20)

3. Existence in the state system

Theorem 3.1. (existence of the solution to the approximating problem) Let

f ∈ L2(0, T ; V ′), u ∈ L2(Σu), f0 ∈ L2(Σα), (21)

θ0 ∈ L2(Ω); θ0 ≤ θs a.e. on Ω. (22)

Then, problem (15)-(16) has, for each ε > 0, a unique strong solution

θε ∈ L2(0, T ; V ) ∩W 1,2(0, T ;V ′), β∗ε (θ) ∈ L2(0, T ; V ) (23)

that satisfies the estimates

‖θε(t)‖2V ′ +
∫ t

0

‖θε(τ)‖2 dτ ≤ γ1(αm)

(
‖θ0‖2V ′ +

∫ T

0

‖f(τ)‖2V ′ dτ+

+
∫ T

0

‖u(τ)‖2L2(Γu) dτ +
∫ T

0

‖f0(τ)‖2L2(Γα) dτ

) (24)
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and

‖θε(t)‖2≤
∫

Ω

jε(θε(t))dx +
∫ t

0

∥∥∥∥
dθε

dτ
(τ)

∥∥∥∥
2

V ′
dτ +

∫ t

0

‖β∗ε (θε(τ))‖2V dτ≤

≤ γ2(αm)

(∫

Ω

jε(θ0)dx +
∫ T

0

‖f(τ)‖2V ′ dτ+

+
∫ T

0

‖u(τ)‖2L2(Γu) dτ +
∫ T

0

‖f0(τ)‖2L2(Γα) dτ

)
.

(25)

In the above estimates αm= min
x∈Γα

α(x), γ1(αm) = O(1/αm), γ2(αm) = O(1/αm) as

αm → 0 and

jε(r) =
∫ r

0

β∗ε (ξ)dξ.

Theorem 3.2. (existence of the solution to the original problem) Let f, u, f0 and θ0

satisfy (21)-(22). Then there exists a unique solution θ to the exact problem (11)-(12)
with the following properties

θ ∈ L2(0, T ;V ) ∩W 1,2(0, T ; V ′), β∗(θ) ∈ L2(0, T ;V ), (26)

θ ≤ θs a.e. in Q, (27)

‖θ(t)‖2V ′ +
∫ t

0

‖θ(τ)‖2 dτ ≤ γ1(αm)

(
‖θ0‖2V ′ +

∫ T

0

‖f(τ)‖2V ′ dτ+ (28)

+
∫ T

0

‖u(τ)‖2L2(Γu) dτ +
∫ T

0

‖f0(τ)‖2L2(Γα) dτ

)

and

‖θ(t)‖2 ≤
∫

Ω

j(θ(t))dx +
∫ t

0

∥∥∥∥
dθ

dτ
(τ)

∥∥∥∥
2

V ′
dτ +

∫ t

0

‖η(τ)‖2V dτ ≤

≤ γ2(αm)

(∫

Ω

j(θ0)dx +
∫ T

0

‖f(τ)‖2V ′ dτ+

+
∫ T

0

‖u(τ)‖2L2(Γu) dτ +
∫ T

0

‖f0(τ)‖2L2(Γα) dτ

)
,

(29)

where η ∈ β∗(θ) a.e. on Q and j : R→ (−∞,∞] is defined by

j(r) =





∫ r

0

β∗(ξ)dξ, r ≤ θs

+∞, r > θs,
β∗(θs) = lim

ξ→θs
ξ<θs

β∗(θs) = K∗
s .

The proofs of the previous theorems are based on the results given in [2], [5], [7]
and [8].

The next two theorems give some further regularity of the approximating solution.

Theorem 3.3. Assume

f ∈ W 1,2(0, T ; L2(Ω)) ∩ L∞(Q), (30)

u ∈ W 1,2(0, T ;L2(Γu)) ∩ L∞(Σu) ∩ L2(0, T ; H1(Γu)), (31)
f0 ∈ W 1,2(0, T ;L2(Γα)) ∩ L∞(Σα) ∩ L2(0, T ; H1(Γα)), (32)
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θ0 ∈ H1(Ω), θ0 ≤ θs a.e. on Ω. (33)

Then, the solution θε to problem (15)-(16) satisfies for each ε > 0

θε ∈ W 1,2(0, T ; L2(Ω)) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), (34)

β∗ε (θε) ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ; V ) ∩ L2(0, T ; H2(Ω)). (35)

Theorem 3.4. Assume

f ∈ W 1,2(0, T ; L2(Ω)) ∩ L∞(Q), (36)

u ∈ W 1,2(0, T ; L2(Γu)) ∩ L∞(Σu) ∩ L2(0, T ;H1(Γu)), , (37)

f0 ∈ W 1,2(0, T ; L2(Γα)) ∩ L∞(Σα) ∩ L2(0, T ; H1(Γα)), , (38)

θ0 ∈ H2(Ω), θ0 ≤ θs a.e. on Ω. (39)

Then, problem (15)-(16) has, for each ε > 0, a unique solution

θε ∈ W 1,∞(0, T ;L2(Ω)) ∩W 1,2(0, T ;V ) ∩ L∞(0, T ; H2(Ω)), (40)

β∗ε (θε) ∈ W 1,∞(0, T ; L2(Ω)) ∩W 1,2(0, T ; V ) ∩ L∞(0, T ; H2(Ω). (41)

The proofs of these theorems are presented in [9].

4. Identification problem in the case of a final time observation

We shall resume the identification problem

(P ) min
(u0,q)∈UT

∫

Ω

(θ(x, T )− θ0(x))2dx (42)

where UT is the admissible set for the rain rate

UT =
{

(u0, q) ∈ L∞(Γu)× L∞(Σu);
du

dt
= q, u(0) = u0,

u0 ∈ L2(Γu), −R(x, 0) ≤ u0(x) ≤ 0 a.e. on Γu

}
,

R ∈ L∞(Σu), q ∈ L∞(Σu), a(x) ≤ q(x, t) ≤ b(x) a.e. on Σu

(43)

and θ0(x) is the (unique) available observation at the final time T.
For (u0, q) ∈ UT , u is given by

u(x, t) = u0(x) +
∫ t

0

q(x, s)ds (44)

and it belongs to an interval determined function of a, b and R.
Moreover, we assume that we deal with rain rates u ∈ L2(0, T ; H1(Γu)).
We may cite some general results related to identification in parabolic boundary

value problems i.e. [1], [3], [6], [10], [11].

Theorem 4.1. (existence of the solution to problem (P )). Problem (P ) has at least
one solution.

Proof. Let d = min
u∈UT

∫
Ω
(θ(x, T )dx− θ0(x))2dx and let {(u0n, qn)} ⊂ UT be a minimi-

zing sequence, i.e.,

d ≤
∫

Ω

(θn(x, T )− θ0(x))2dx ≤ d +
1
n

, n ≥ 1, (45)
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where θn is the solution to the problem (11)-(12) corresponding to u = un, given by

un(x, t) = u0n(x) +
∫ t

0

qn(x, s)ds,

with qn ∈ L2(Σu) and a(x) ≤ qn ≤ b(x) a.e. on Σu. Then, on subsequences, u0n → ũ
weakly in L2(Γu) and qn → q̃ weakly in L2(Σu). Using the previous relationship for
un, these imply that

un → ũ weakly in W 1,2(0, T ;L∞(Γu)) and ũ ∈ UT .

By Theorem 3.2, for each n, θn satisfies estimate (29), so it follows that there exists
a subsequence of {θn}, such that

θn → θ̃ weakly in W 1,2(0, T ; V
′
) ∩ L2(0, T ; V )

θn → θ̃ strongly in L2(0, T ; L2(Ω))

and θ̃ is the solution to variational inequality (11)-(12) with u = ũ.
Moreover, one can prove that

θn(T ) → θ̃(T ) weakly in L2(Ω). (46)

By Arzela theorem it follows that, for each t ∈ [0, T ], the set {(θn(t), y)} is compact
in C([0, T ];L2(Ω)), implying that on a subsequence that θn(t) → θ̃(t) weakly in L2(Ω),
∀t ∈ [0, T ]. In particular we get (46).

This last together with (45) implies, by weakly lower semicontinuity, that

d ≤
∫

Ω

(θ̃(x, T )− θ0(x))2dx ≤

≤ lim
n→∞

inf
∫

Ω

(θn(x, T )− θ0(x))2dx ≤ d

showing that ũ is a solution to problem (P ).

Now, we introduce a family of approximating problems (Pε)

(Pε) min
(u0,q)∈UT

∫

Ω

(θ(x, T )− θ0(x))2dx (47)

subject to (15)-(16) with β∗ε (θ) the smoother approximation of class C3(R). We remind
also that we consider only rain rates u ∈ L2(0, T ; H1(Γu)).

Obviously, still by Theorem 4.1, this problem has at least a solution.

Theorem 4.2. Assume that θ0, f and f0 satisfy conditions of Theorem 3.4 and
R ∈ L∞(Σu). Let ((u0ε, qε), θε) be a solution to approximating problem (Pε). Then,
there are subsequences of {(u0ε, qε} and {θε}, such that

u0ε → u∗0 weak star in L∞(Γu),

qε → q∗ weak star in L∞(Σu),

uε → u∗ weak star in W 1,∞(0, T ; L∞(Σu)),

θε → θ∗ strongly in L2(Q) and weakly in L∞(0, T ; V ) ∩W 1,2(Q),

θε(T ) → θ∗(T ) strongly in L2(Ω),
where (u∗0, q

∗) ∈ UT and θ∗ is the solution to (11)-(12) with u = u∗.
Moreover, (u∗0, q

∗) is a solution to (P ) and lim
ε→0

(Pε) = (P ).
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Proof. Let (ũ0, q̃) ∈ UT be a solution to problem (P ), let ũ be given by (44) and
let θε be the solution to the approximating problem (15)-(16) where u = ũ. By the
optimality of (u0ε, qε) in problem (Pε) we have

∫

Ω

(θε(x, T )− θ0(x))2dx ≤
∫

Ω

(θε(x, T )− θ0(x))2dx.

Since θε is the solution of the approximating problem corresponding to ũ, it follows
from Theorem 3.1 that θε is bounded in L2(0, T ; V ) and θ′ε is bounded in L2(0, T ;V ′).
But V is compact in L2(Ω) and by Theorem 3.3 (see [9]) we have

‖θε(t)‖2V ≤ constant, ∀t ∈ [0, T ], (48)

so it follows that {θε(t)} is compact in L2(Ω), for any t ∈ [0, T ]. Hence it follows that
θε(t) → θ̃(t) strongly in L2(Ω), ∀t ∈ [0, T ] and consequently

θε(T ) → θ̃(T ) strongly in L2(Ω), (49)

where θ̃ is the solution to variational inequality (11)-(12) with u = ũ.
From these relationships we get

lim
ε→0

sup
∫

Ω

(θε(x, T )− θ0(x))2dx ≤ lim
ε→0

sup
∫

Ω

(θε(x, T )− θ0(x))2dx ≤

≤
∫

Ω

(θ̃(x, T )− θ0(x))2dx = min(P ).
(50)

On the other hand, since {(u0ε, qε)} ⊂ UT , there exists a subsequence of {(u0ε, qε)},
still denoted in the same way, such that

u0ε → u∗0 weak star in L∞(Γu),

qε → q∗ weak star in L∞(Σu),

uε → u∗ weak star in W 1,∞(0, T ; L∞(Γu)),

where uε is given by (44) with (u0ε, qε).
Then, it follows that on a subsequence of {θε}, still denoted in the same way,

θε → θ∗ strongly in L2(Q), where θ∗ is the solution to variational inequality (11)-(12)
with u = u∗.

Moreover, in a same way as before, using (48) applied to θε(t), we have
θε(T ) → θ∗(T ) strongly in L2(Ω).

Therefore we obtain that

min(P ) ≤
∫

Ω

(θ∗(x, T )− θ0(x))2dx ≤ lim
ε→0

inf
∫

Ω

(θε(x, T )− θ0(x))2dx. (51)

By (50) and (51) we obtain

lim
ε→0

∫

Ω

(θε(x, T )− θ0(x))2dx =
∫

Ω

(θ∗(x, T )− θ0(x))2dx = min(PT ).

This completes the proof.
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5. The necessary conditions of optimality for the approximating problem

Proposition 5.1. Assume that θ0, f and f0 satisfy conditions of Theorem 3.4 and β∗ε
is given by (14). Let ((u∗0ε, q

∗), θ∗ε) be optimal for approximating problem (Pε). Then




u∗0ε(x) = −R(x, 0) on [pε(x1, x2, 0, t) > 0],

u∗0ε(x) ∈ [−R(x, 0), 0] on [pε(x1, x2, 0, t) = 0],

u∗0ε(x) = 0 on [pε(x1, x2, 0, t) < 0]

(52)

and 



q∗ε (x, t) = a(x) on

[∫ T

t

pε(x, s)ds > 0

]
,

q∗ε (x, t) ∈ [a(x), b(x)] on

[∫ T

t

pε(x, s)ds = 0

]
,

q∗ε (x, t) = b(x) on

[∫ T

t

pε(x, s)ds < 0

]
.

(53)

Proof. Let (u∗0ε, q
∗
ε ) ∈ UT . It follows then that

u∗ε(x, t) = u∗0ε(x) +
∫ t

0

q∗ε (x, s)ds (54)

that implies obviously that u∗ε ∈ W 1,2(0, T ; L∞(Σu)).
We introduce the variation (uλ

0ε, q
λ
ε )

uλ
0ε(t, x) = u∗0ε(t, x) + λ(v0ε(t, x)− u∗0ε(t, x)),

qλ
ε (t, x) = q∗ε (t, x) + λ(qε(t, x)− q∗ε (t, x))

for (v0ε, qε) ∈ UT , λ > 0. Consequently we get

uλ
ε (t, x) = u∗ε(t, x) + λ(vε(t, x)− u∗ε(t, x)),

where

vε(x, t) = v0ε(x) +
∫ t

0

qε(x, s)ds.

We define Yε by

Yε = lim
λ→0

θ
u∗ε+λwε
ε − θ

u∗ε
ε

λ
, where wε = vε − u∗ε

and we write the system in variations
∂Yε

∂t
−∆(βε(θ∗ε)Yε) +

∂

∂x3
(K ′(θ∗ε)Yε) = 0 in Q, (55)

Yε(x, 0) = 0 in Ω, (56)

(K ′
ε(θ

∗
ε)Yεi3 −∇(βε(θ∗ε)Yε)) · ν = wε on Σu, (57)

(K(θ∗ε)Yεi3 −∇(βε(θ∗ε)Yε)) · ν = αβε(θ∗ε)Yε on Σα. (58)

Under the hypotheses of Theorem 3.4 the problem (55)-(58) has a unique solution

Yε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ; V ) (59)

dYε

dt
∈ L2(0, T ; V ′). (60)
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Then, we set as the dual system
∂pε

∂t
+ βε(θ∗ε)∆pε + K ′(θ∗ε)

∂pε

∂x3
= 0 in Q, (61)

pε(x, T ) = −(θ∗ε(x, T )− θ0(x)) in Ω, (62)
∇pε · ν = 0 on Σu, (63)

αpε +∇pε · ν = 0 on Σα. (64)

Under the same assumptions as before, the dual system has a unique solution

pε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ; V ) (65)

dpε

dt
∈ L2(0, T ; V ′). (66)

The proofs of these two results are done in a similar way as in [9].
Now we multiply equation (61) by pε and integrate over Q. Taking into account

the conditions for Yε and (61)-(64) we obtain
∫

Ω

pε(x, T )Yε(x, T )dx +
∫ T

0

∫

Γu

pεwεdσdt = 0. (67)

By the assumption that (u∗ε, θ
∗
ε) is optimal we have∫

Ω

(θλ
ε (x, T )− θ0)2dx ≥

∫

Ω

(θ∗ε(x, T )− θ0)2dx

and from here we deduce that∫

Ω

Yε(x, T )(θ∗ε(x, T )− θ0)dx ≥ 0. (68)

Hence from (62), (67) and (68) we deduce the condition

∫ T

0

∫

Γu

pεwεdσdt = −
∫

Ω

pε(x, T )Yε(x, T )dx ≥ 0,

or, in fact ∫ T

0

∫

Γu

(−pε)(u∗ε − vε)dσdt ≥ 0. (69)

Therefore we obtain∫ T

0

∫

Γu

(−pε)[u∗0ε − v0ε +
∫ t

0

(q∗ε (x, s)− qε(x, s))ds]dσdt ≥ 0.

By few calculations we deduce
∫ T

0

∫

Γu

(−pε(x, t))(u∗0ε(x)− v0ε(x))dσdt+

+
∫ T

0

∫

Γu

(q∗ε (x, s)− qε(x, s))
∫ T

s

(−pε(x, t))dtdσds ≥ 0, ∀(v0ε, qε) ∈ UT .

(70)

From this last relationship we conclude that
(
−pε(x, t),

∫ T

s

(−pε(x, t))dt

)
∈ ∂IUT (u∗0ε, q

∗
ε ) = NUT (u∗0, q

∗
ε ). (71)

Hence, if qε(x, s) = q∗ε (x, s) it follows that

−pε ∈ ∂IK0(u
∗
0ε) = NK0(u

∗
0ε)
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where
K0 = {y ∈ L∞(Γu);−R(x, 0) ≤ y(x) ≤ 0 a.e. on Γu}.

It follows that





−pε(x, t)) < 0 on Σu if u∗0ε = −R(x, 0),

−pε(x, t) = 0 on Σu if u∗0ε ∈ (−R(x, 0), 0),

−pε(x, t) > 0 on Σu if u∗0ε = 0.

From here we get the optimal initial data for the control as




u∗0ε(x) = −R(x, 0) on [pε(x1, x2, 0, t) > 0]

u∗0ε(x) ∈ [−R(x, 0), 0] on [pε(x1, x2, 0, t) = 0]

u∗0ε(x) = 0 on [pε(x1, x2, 0, t) < 0].

(72)

Then, if v0ε = u∗0ε, we deduce from (70) that
∫ T

s

(−pε(x, t))dt ∈ ∂IKT (q∗ε ) = NKT (q∗ε ), (73)

where
KT = {q ∈ L2(Σu); a(x) ≤ q(x, t) ≤ b(x) a.e. on Σu}.

Therefore we have



∫ T

s

(−pε(x, t))dt < 0 on Σu if q∗ε (x, s) = a(x),

∫ T

s

(−pε(x, t))dt = 0 on Σu if q∗ε (x, s) ∈ (a(x), b(x)),

∫ T

s

(−pε(x, t))dt > 0 on Σu if q∗ε (x, s) = b(x).

Eventually we obtain from (54) that on Σu we have




q∗ε (x, t) = a(x) on

[∫ T

t

pε(x, s)ds > 0

]
,

q∗ε (x, t) ∈ [a(x), b(x)] on

[∫ T

t

pε(x, s)ds = 0

]
,

q∗ε (x, t) = b(x) on

[∫ T

t

pε(x, s)ds < 0

]
.

(74)

Correspondingly, we compute u∗ε from (72) and (74).
By (72) and the uniqueness of the Cauchy problem (61)-(64) it follows that the set

{(x1, x2, t); pε(x1, x2, 0, t)} is susceptible to have an empty interior. Roughly speaking
this means that the initial optimal control u∗0ε might follows to be almost bang-bang.
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