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Abstract. Let m = (x1, . . . , xn) be the maximal graded ideal of S := K[x1, . . . , xn]. We

present a new method for computing the Hilbert depth of mt, using the polarization and
a combinatorial characterization of the Hilbert depth of a quotient of squarefree monomial

ideals.
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1. Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let M be
a Zn-graded S-module. A Stanley decomposition of M is a direct sum D : M =⊕r

i=1miK[Zi] as a Zn-graded K-vector space, where mi ∈ M is homogeneous with
respect to Zn-grading, Zi ⊂ {x1, . . . , xn} such that miK[Zi] = {umi : u ∈ K[Zi]} ⊂
M is a free K[Zi]-submodule of M . We define sdepth(D) = mini=1,...,r |Zi| and

sdepth(M) = max{sdepth(D)| D is a Stanley decomposition of M}.

The number sdepth(M) is called the Stanley depth of M .
Herzog, Vladoiu and Zheng show in [7] that sdepth(M) can be computed in a finite

number of steps if M = I/J , where J ⊂ I ⊂ S are monomial ideals. In [1], J. Apel
restated a conjecture firstly given by Stanley in [9], namely that

sdepth(M) ≥ depth(M),

for any Zn-graded S-module M . This conjecture proves to be false, in general, for
M = S/I and M = J/I, where 0 6= I ⊂ J ⊂ S are monomial ideals, see [6], but
remains open for M = I. For a friendly introduction in the thematic of Stanley
depth, we refer to [8].

Stanley depth is an important combinatorial invariant and deserves a thorough
study. The explicit computation of the Stanley depth is a difficult task, even in
some, seemingly, very simple cases as the maximal graded ideal m = (x1, . . . , xn)
of S, see [2]. Let t ≥ 1 be an integer. In [5, Theorem 2.2] it was proved that

sdepth(mt) ≤
⌈

n
t+1

⌉
. Also, in [5] it was conjectured that sdepth(mt) =

⌈
n

t+1

⌉
for
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any t ≥ 1. This conjecture holds for t = 1, see [2, Theorem 2.2], and, also, for
t ≥ n− 1, but it is open in general.

Let M be a finitely generated graded S-module. The Hilbert depth of M , denoted
by hdepth(M), is the maximal depth of a finitely generated graded S-module N with

the same Hilbert series as M . Bruns et al. [3] proved that hdepth(mt) =
⌈

n
t+1

⌉
for

any t ≥ 1. In [4] we proved a new formula for the Hilbert depth of a quotient J/I of
two squarefree monomial ideals I ⊂ J ⊂ S, see Theorem 2.1. Also, we extended this
method, through polarization, to a quotient J/I of two arbitrary monomial ideals,
see Proposition 2.2. The aim of this note is to study the Hilbert depth of mt, where
t ≥ 1 is an integer, from this new perspective.

In Theorem 3.7 we prove that hdepth(mt) ≤
⌈

n
t+1

⌉
for any t ≥ 1. We deduce that

hdepth(m) = sdepth(m) =
⌈
n
2

⌉
, see Corollary 3.8. In Theorem 3.9 we prove that

hdepth(mt) = 1 for t ≥ n − 1 and hdepth(m2) =
⌈
n
3

⌉
. Also, in Theorem 3.15 we

show that hdepth(mt) =
⌈

n
t+1

⌉
, if n ≤ (t+ 1)(t+ 3).

2. Preliminaries

First, we fix some notations and we recall the main result of [4].
Let K be an infinite field and S := K[x1, . . . , xn], the ring of polynomials in n

variables over K. Let I ( J ⊂ S be two square free monomial ideals. We consider
the nonnegative integers

αk(J/I) := #{u ∈ S : u squarefree, with u ∈ J \ I and deg(u) = k}, 0 ≤ k ≤ n.
For all 0 ≤ d ≤ n and 0 ≤ k ≤ d, we consider the integers

βd
k(J/I) :=

k∑
j=0

(−1)k−j
(
d− j
k − j

)
αj(J/I). (1)

Note that, using an inverse formula, from (1) we deduce that

αk(J/I) :=

k∑
j=0

(
d− j
k − j

)
βd
j (J/I). (2)

With the above notations we have the following result:

Theorem 2.1. ([4, Theorem 2.4]) The Hilbert depth of J/I is

hdepth(J/I) := max{d : βd
k(J/I) ≥ 0 for all 0 ≤ k ≤ d}.

Theorem 2.1 can be applied, indirectly, via polarization, in the non squarefree case,
as follows. If I ( J ⊂ S are two monomial ideals, then we consider their polarizations
Ip ⊂ Jp ⊂ R, where R is a new ring of polynomials obtained from S by adding N
new variables:

Proposition 2.2. The Hilbert depth of J/I is the number

hdepth(J/I) := hdepth(Jp/Ip)−N.

Also, as the Hilbert depth is an upper bound of the Stanley depth, in particular
we have:

sdepth(J/I) ≤ hdepth(J/I). (3)
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3. Main results

Let n ≥ 2 and S = K[x1, . . . , xn]. Let m = (x1, . . . , xn) ⊂ S be the maximal graded
ideal and t ≥ 1 and integer. We denote by It, the polarization of the ideal mt, in the
ring Rt := K[x1, . . . , xnt], that is

It =

 n∏
j=1

xjxn+j · · ·xn(ij−1)+j : i1, . . . , ij ≥ 0 with i1 + · · ·+ in = t

 .

In other words, the polarization of xaj is xjxn+j · · ·xn(a−1)+j , for any 1 ≤ j ≤ n and
a ≥ 0.

Lemma 3.1. With the above notations, we have

αk(Rt/It) =

t−1∑
j=0

(
nt− n− j
k − j

)(
n+ j − 1

j

)
for all 0 ≤ k ≤ nt.

Proof. Let u = xi1xi2 · · ·xik with 1 ≤ i1 < i2 < · · · < ik ≤ nt be a (squarefree)
monomial. If i1 ≥ n + 1, i.e. {i1, . . . , ik} ⊂ {n + 1, . . . , nt}, then u /∈ It. Note that
there are

(
nt−n

k

)
such monomials. On the other hand, if k ≥ t, t ≤ n and it ≤ n, i.e.

{i1, . . . , it} ⊂ {1, 2, . . . , n}, then u ∈ It.
Now, assume that {i1, . . . , is} ⊂ {1, . . . , n} and {is+1, . . . , ik} ⊂ {n + 1, . . . , nt},

where 1 ≤ s ≤ t − 1. Note that u /∈ It if and only if there exists some nonnegative
integers a1, . . . , as such that 0 ≤ ` = a1 + · · ·+ as ≤ t− 1− s,

La1,...,as :=

s⋃
j=1

{ij + n, ij + 2n, . . . , ij + (aj − 1)n} ⊂ {is+1, . . . , ik}

and {is+1, . . . , ik} \ La1,...,as
⊂ {n, . . . , nt} \ (La1,...,as

∪ {i1 + na1, . . . , is + nas}) .

It follows that the number of such monomials u /∈ It is(
n

s

)
·
t−1−s∑
`=0

∑
a1,...,as≥0
a1+···+as=`

(
nt− n− s− `
k − s− `

)
=

(
n

s

)
·
t−1−s∑
`=0

(
s+ `− 1

s− 1

)(
nt− n− s− `
k − s− `

)
.

Using the first part of the proof, it follows that

αk(Rt/It) =

(
nt− n
k

)
+

t−1∑
s=1

(
n

s

) t−1−s∑
`=0

(
s+ `− 1

s− 1

)(
nt− n− s− `
k − s− `

)
. (4)

Denoting j = s+ ` in (4), we get

αk(Rt/It) =

(
nt− n
k

)
+

t−1∑
s=1

(
n

s

) t−1∑
j=s

(
j − 1

s− 1

)(
nt− n− j
k − j

)
=

(
nt− n
k

)
+

+

t−1∑
j=1

(
nt− n− j
k − j

) j∑
s=1

(
j − 1

s− 1

)(
n

s

)
=

(
nt− n
k

)
+

t−1∑
j=1

(
nt− n− j
k − j

)(
n+ j − 1

j

)
,

as required. �
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We state the following combinatorial formulas

k∑
j=0

(−1)k−j
(
d− j
k − j

)(
n

j

)
=

(
n− d+ k − 1

k

)
for all 0 ≤ k ≤ d ≤ n, (5)

k∑
`=0

(−1)k−`
(
n+ `− 1

`

)(
d

k − `

)
=

(
n− d+ k − 1

k

)
for all k, d, n ≥ 0, (6)

which can be easily deduced from the Chu-Vandermonde identity.

Lemma 3.2. For any 0 ≤ k ≤ d ≤ nt, we have that

βd
k(Rt/It) =

t−1∑
`=0

(
n+ `− 1

`

)(
tn− n− d+ k − `− 1

k − `

)
.

Proof. From Lemma 3.1 and (1) it follows that

βd
k(Rt/It) =

k∑
j=0

(−1)k−j
(
d− j
k − j

) t−1∑
`=0

(
tn− n− `
j − `

)(
n+ `− 1

`

)

=

t−1∑
`=0

(
n+ `− 1

`

) k∑
j=`

(−1)k−j
(
d− j
k − j

)(
tn− n− `
j − `

)
. (7)

Using the substitution s = j − ` in (7) and applying (5), we obtain

βd
k(Rt/It) =

t−1∑
`=0

(
n+ `− 1

`

) k−∑̀
s=0

(−1)k−`−s
(
d− `− s
k − `− s

)(
tn− n− `

s

)
=

=

t−1∑
`=0

(
n+ `− 1

`

)(
tn− n− d+ k − `− 1

k − `

)
,

as required. �

Remark 3.3. As dim(S/mt) = 0, from the definition of the Hilbert depth we have
that hdepth(S/mt) = 0. We mention that this result can be deduce also directly from
Lemma 3.2: Indeed, if d = tn− n, according to Lemma 3.2 we have that

βtn−n
k (Rt/It) =

t−1∑
`=0

(
n+ `− 1

`

)(
k − `− 1

k − `

)
=

{(
n+k−1

k

)
, 0 ≤ k ≤ t− 1

0, t ≤ k ≤ nt
.

On the other hand, we have that

βtn−n+1
t (Rt/It) = −

(
n+ t− 2

t− 1

)
< 0.

Thus, hdepth(Rt/It) = nt− n and, therefore, hdepth(S/mt) = 0.
Note that depth(S/mt) = sdepth(S/mt) = 0, since m is an associated prime to

S/mt.

Proposition 3.4. For any 0 ≤ k ≤ d ≤ nt, we have that

βd
k(It) =

(
nt− d+ k − 1

k

)
−

t−1∑
`=0

(
n+ `− 1

`

)(
tn− n− d+ k − `− 1

k − `

)
.
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Proof. Since αj(It) =
(
nt
j

)
− αj(Rt/It) for all 0 ≤ j ≤ nt, from (5) we get

βd
k(It) =

(
nt− d+ k − 1

k

)
− βd

k(Rt/It).

Hence, the conclusion follows from Lemma 3.2. �

Proposition 3.5. With the above notations, we have that:

(1) β
nt−n+d n

t+1e+1

t+1 (It) =
(n−d n

t+1e+t−1

t+1

)
+

t−1∑̀
=0

(−1)t−`
(
n+`−1

`

)(d n
t+1e+1

t+1−`

)
.

(2) β
nt−n+d n

t+1e
k (It) =

(n−d n
t+1e+k−1

k

)
−

t−1∑̀
=0

(−1)k−`
(
n+`−1

`

)(d n
t+1e
k−`

)
, for all

t+ 1 ≤ k ≤ nt− n+
⌈

n
t+1

⌉
.

Proof. (1) Let d := nt− n+
⌈

n
t+1

⌉
+ 1. From Proposition 3.4 it follows that

βd
t+1(It) =

(
n−

⌈
n

t+1

⌉
+ t− 1

t+ 1

)
−

t−1∑
`=0

(
n+ `− 1

`

)(− ⌈ n
t+1

⌉
− 1 + t− `

t+ 1− `

)
. (8)

On the other hand, we have that(− ⌈ n
t+1

⌉
− 1 + t− `

t+ 1− `

)
= (−1)t−1−`

(⌈ n
t+1

⌉
+ 1

t+ 1− `

)
. (9)

From (8) and (9) it follows that

βd
t+1(It) =

(
n−

⌈
n

t+1

⌉
+ t− 1

t+ 1

)
−

t−1∑
`=0

(−1)t+1−`
(
n+ `− 1

`

)(⌈ n
t+1

⌉
+ 1

t+ 1− `

)
,

as required.
(2) The proof is similar to the proof of (1). �

Remark 3.6. In order to prove that hdepth(It) = nt − n +
⌈

n
t+1

⌉
, it suffice to show

that

β
nt−n+d n

t+1e+1

t+1 (It) < 0 and β
nt−n+d n

t+1e
k (It) ≥ 0 for all t+1 ≤ k ≤ nt−n+

⌈
n

t+ 1

⌉
.

(10)

Indeed, from β
nt−n+d n

t+1e+1

t+1 (It) it follows that hdepth(It) ≤ nt − n +
⌈

n
t+1

⌉
. Also,

since β
nt−n+d n

t+1e
k (It) = 0 for k ≤ t − 1 and β

nt−n+d n
t+1e

t (It) = αt(It) > 0, (10)

implies that hdepth(It) ≥ nt− n+
⌈

n
t+1

⌉
. Also, hdepth(It) = nt− n+

⌈
n

t+1

⌉
implies

that hdepth(mt) =
⌈

n
t+1

⌉
, since It ⊂ Rt is obtained from mt ⊂ S via polarization

and Rt = S[xn+1, xn+2, . . . , xnt].

Theorem 3.7. We have that hdepth(mt) ≤
⌈

n
t+1

⌉
.
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Proof. From (6), it follows that

t+1∑
`=0

(−1)t+1−`
(
n− `+ 1

`

)(⌈ n
t+1

⌉
+ 1

t+ 1− `

)
=

(
n−

⌈
n

t+1

⌉
+ t

t+ 1

)
. (11)

From (11) and Proposition 3.5(1) we henceforth get

β
nt−n+d n

t+1e+1

t+1 (It) = −
(
n−

⌈
n

t+1

⌉
+ t− 1

t

)
−
(
n+ t− 1

t

)(⌈
n

t+ 1

⌉
+ 1

)
+

(
n+ t

t+ 1

)
.

(12)
On the other hand, we have that(

n+ t

t+ 1

)
−
(
n+ t− 1

t

)(⌈
n

t+ 1

⌉
+ 1

)
=

(
n+ t− 1

t

)(
n− 1

t+ 1
−
⌈

n

t+ 1

⌉)
< 0.

(13)
From (12) and (13) it follows that

β
nt−n+d n

t+1e+1

t+1 (It) < 0,

and, therefore, as in Remark 3.6, it follows that hdepth(mt) ≤
⌈

n
t+1

⌉
, as required. �

Corollary 3.8. We have that hdepth(m) =
⌈
n
2

⌉
.

Proof. From Theorem 3.7 it follows that hdepth(m) ≤
⌈
n
2

⌉
. On the other hand, from

(3) and [2, Theorem 2.2], it follows that hdepth(m) ≥ sdepth(m) =
⌈
n
2

⌉
. Hence, we

are done. �

Theorem 3.9. With the above notations, we have that:
(1) hdepth(mt) = 1 for t ≥ n− 1.
(2) hdepth(m2) =

⌈
n
3

⌉
.

Proof. First, note that, using Theorem 3.7, it suffice to show the ≥ inequality.

(1) Since t ≥ n− 1, that is
⌈

n
t+1

⌉
= 1, from Proposition 3.5(2) it follows that

βnt−n+1
k (It) =

(
n+ k − 2

k

)
, for all k ≥ t+ 1. (14)

From (14) and the fact that βnt−n+1
k (It) = 0 for k ≤ t−1 and βnt−n+1

t (It) = αt(It) >
0, it follows that hdepth(It) ≥ nt− n+ 1. Therefore, hdepth(It) = nt− n and, as in
Remark 3.6, this implies hdepth(mt) ≥ 1, as required.

(2) Since t = 2, from Proposition 3.5(2) and the fact that n −
⌈
n
3

⌉
=
⌊

2n
3

⌋
, it

follows that

β
n+dn

3 e
k (I2) =

(⌊ 2n
3

⌋
+ k − 1

k

)
− (−1)k

(⌈n
3

⌉
k

)
+ (−1)kn

( ⌈n
3

⌉
k − 1

)
(15)

If k ≥
⌈
n
3

⌉
+ 1 then, from (15), it follows that

β
n+dn

3 e
k (I2) =

(⌊ 2n
3

⌋
+ k − 1

k

)
> 0.

Also, if k =
⌈
n
3

⌉
then, from (15) and the fact that n ≥ 2, it follows that

β
n+dn

3 e
k (I2) =

(
n− 1⌈

n
3

⌉ )+ (−1)d
n
3 e ≥ 0.
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Now, assume that k ≤
⌈
n
3

⌉
− 1. From (15) we get

β
n+dn

3 e
k (I2) =

(⌊ 2n
3

⌋
+ k − 1

k

)
+ (−1)k ·

nk −
⌈
n
3

⌉
+ k − 1⌈

n
3

⌉
− k + 1

(⌈n
3

⌉
k

)
. (16)

If k is even then, from (16) it follows that β
n+dn

3 e
k (I2) > 0, hence, the only case needed

to be considered is k is odd and 3 ≤ k ≤
⌈
n
3

⌉
− 1. If n ≤ 9 then there is nothing to

prove, so we can assume that n ≥ 10. In order to show that β
n+dn

3 e
k (I2) ≥ 0, by (16),

it suffice to prove that(⌊
2n

3

⌋
+ k − 1

)(⌊
2n

3

⌋
+ k − 2

)
· · ·
⌊
2n

3

⌋
≥
(
nk −

⌈n
3

⌉
+ k − 1

)⌈n
3

⌉
· · ·
(⌈n

3

⌉
− k + 2

)
.

(17)

In order to prove (17), we use induction on k ≥ 3. If k = 3, then (17) became(⌊
2n

3

⌋
+ 2

)(⌊
2n

3

⌋
+ 1

)⌊
2n

3

⌋
≥
(

3n+ 2−
⌈n

3

⌉) ⌈n
3

⌉(⌈n
3

⌉
− 1
)
. (18)

We consider three cases:
(i) n = 3p. Equation (18) is equivalent to

(2p+ 2)(2p+ 1)2p ≥ (8p+ 2)p(p− 1)⇔ 8p3 + 12p2 + 4p ≥ 8p3 + 10p2 − 2p,

which is obviously true.
(ii) n = 3p+ 1. Equation (18) is equivalent to

(2p+ 2)(2p+ 1)2p ≥ (8p+ 4)(p+ 1)p⇔ 8p3 + 12p2 + 4p ≥ 8p3 + 12p24p,

which is also true.
(iii) n = 3p+ 2. Equation (18) is equivalent to

(2p+ 3)(2p+ 2)(2p+ 1) ≥ (8p+ 6)(p+ 1)p⇔ 8p3 + 24p2 + 22p+ 6 ≥ 8p3 + 14p2 + 6p,

which is again true.
Hence, the initial step of the induction is done. In order to prove the induction step,
assume (17) holds for k. We have to show that it holds also for k + 2. In order to do
that, it suffice to prove that(⌊

2n

3

⌋
+ k + 1

)(⌊
2n

3

⌋
+ k

)(
nk −

⌈n
3

⌉
+ k − 1

)
≥

≥
(⌈n

3

⌉
− k + 1

)(⌈n
3

⌉
− k
)(

nk + 2n−
⌈n

3

⌉
+ k + 1

)
.

This can be proved, by straightforward computations, in a similar manner as (18).
Now, from all the above considerations, it follows that

β
n+dn

3 e
k (I2) ≥ 0 for all 0 ≤ k ≤ n+

⌈n
3

⌉
,

and, therefore, hdepth(I2) ≥ n+
⌈
n
3

⌉
. Thus, hdepth(m2) ≥

⌈
n
3

⌉
, as required. �

Proposition 3.10. The following are equivalent:

(1) hdepth(mt) =
⌈

n
t+1

⌉
.

(2)
k−t∑
j=0

(−1)j
(
n+k−j−1

k−j
)(d n

t+1e
j

)
≥ 0 for all t+ 1 ≤ k ≤ nt− n+

⌈
n

t+1

⌉
.
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(3)
k∑

j=0

(−1)j
(
k+t
j

)(
n−j
m−j

)
≥ 0 for all t, k,m, n ≥ 1 such that

m(t+ 1) + k − 1 ≤ n ≤ (m+ 1)(t+ 1) + k − 2 and 1 ≤ k ≤ nt− n− t+m.

Proof. (1)⇔ (2). Note that, according to Theorem 3.7, we have that hdepth(mt) ≤⌈
n

t+1

⌉
.

From Proposition 3.5(2) and (6), using the substitution j = `− t, it follows that

β
nt−n+d n

t+1e
k (It) =

k∑
`=t

(−1)k−`
(
n+ `− 1

`

)(⌈ n
t+1

⌉
k − `

)

=

k−t∑
j=0

(−1)j
(
n+ k − j − 1

k − j

)(⌈ n
t+1

⌉
j

)
,

for all t+ 1 ≤ k ≤ nt− n+
⌈

n
t+1

⌉
. Hence, the equivalence follows as in Remark 3.6.

(2)⇒ (3). It is clear that m =
⌈

n
t+1

⌉
, if and only if

m(t+ 1) ≤ n ≤ (m+ 1)(t+ 1)− 1. (19)

Now, let n′ = n+ k − 1, k′ = k − t. From (2) it follows that

k−t∑
j=0

(−1)j
(
n+ k − j − 1

k − j

)(⌈ n
t+1

⌉
j

)
=

k′∑
j=0

(−1)j
(

n′ − j
k′ + t− j

)(
m

j

)
. (20)

On the other hand, we have that(
n′ − j

k′ + t− j

)(
m

j

)
=

(n′ − j)!m!

(k′ + t− j)!(n′ − k − t)!j!(m− j)!
=

(n′ −m)!m!

(k′ + t)!(n′ − k′ − t)!
×

× (n′ − j)!(k′ + t)!

(n′ −m)!(m− j)!(k′ + t− j)!j!
=

(
n′

k′+t

)(
n′

n−m
) · (k′ + t

j

)(
n′ − j
n′ −m

)
. (21)

From (19), (20) and (21), be renaming n′ with n and k′ with k, we get the required
conclusion. (3)⇒ (2). The proof is similar. �

For n,m, k, t ≥ 1, we denote

b(n,m, t, k) :=

k∑
j=0

(−1)j
(
k + t

j

)(
n− j
m− j

)
. (22)

Corollary 3.11. Let n, t ≥ 1 and m =
⌈

n
t+1

⌉
such that

b(n+ k − 1,m, t, k) ≥ 0 for all 1 ≤ k ≤ nt− n− t+m.

Then hdepth(mt) = m.

Proof. It follows from Remark 3.6 and the proof of Proposition 3.10. �

Lemma 3.12. We have that

b(n,m, t, k) =

(
n− t− k

m

)
, for all 1 ≤ m ≤ k.
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Proof. Since m ≤ k, according to (5), we have that

b(n,m, t, k) = (−1)m
m∑
j=0

(−1)m−j
(
k + t

k

)(
n− j
m− j

)
=

= (−1)m
(
k + t− n+m− 1

m

)
=

(
n− t− k

m

)
,

as required. �

Let n,m, t, k ≥ 1 and 0 ≤ j ≤ k, such that m ≥ k + 1. We denote

f(n,m, t, k, j) :=

(
k + t

j

)(
n− j
m− j

)
.

By straightforward computations, we get:

f(n,m, t, k, j)

f(n,m, t, k, j + 1)
=

(n− k + j + 1)(j + 1)

(m− k + j + 1)(k + t− j)
. (23)

From (23), it follows that

f(n,m, t, k, j) ≥ f(n,m, t, k, j + 1) if and only if

n ≥ m+ k + t− 2j − 1 +
(m− k)(k + t+ 1)

j + 1
. (24)

Since the function ϕ(j) = m+ k + t− 2j − 1 + (m−k)(k+t+1)
j+1 is decreasing, from (24)

it follows that for n ≥ ϕ(0) we have that f(n,m, t, k, j) ≥ f(n,m, t, k, j + 1) for all
0 ≤ j ≤ k − 1. This allows us to prove the following:

Lemma 3.13. Let n,m, k, t ≥ 1 such that n ≥ m(t+ 1) + k − 1. Then:
(1) b(n,m, t, 1) ≥ 0.
(2) If m ≤ k + t then b(n,m, t, k) ≥ 0.

Proof. First, note that

ϕ(0) = m+ k + t− 1 + (m− k)(k + t+ 1) = m(t+ 1) + k − 1 + (k − 1)(m− t− k).

Hence, since n ≥ m(t + 1) + k − 1, we have that n ≥ ϕ(0) for k = 1 or m ≥ k + t.
On the other hand, if n ≥ ϕ(0) then, according to a previous remark, we have that
f(n,m, t, k, j) ≥ f(n,m, t, k, j + 1), for all 0 ≤ j ≤ k − 1, and therefore

b(n,m, t, k) = (f(n,m, t, k, 0)− f(n,m, t, k, 1)) + (f(n,m, t, k, 2)− f(n,m, t, k, 3)) + · · ·
≥ 0.

�

Lemma 3.14. Let n,m ≥ 1, t ≥ 3 such that m ≥ t + 3 and m(t + 1) + 1 ≤ n ≤
(m+ 1)(t+ 1). Then b(n,m, t, 2) ≥ 0.

Proof. We have that

b(n,m, t, 2) =

(
n− 2

m− 2

)(
n(n− 1)

m(m− 1)
− (t+ 2)

n

m
+

(
t+ 2

2

))
. (25)
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From hypothesis, we have that n−1
m−1 >

n
m ≥ t+ 1 and n

m ≤ t+ 2. From (25) it follows
that

b(n,m, t, 2) ≥
(
n− 2

m− 2

)
·
(

(t+ 1)2 − (t+ 2)2 +
(t+ 2)(t+ 1)

2

)
=

(
n− 2

m− 2

)
·
(

1

2
t2 − 1

2
t− 2

)
.

Therefore, b(n,m, t, 2) ≥ 0, since t ≥ 3. �

Now, we are able to prove the following result:

Theorem 3.15. Let n, t ≥ 1 such that n ≤ (t+1)(t+3). Then hdepth(mt) =
⌈

n
t+1

⌉
.

Proof. If t = 1 then the conclusion follows from Corollary 3.8. Also, if t = 2 then
the conclusion follows from Theorem 3.9(2). Hence, we can assume that t ≥ 3. Let

m =
⌈

n
t+1

⌉
. Note that, n ≤ (t + 1)(t + 3) implies m ≤ t + 3. Also, m(t + 1) ≤ n ≤

m(t+ 1) + t.
From Lemma 3.12 it follows that

b(n+ k − 1,m, t, k) =

(
n− t− 1

k

)
≥ 0 for all m ≤ k ≤ nt− n− t+m. (26)

Now, suppose that k < m. From Lemma 3.13(1) we have that

b(n,m, t, 1) ≥ 0. (27)

Also, from Lemma 3.14 we have that

b(n+ 1,m, t, 2) ≥ 0. (28)

Hence, we can assume that 3 ≤ k ≤ m− 1. Since m = t+ 3 and k ≥ 3 it follows that
m ≤ k + t. Therefore, from Lemma 3.13(2) it follows that

b(n− k + 1,m, t, k) ≥ 0 for all 3 ≤ k ≤ m− 1. (29)

The conclusion follows from (26), (27), (28), (29) and Corollary 3.11. �

4. Conclusion

In [4] we introduced a new combinatorial method to compute the Hilbert depth of
a quotient of two squarefree monomial ideals I ⊂ J ⊂ S. Also, we noted that, if I
and J are not squarefree, we can reduce to the squarefree case via polarization. The
aim of our paper is to illustrate this method in order to compute hdepth(mt), where
m = (x1, . . . , xn) is the maximal graded ideal of S and t ≥ 1 is an integer. Although
the formula for hdepth(mt) was already known in literature, see [3], out method is
original and can be adapted to other classes of monomial ideals. Also, the description
of the minimal set of monomial generators of the polarization of mt is new.
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