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Pure Strategy Solutions in the Progressive Discrete Silent
Duel with Quadratic Accuracy Symmetry and Shooting
Uniform Jitter

Vadim Romanuke

Abstract. A generalized class of the discrete game of timing is solved, where possible shooting

moments are uniformly jittered. This is a finite zero-sum game defined on a symmetric lattice
of the unit square. The game is a progressive discrete silent duel whose kernel is skew-

symmetric, and the duelist having a single bullet shoots with quadratic accuracy. As the duel

starts, possible shooting moments become denser by a geometric progression, where every
following moment, apart from the duel beginning and end moments, is the partial sum of

the respective geometric series. Due to the skew-symmetry, both the duelists have the same
optimal strategies and the game optimal value is 0. The 3× 3 duel always has a pure strategy

solution, whichever the jitter is. As the duel becomes bigger, an open interval of pure strategy

solution non-existence appears. The endpoints of the open interval are irrational. The 4 × 4
duel has three jitter intervals, within which it has a pure strategy solution, whose optimal

strategies can be only either a jittered middle or three-quarters of the duel time span, and the

duel end moment. Bigger duels have two jitter intervals, within which a single pure strategy
solution exists, but a jittered middle of the duel time span is never optimal. The 4×4 duel has

two open intervals of the jitter, within which it does not have a pure strategy solution. Bigger

duels have just a single open interval of the jitter, where no pure strategy solution exists. The
left endpoint of this interval depends on the number of possible shooting moments.
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1. Progressive discrete silent duels

Lack of observability is a common drawback in building mathematical models based
on real-world data. Another side of the lack arises when data access is restricted.
Another one arises from informational delays typical for time-lagged systems like those
in economics, ecosystems, jurisprudence [3, 5, 25, 32]. Making decisions under such
conditions is modeled by games of timing, where competitive interaction processes
involve two or more intelligent participants (players) [8, 9, 12, 14]. Such games
consider a time span of the finite duration during which the player must make a
finite number of decisions of acting [30, 32, 15, 27, 28]. The decision is alternatively
called a shot or shooting, and the possibility to make a decision is often figuratively
called a bullet [7, 8, 4, 32]. The time span is usually standardized to unit segment
[0; 1].

The most common games of timing involve two players. Such two-person games
are often referred to as duels, where the players are called duelists [7, 8, 15, 32, 2].
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Duels feature economic [32, 9], social [18], ecological [3, 4], sportive [26], juristic and
other conflict-competitive processes [1, 6, 10, 11], where the matter is the timing of
innovation, adoption, response [13, 14, 20]. Duels are classified as silent and noisy
duels, depending on information the duelist learns as the adversary acts (shoots or
fires a bullet) [30, 31, 26, 18, 4].

Silent duels are divided into subclasses considering the number of bullets (the
number of maximum possible shots) at duelists and their accuracy. The most studied
subclass is when each of two duelists has exactly one bullet, and they have the same
accuracy functions of time [23]. Such a silent duel is a zero-sum game, so its every
solution is an optimal equilibrium with the same optimal payoffs of the duelists [32,
6, 15]. Despite the accuracy symmetry, rendering the silent duel into a game with a
skew-symmetric kernel, where the optimal payoffs of the duelists are 0, the duelists
may possess non-symmetric optimal strategies at certain conditions [16, 21, 29].

The duelist’s accuracy function is a nondecreasing function of time [32, 15, 3, 4].
In a silent duel, being more complicated to study in comparison with a noisy duel
[7, 2], it is unknown to the duelist whether a bullet was fired by the other duelist
or not until the duel ends [14, 26, 27]. The duelist may obtain a greater payoff by
firing as late as possible, but then the loss likelihood increases due to the other duelist
may shoot first. If both the duelists shoot simultaneously, the payoff of each of them
is 0 [30, 32, 15, 3]. The accuracy nonlinearity is important to reflect the duelist’s
nonlinear efforts and tension as the duel progresses. Typically, it can be modeled by
quadratic accuracy functions pX (x) = x2 and pY (y) = y2 of the first and second
duelists, respectively, so that

pX (0) = pY (0) = 0

and
pX (1) = pY (1) = 1

in a silent duel as a zero-sum game [7, 15, 17]

〈X, Y, K (x, y)〉 (1)

with kernel
K (x, y) = x2 − y2 + x2y2 sign (y − x) (2)

defined on unit square
X × Y = [0; 1]× [0; 1] (3)

being the Cartesian product of the duel unit-standardized time spans (i. e., the prod-
uct is the square of the span), where x ∈ X, y ∈ Y . Kernel (2) is skew-symmetric,
i. e.

K (y, x) = y2 − x2 + y2x2 sign (x− y) = −K (x, y) . (4)

As the duelist has a single bullet in game (1) with kernel (2) on (3), there is no reason
for considering solutions in mixed strategies, if any, with non-singleton supports [25,
13, 14, 18, 19].

Duel (1) on square (3) by kernel (2) is infinite, so it is not always possible to
solve it, even approximately. To have an easy-to-implement optimal strategy for a
duelist, a discrete silent duel is considered instead, in which the duelist can shoot
only at specified time moments (pure strategies) whose number is finite [16, 17, 21].
Therefore, the kernel of the discrete silent duel is defined on a finite subset of unit
square (3). The subset includes the moments of the duel beginning x = y = 0 and
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duel end x = y = 1, where the sets of pure strategies of the duelists are identical [32,
15, 21]:

X = {xi}Ni=1 = Y = {yj}Nj=1 = T = {tq}Nq=1 ⊂ [0; 1]

by tq < tq+1 ∀ q = 1, N − 1 and t1 = 0, tN = 1 for N ∈ N\ {1} .

The discrete silent duel is an N × N matrix game whose payoff matrix is skew-
symmetric due to (4). Any solution of this matrix game is of finite supports only [15,
3, 4, 6], so any solution of the discrete silent duel is computed and implemented far
easier and faster than that in the case of infinite game (1). A pure strategy solution
is alternatively called a saddle point (with the reference to the respective row and
column of the payoff matrix) or optimal situation in the matrix game.

Another option of nonlinearity in duels is how moments {tq}Nq=1 of possible shooting

are specified. As the duelist approaches to the end moment tN = 1, the space between
consecutive moments tq and tq+1, q = 1, N − 1, may shorten due to the growing
tension, responsibility, and urgency to shoot first. In other words, the density of the
duelist’s pure strategies must grow as the duel progresses. One of the patterns of the
growth is such that the density grows in the geometrical progression [21, 22]. In this
case, apart from the duel beginning and end moments, every following moment is the
partial sum of the respective geometric series:

tq =

q−1∑
l=1

2−l =
2q−1 − 1

2q−1
for q = 2, N − 1. (5)

However, due to finite accuracy in measuring the distance between neighboring mo-
ments of possible shooting, the precise assignment by (5) is not always realizable in

practice. This is modeled [24] by adding a time jitter ξ so that still {tq}N−1
q=2 ⊂ (0; 1):

tq = ξ +

q−1∑
l=1

2−l = ξ +
2q−1 − 1

2q−1
for q = 2, N − 1 and ξ ∈

(
−1

2
;

1

2N−2

)
.

Then game (1) by kernel (2) defined on a finite lattice

X × Y = {xi}Ni=1 × {yj}
N
j=1 =

=

{
0,

{
ξ +

2i−1 − 1

2i−1

}N−1

i=2

, 1

}
×

{
0,

{
ξ +

2j−1 − 1

2j−1

}N−1

j=2

, 1

}
⊂

⊂ [0; 1]× [0; 1] (6)

is a progressive discrete silent duel (PDSD) with quadratic accuracy symmetry and
shooting uniform jitter. It is obvious that this duel solution depends on N and ξ.

The case of ξ = 0 is the known PDSD whose solutions were studied in [21, 22].
The pure strategy solution is situation

{x3, y3} =

{
3

4
,

3

4

}
(7)

in 4× 4 PDSDs and bigger, and optimal situation (7) is single. The single solution of
the 3× 3 PDSD is

{x3, y3} = {1, 1} . (8)
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The most trivial duel is the 2× 2 PDSD, whose solution is

{x2, y2} = {1, 1} (9)

and it would not depend on the jitter (the two only possible shooting moments at
the duelist are the very beginning and end of the duel, which are not affected by any

specification of moments {tq}N−1
q=2 ).

Hence, the goal is to study pure strategy solutions in the PDSD on finite lattice
(6) by

ξ ∈
(
−1

2
; 0

)
∪
(

0;
1

2N−2

)
=

(
−1

2
;

1

2N−2

)
\ {0} . (10)

In addition, there should be determined all ξ from the open intervals in (10) such that
no pure strategy solution exists. To achieve the goal, the most important preliminary
remarks are first stated in Section 2 to simplify further localization of (pure strat-
egy) saddle points and corresponding inferences. The trivial case with three possible
actions (shooting moments) at the duelist is next studied in Section 3. The non-
optimality of the moment following the very beginning of the PDSD is substantiated
in Section 4. Separately from bigger duels, Section 5 first studies 4 × 4 PDSDs, and
then bigger PDSDs are studied in Section 6. Finally, Section 7 summarizes the results
of pure strategy solution existence in PDSDs with quadratic accuracy symmetry and
shooting uniform jitter, whereupon the study is concluded along with its contribution
and an outlook for expanding the subject.

2. Preliminary remarks

In fact, the PDSD with quadratic accuracy functions is a matrix game〈
{xi}Ni=1 , {yj}

N
j=1 , KN

〉
(11)

by the duelists’ pure strategy sets

X = {xi}Ni=1 =

{
0,

{
ξ +

2i−1 − 1

2i−1

}N−1

i=2

, 1

}
⊂ [0; 1] (12)

and

Y = {yj}Nj=1 =

{
0,

{
ξ +

2j−1 − 1

2j−1

}N−1

j=2

, 1

}
⊂ [0; 1] (13)

for

ξ ∈
(
−1

2
;

1

2N−2

)
,

and skew-symmetric payoff matrix

KN = [kij ]N×N by

kij = K (xi, yj) = x2i − y2j + x2i y
2
j sign (yj − xi) . (14)

The skew-symmetry of matrix (14) implies that

kij = −kji ∀ i = 1, N and ∀ j = 1, N. (15)
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In the further consideration, the case with ξ > 0 will be called a positive jitter, and
the case with ξ < 0 will be called a negative jitter. Time moment

tq = ξ +
2q−1 − 1

2q−1
at q ∈

{
2, N − 1

}
(16)

will be called positively ξ-jittered moment and negatively |ξ|-jittered moment by ξ > 0
and ξ < 0, respectively. If the sign of jitter ξ is uncertain, time moment (16) will be

called just a ξ-jittered moment. In particular, moment t2 = ξ +
1

2
following the very

beginning of the PDSD is called a ξ-jittered middle of the duel time span.
Whichever number N is, the first row of matrix (14) contains a negative entry:

K (x1, yN ) = K (0, 1) = −1 = −K (1, 0) . (17)

Therefore, the minimum of the first row does not exceed −1 < 0 and thus the game
optimal value (which is 0) cannot be reached in this row. So, the first row of matrix
(14) does not contain saddle points. Due to the skew-symmetry of matrix (14), the
stated inference is immediately followed by that the first column does not contain
saddle points either. Therefore, the duelist in any PDSD does not have an optimal
strategy at the very beginning of the duel.

As only a zero entry of matrix (14) can be a saddle point, then a row containing
a negative entry does not contain saddle points; neither does the respective column
containing the positive entry. In the further consideration, only the inferences on
saddle points in definite rows of matrix (14), which imply the same inferences on
saddle points in respective columns, will be stated. Inasmuch as the case of ξ = 0
was exhaustively studied in [21], only saddle points in PDSDs for

ξ ∈
(
−1

2
;

1

2N−2

)
\ {0}

will be studied.
Meanwhile, it is obvious that a nonnegative row contains a saddle point on the

main diagonal of matrix (14). Furthermore, if a row contains only positive entries,
except for the main diagonal entry, the zero entry on the main diagonal in this row
is a single saddle point in the duel due to all the other N − 1 rows of the respective
column (which shares the zero entry with the row) contain negative entries and thus
cannot contain saddle points.

3. Triviality

First, consider the trivial case with three possible actions (shooting moments) at the
duelist. Herein, the duelist is allowed to act (shoot, make a decision, or fire one’s
single bullet) at the very beginning of the PDSD, at a ξ-jittered middle of the duel
time span, and at the very end of the PDSD.

Theorem 1. In a 3× 3 PDSD (11) by (12) — (14) and (10), situation

{x2, y2} =

{
ξ +

1

2
, ξ +

1

2

}
(18)
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is solely optimal by

ξ ∈

(√
2− 1

2
;

1

2

)
(19)

and situation

{x3, y3} = {1, 1} (20)

is solely optimal only by

ξ ∈

(
−1

2
;

√
2− 1

2

)
. (21)

The PDSD at

ξ =

√
2− 1

2
(22)

has four optimal situations: (18), (20),

{x2, y3} =

{
ξ +

1

2
, 1

}
, (23)

{x3, y2} =

{
1, ξ +

1

2

}
. (24)

Proof. As it was mentioned above, situation

{x1, y1} = {0, 0}

is never optimal in the duel. The respective payoff matrix of a PDSD (11) by
(12) — (14) and (10) is

K3 = [kij ]3×3 =


0 −

(
1

2
+ ξ

)2

−1(
1

2
+ ξ

)2

0 2 ·
(

1

2
+ ξ

)2

− 1

1 −2 ·
(

1

2
+ ξ

)2

+ 1 0


=

=


0 −ξ2 − ξ − 1

4
−1

ξ2 + ξ +
1

4
0 2ξ2 + 2ξ − 1

2

1 −2ξ2 − 2ξ +
1

2
0

 . (25)

It is clearly seen from (25) that situation (18) is solely optimal if

k23 = K (x2, y3) = K

(
ξ +

1

2
, 1

)
= 2ξ2 + 2ξ − 1

2
> 0. (26)

Inequality (26) is true when

ξ ∈

(
−∞;

−
√

2− 1

2

)
∪

(√
2− 1

2
; ∞

)
. (27)
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Since here
1

2N−2
=

1

2
and

−
√

2− 1

2
< −1 < −1

2
< 0 <

√
2− 1

2
<

1

2
, (28)

situation (18) is solely optimal by (19). If (22) is true, then k23 = 0 = k32, payoff
matrix (25) is

K3 =


0 −1

2
−1

1

2
0 0

1 0 0

 , (29)

and there are four optimal situations (18), (20), (23), (24) in this PDSD. Using (27)
and (28), it is easy to see that if (21) is true, then k23 < 0 and k32 > 0, that is (20)
is the single optimal situation. �

4. Non-optimality of the jittered middle

Theorem 2. Situation (18) is not optimal in an N ×N PDSD (11) by (12) — (14)
and (10) for N ∈ N\ {1, 2, 3, 4}.

Proof. In the second row of matrix (14), the last column entry

k2N = K (x2, yN ) = K

(
ξ +

1

2
, 1

)
= 2ξ2 + 2ξ − 1

2
< 0 (30)

if

ξ ∈

(
−
√

2− 1

2
;

√
2− 1

2

)
. (31)

Using (28) and (10), inequality (30) by (31) means that situation (18) is not optimal
if

− 1

2
< ξ <

√
2− 1

2
(32)

by √
2− 1

2
6

1

2N−2
(33)

and situation (18) is not optimal if

− 1

2
< ξ <

1

2N−2
(34)

by √
2− 1

2
>

1

2N−2
. (35)

Inequality (33) is false for N ∈ N\ {1, 2, 3, 4}. From inequality (35) it follows that
√

2− 1 > 23−N ,

log2

(√
2− 1

)
> 3−N,

N > 3− log2

(√
2− 1

)
. (36)
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Inasmuch as

5 > 3− log2

(√
2− 1

)
> 4,

inequality (36) holds for N > 5 implying the non-optimality of situation (18). �

Obviously, Theorem 2 does not exclude the optimality of situation (18) in 4 × 4
PDSDs, nor does it confirm situation (18) is optimal in such duels. Nevertheless,
Theorem 2 prompts to consider 4× 4 PDSDs separately from bigger ones.

5. The 4× 4 PDSD

Theorem 3. In a 4× 4 PDSD (11) by (12) — (14) and (10), situation (18) is solely
optimal by

ξ ∈

[√
2− 1

2
;

1

4

)
. (37)

Proof. Situation (18) is solely optimal in a 4 × 4 PDSD if the second row of the
respective payoff matrix contains only positive entries, except for the main diagonal
entry. In the second row of matrix (14) by N = 4, its first (column) entry

k21 =

(
1

2
+ ξ

)2

> 0, (38)

and entries k23, k24 are positive if

k2j = K (x2, yj) = K

(
ξ +

1

2
, yj

)
=

= x22 − y2j + x22y
2
j = x22

(
1 + y2j

)
− y2j > 0 for j = 3 and j = 4. (39)

From inequality (39) it follows that

x22 >
y2j

1 + y2j
= 1− 1

1 + y2j
, (40)

which means that if inequality (40) holds for j = 4 (a greater value of yj), it holds
for j = 3 (a lesser value of yj) as well. At j = 4 pure strategy y4 = 1 and inequality
(40) turns into just

x22 >
1

2
,

i. e. (
1

2
+ ξ

)2

>
1

2
,

1

2
+ ξ >

1√
2
,

ξ >
1√
2
− 1

2
. (41)

Since here
1

2N−2
=

1

4
and (10) must hold, condition (41) is written as

ξ ∈

(√
2− 1

2
;

1

4

)
(42)
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by which situation (18) is solely optimal.
If the jitter value is (22), then

k24 = K (x2, y4) = K

(
ξ +

1

2
, 1

)
=

= x22 − 1 + x22 = 2x22 − 1 = 2 ·

(√
2− 1

2
+

1

2

)2

− 1 = 0 (43)

and

k23 = K (x2, y3) = K

(
ξ +

1

2
, ξ +

3

4

)
= K

(√
2

2
,

2
√

2 + 1

4

)
=

=

(√
2

2

)2

−

(
2
√

2 + 1

4

)2

+

(√
2

2

)2

·

(
2
√

2 + 1

4

)2

=

=
1

2
− 8 + 4

√
2 + 1

16
+

1

2
· 8 + 4

√
2 + 1

16
=

7− 4
√

2

32
> 0, (44)

whence situation (18) is still optimal. Due to (44), k32 = −k23 < 0 and the third row
does not contain saddle points. Next,

k34 = K (x3, y4) = K

(
ξ +

3

4
, 1

)
=

= x23 − 1 + x23 = 2x23 − 1 = 2 ·

(√
2− 1

2
+

3

4

)2

− 1 =

= 2 ·

(
2
√

2 + 1

4

)2

− 1 =
8 + 4

√
2 + 1

8
− 1 =

4
√

2 + 1

8
> 0. (45)

Due to (45), k43 = −k34 < 0 and the fourth row does not contain saddle points.
Therefore, situation (18) remains solely optimal by (22) as well. �

As it will turn out, there exists a class of 4 × 4 PDSDs which do not have pure
strategy solutions. The open interval of positive jitter values at which no pure strategy
solution exists is revealed in the following assertion.

Theorem 4. The 4× 4 PDSD (11) by (12) — (14) and (10) with a jitter value of

ξ ∈

(
ξ
(2)
23 ;

√
2− 1

2

)
, (46)

where ξ
(2)
23 is irrational and it is the greater root of the two roots of equation

ξ4 +
5

2
ξ3 +

37

16
ξ2 +

7

16
ξ − 11

64
= 0, (47)

does not have pure strategy solutions.

Proof. It is clearly seen from (39) — (41) that k24 < 0 by

ξ <

√
2− 1

2
. (48)
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So, situation (18) is not optimal by (48) that includes (46). Entry

k23 = K (x2, y3) = K

(
ξ +

1

2
, ξ +

3

4

)
=

=

(
ξ +

1

2

)2

−
(
ξ +

3

4

)2

+

(
ξ +

1

2

)2

·
(
ξ +

3

4

)2

=

= ξ4 +
5

2
ξ3 +

37

16
ξ2 +

7

16
ξ − 11

64
. (49)

Denote the last term in (49) by a function

ϕ (ξ) = ξ4 +
5

2
ξ3 +

37

16
ξ2 +

7

16
ξ − 11

64
by −∞ < ξ <∞. (50)

The first derivative of function (50) is

dϕ (ξ)

dξ
= 4ξ3 +

15

2
ξ2 +

37

8
ξ +

7

16
(51)

and

4ξ3 +
15

2
ξ2 +

37

8
ξ +

7

16
= 0

only if

ξ = ξ∗ =

3
√

864 + 3
√

82941 ·
(

3
√

864 + 3
√

82941− 15
)

+ 3

24
3
√

864 + 3
√

82941
(52)

where

−0.1146 <

3
√

864 + 3
√

82941 ·
(

3
√

864 + 3
√

82941− 15
)

+ 3

24
3
√

864 + 3
√

82941
< −0.1145.

The second derivative of function (50) is

d2ϕ (ξ)

dξ2
= 12ξ2 + 15ξ +

37

8
(53)

and function (53) is positive at point (52):

3.1 >
d2ϕ (ξ)

dξ2

∣∣∣∣
ξ=ξ∗

> 3 > 0.

This means that (52) is the global minimum point being the single extremum of
function (50). The value of function (50) at minimum point (52) is negative:

−0.196 < ϕ (ξ∗) < −0.195.

Meanwhile,

0.203 < ϕ (−1) < 0.204

and

6.078 < ϕ (1) < 6.079.

Consequently,

ϕ (ξ) < 0 by − 1 < ξ
(1)
23 < ξ < ξ

(2)
23 < 1,

where ξ
(1)
23 and ξ

(2)
23 are points of ξ at which function (50) turns into zero, ξ

(1)
23 < ξ

(2)
23 ,

i. e. they are the lesser and greater roots of equation (47).
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By the rational root theorem, every rational root of polynomial (50) must be among
the numbers {

± 1

64
, ± 1

32
, ± 1

16
, ±1

8
, ±1

4
, ±1

2
, ±1,

±11

64
, ±11

32
, ±11

16
, ±11

8
, ±11

4
, ±11

2
, ±11

}
. (54)

However, none of numbers (54) satisfies equality (47). Consequently, the two roots ξ
(1)
23

and ξ
(2)
23 of (47) are irrational. They can be accurately estimated by using, for instance,

the bisection method [33, 34]. Since ϕ (−1) > 0 and ϕ (1) > 0 by −1 < ξ∗ < 1, then
the roots are within interval (−1; 1). Due to

ϕ (0) = −11

64
< 0,

lesser root ξ
(1)
23 is iteratively sought within interval (−1; 0), whereupon

− 0.62451173365014 < ξ
(1)
23 < −0.62451173365013. (55)

Greater root ξ
(2)
23 is iteratively sought within interval (0; 1), whereupon

0.181665998459103 < ξ
(2)
23 < 0.181665998459104. (56)

So,

ξ
(1)
23 < −1

2
< 0 < ξ

(2)
23 <

√
2− 1

2
. (57)

Inequality (57) means that, locally,

ϕ (ξ) < 0 by ξ ∈
(
−1

2
; ξ

(2)
23

)
⊂

(
−1

2
;

√
2− 1

2

)
(58)

and ϕ (ξ) > 0 by (46). Inequality (58) implies that

k23 < 0 by ξ ∈
(
−1

2
; ξ

(2)
23

)
(59)

and

k32 = −k23 > 0 by ξ ∈
(
−1

2
; ξ

(2)
23

)
. (60)

Inequality ϕ (ξ) > 0 by (46) implies that k23 > 0 and k32 = −k23 < 0 by (46), i. e.
the third row of payoff matrix K4 does not contain saddle points.

In the fourth row, entry

k43 = K (x4, y3) = K

(
1, ξ +

3

4

)
= 1−

(
ξ +

3

4

)2

−
(
ξ +

3

4

)2

=

= −2ξ2 − 3ξ − 1

8
> 0 by ξ ∈

(
−2
√

2 + 3

4
;

2
√

2− 3

4

)
, (61)

where

− 2
√

2 + 3

4
< −1 < −0.05 <

2
√

2− 3

4
< 0. (62)
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So, k43 < 0 by

ξ >
2
√

2− 3

4
. (63)

This also means that k43 < 0 by (46) and the fourth row of payoff matrix K4 does
not contain saddle points by (46) as well. �

As the moving-to-the-left jitter reaches irrational value ξ
(2)
23 , at which the jitter is

still positive, the 4×4 PDSD takes back the existence of a pure strategy solution. The
respective solution is expectedly single within a half-interval, which is shown below.

Theorem 5. The 4× 4 PDSD (11) by (12) — (14) and (10) with a jitter value of

ξ ∈

(
2
√

2− 3

4
; ξ

(2)
23

]
, (64)

where ξ
(2)
23 is irrational and it is the greater root of the two roots of equation (47), has

the single pure strategy solution

{x3, y3} =

{
ξ +

3

4
, ξ +

3

4

}
. (65)

Proof. With a jitter value of (64), the second row of payoff matrix K4 does not contain
saddle points due to k24 < 0 by (48), where (57) is true by

− 0.05 <
2
√

2− 3

4
< 0 < ξ

(2)
23 <

√
2− 1

2
. (66)

Due to k43 < 0 by (63), the fourth row of payoff matrix K4 does not contain saddle
points by (64) as well. In the third row, k34 = −k43 > 0 by (63), k32 > 0 due to (60),
and

k31 = K (x3, y1) = K

(
ξ +

3

4
, 0

)
=

(
ξ +

3

4

)2

> 0. (67)

So, the third row by

ξ ∈

(
2
√

2− 3

4
; ξ

(2)
23

)
(68)

contains only positive entries, except for the main diagonal entry, and situation (65)

is solely optimal by (68). At ξ = ξ
(2)
23 the third row contains another zero entry,

k32 = k23 = 0, but the second row does not contain saddle points due to k24 < 0 by
(48), where (57) is true by (66). �

Does situation (65) still remain optimal when the moving-to-the-left jitter reaches
the left endpoint of half-interval (64)? The assertion below answers this question.

Theorem 6. The 4× 4 PDSD (11) by (12) — (14) and (10) with a jitter value of

ξ =
2
√

2− 3

4
(69)

has four optimal situations: (65),

{x3, y4} =

{
ξ +

3

4
, 1

}
, (70)
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{x4, y3} =

{
1, ξ +

3

4

}
, (71)

{x4, y4} = {1, 1} . (72)

Proof. At (69), still k24 < 0, k31 > 0 due to (67), k32 > 0 due to (60), k34 = −k43 = 0,
k41 = −k14 = 1, and k42 = −k24 > 0. So, the third and fourth rows of payoff matrix
K4 have positive entries in the first and second columns, and zero entries in the third
and fourth columns. This implies optimality of situations (65), (70) — (72). �

In fact, value (69) is a marginal jitter, at which the optimality of shooting at
the third moment remains, but also drags in the end moment of the 4 × 4 PDSD
as another optimal decision moment. As the jitter drops below its marginal value
(69), the optimality of situation (65) vanishes along with the multiplicity of the best
decision.

Theorem 7. The 4× 4 PDSD (11) by (12) — (14) and (10) with a jitter value of

ξ ∈

(
−1

2
;

2
√

2− 3

4

)
(73)

has the single pure strategy solution (72).

Proof. With a jitter value of (73), the second row of payoff matrix K4 does not contain
saddle points due to k24 < 0 by (48), and k43 > 0 due to (61), whence k34 = −k43 < 0
and the third row does not contain saddle points either. Besides, in the fourth row,
k41 = −k14 = 1 and k42 = −k24 > 0. So, the fourth row contains only positive entries,
except for the main diagonal entry, and situation (72) is solely optimal by (73). �

Thus, Theorems 3 — 7 have completely covered the case of when the duelist pos-
sesses four possible moments to shoot. PDSDs with greater number of possible shoot-
ing moments are considered below.

6. Bigger PDSDs with quadratic accuracy

6.1. The third moment optimality.

Theorem 8. In anN×N PDSD (11) by (12) — (14) and (10) forN ∈ N\ {1, 2, 3, 4},
situation (65) is solely optimal by

ξ ∈

[
2
√

2− 3

4
;

1

2N−2

)
. (74)

Proof. According with Theorem 2, situation (18) cannot be optimal here. In the third

row of matrix (14), k31 > 0 due to (67). Next, inequality (56) holds and
1

2N−2
< ξ

(2)
23

for N > 5, so k32 > 0 due to (60) ever in an N ×N PDSD for N ∈ N\ {1, 2, 3, 4}.
The last column entry

k3N = K (x3, yN ) = K

(
ξ +

3

4
, 1

)
=

= 2x23 − 1 = 2 ·
(
ξ +

3

4

)2

− 1 > 0 (75)
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if

ξ ∈

(
−∞; −2

√
2 + 3

4

)
∪

(
2
√

2− 3

4
; ∞

)
(76)

by using (61). So, k3N > 0 by

ξ ∈

(
2
√

2− 3

4
;

1

2N−2

)
. (77)

Overall, the entries in the third row above the main diagonal are

k3j = K (x3, yj) = x23 − y2j + x23y
2
j = y2j

(
x23 − 1

)
+ x23 for j = 4, N. (78)

As x23− 1 < 0, it is seen from (78) that entry k3j is a decreasing function of yj , where

k3j > k3N > 0 for j = 4, N − 1.

So, the third row contains only positive entries, except for the main diagonal entry,
and situation (65) is solely optimal by (77).

At marginal value (69) of the jitter, the third row contains two zero entries — k33
and k3N . In the last row, entry

kN,N−1 = K (xN , yN−1) = K

(
1, ξ +

2N−2 − 1

2N−2

)
= K

(
1,

2
√

2− 3

4
+

2N−2 − 1

2N−2

)
=

= 1− 2y2N−1 = 1− 2 ·

(
2
√

2− 3

4
+

2N−2 − 1

2N−2

)2

< 0

if

y2N−1 =

(
2
√

2− 3

4
+

2N−2 − 1

2N−2

)2

>
1

2
,

whence

2
√

2− 3

4
+

2N−2 − 1

2N−2
>

√
2

2
,

2N−2 − 1

2N−2
>

√
2

2
− 2
√

2− 3

4
=

2
√

2− 2
√

2 + 3

4
=

3

4
,

which holds for N > 5 owing to

− 1

2N−2
> −1

4
,

1

2N−2
<

1

4
, 2N−2 > 4, N > 4.

Consequently, kN,N−1 < 0 and the last row does not contain saddle points implying
that situation (65) remains solely optimal by (69) as well. �

According to (66), value (69) is a negative jitter, and thus situation (65) remains
solely optimal within relatively narrow half-interval (74) of negative and positive jitter.
As the PDSD gets bigger, this half-interval gets narrower from the right side. It is
inherently expected that a pure strategy optimal situation, if any, will tend to the
duel end moment as the negative jitter tends to its maximum.
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6.2. The end moment optimality.

Theorem 9. In anN×N PDSD (11) by (12) — (14) and (10) forN ∈ N\ {1, 2, 3, 4},
situation

{xN , yN} = {1, 1} (79)

is solely optimal by

ξ ∈

(
−1

2
;

√
2− 2

2
+

1

2N−2

]
. (80)

Proof. In the last row of payoff matrix KN , entry

kNj = K (xN , yj) = 1− 2y2j for j = 1, N − 1 (81)

is a decreasing function of yj , where

kNj > 0 ∀ j = 1, N − 2 if kN,N−1 > 0. (82)

Thus, entry

kN,N−1 = K (xN , yN−1) = K

(
1, ξ +

2N−2 − 1

2N−2

)
=

= 1− 2y2N−1 = 1− 2 ·
(
ξ +

2N−2 − 1

2N−2

)2

> 0 (83)

if

y2N−1 =

(
ξ +

2N−2 − 1

2N−2

)2

<
1

2
,

whence

ξ +
2N−2 − 1

2N−2
<

√
2

2
,

ξ <

√
2− 2

2
+

1

2N−2
, (84)

where

− 1

2
<

√
2− 2

2
+

1

2N−2
<

2
√

2− 3

4
< 0 for N ∈ N\ {1, 2, 3, 4} . (85)

Using (85), entry kN,N−1 > 0 by

ξ ∈

(
−1

2
;

√
2− 2

2
+

1

2N−2

)
for N ∈ N\ {1, 2, 3, 4} (86)

and the last row contains only positive entries, except for the main diagonal entry,
and situation (79) is solely optimal by (86).

When

ξ =

√
2− 2

2
+

1

2N−2
, (87)

entry

kN,N−1 = 0 = kN−1,N ,

while still

kNj > 0 ∀ j = 1, N − 2 (88)
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and there are no saddle points in the first N − 2 rows of payoff matrix KN by (88).
Besides, in the (N − 1)-th row, entry

kN−1,N−2 = K (xN−1, yN−2) =

= K

(√
2− 2

2
+

1

2N−2
+

2N−2 − 1

2N−2
,

√
2− 2

2
+

1

2N−2
+

2N−3 − 1

2N−3

)
=

= K

(√
2

2
,

√
2

2
− 1

2N−2

)
= = x2N−1 − y2N−2 − x2N−1y

2
N−2 =

=

(√
2

2

)2

−

(√
2

2
− 1

2N−2

)2

−

(√
2

2

)2

·

(√
2

2
− 1

2N−2

)2

=

=
1

2
− 3

2
·

(√
2

2
− 1

2N−2

)2

=
1

2
− 3

2
y2N−2 < 0 (89)

if

y2N−2 =

(√
2

2
− 1

2N−2

)2

>
1

3
,

whence √
2

2
− 1

2N−2
>

1√
3
,

1

2N−2
<

√
2

2
− 1√

3
,

1

2N−2
<

√
6− 2

2
√

3
,

2N−2 > 8 >
2
√

3√
6− 2

for N > 5.

Consequently, kN−1,N−2 < 0 and the (N − 1)-th row does not contain saddle points
implying that situation (79) remains solely optimal by (87) as well. �

Now, the existence of pure strategy solutions in PDSDs bigger than the 4× 4 one
remains to be ascertained by

ξ ∈

(√
2− 2

2
+

1

2N−2
;

2
√

2− 3

4

)
for N ∈ N\ {1, 2, 3, 4} . (90)

It is better to start considering bigger PDSDs by (90) with the 5× 5 PDSD.

6.3. Pure strategy solution non-existence in 5× 5 PDSD.

Theorem 10. The 5× 5 PDSD (11) by (12) — (14) and (10) with a jitter value of

ξ ∈

(
4
√

2− 7

8
;

2
√

2− 3

4

)
(91)

does not have pure strategy solutions.
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Proof. Using (75) and (76), entry k3N < 0 by (91). So, using additionally Theorem 2,
payoff matrix K5 does not contain saddle points in its first three rows. Using (83)
and (84) for N = 5, where

√
2− 2

2
+

1

2N−2
=

4
√

2− 7

8
< ξ,

entry kN,N−1 = k54 < 0 by (91) and the last row does not contain saddle points as
well.

In the fourth row, entry

k43 = K (x4, y3) = K

(
ξ +

7

8
, ξ +

3

4

)
=

=

(
ξ +

7

8

)2

−
(
ξ +

3

4

)2

−
(
ξ +

7

8

)2

·
(
ξ +

3

4

)2

=

= −ξ4 − 13

4
ξ3 − 253

64
ξ2 − 241

128
ξ − 233

1024
. (92)

Denote the last term in (92) by a function

ψ (ξ) = −ξ4 − 13

4
ξ3 − 253

64
ξ2 − 241

128
ξ − 233

1024
by −∞ < ξ <∞. (93)

The first derivative of function (93) is

dψ (ξ)

dξ
= −4ξ3 − 39

4
ξ2 − 253

32
ξ − 241

128
(94)

and

−4ξ3 − 39

4
ξ2 − 253

32
ξ − 241

128
= 0

only if

ξ = ξ∗∗ =

3
√

3456 + 3
√

1327101 ·
(

3
√

3456 + 3
√

1327101− 39
)

+ 3

48
3
√

3456 + 3
√

1327101
(95)

where

−0.4124 <

3
√

3456 + 3
√

1327101 ·
(

3
√

3456 + 3
√

1327101− 39
)

+ 3

48
3
√

3456 + 3
√

1327101
< −0.4123.

The second derivative of function (93) is

d2ψ (ξ)

dξ2
= −12ξ2 − 39

2
ξ − 253

32
(96)

and function (96) is negative at point (95):

−1.91 <
d2ψ (ξ)

dξ2

∣∣∣∣
ξ=ξ∗∗

< −1.9 < 0.

This means that (95) is the global maximum point being the single extremum of
function (93). The value of function (93) at maximum point (95) is positive:

0.075 < ψ (ξ∗∗) < 0.076.

Meanwhile,
−0.048 < ψ (−1) < −0.047
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and

−10.32 < ψ (1) < −10.31.

Consequently,

ψ (ξ) > 0 by − 1 < ξ
(1)
43 < ξ < ξ

(2)
43 < 1,

where ξ
(1)
43 and ξ

(2)
43 are points of ξ at which function (93) turns into zero, ξ

(1)
43 < ξ

(2)
43 ,

i. e. they are the lesser and greater roots of equation

ψ (ξ) = 0. (97)

By the rational root theorem, every rational root of polynomial (93) must be among
the numbers{

± 1

1024
, ± 1

512
, ± 1

256
, ± 1

128
, ± 1

64
, ± 1

32
, ± 1

16
, ±1

8
, ±1

4
, ±1

2
, ±1,

± 233

1024
, ±233

512
, ±233

256
, ±233

128
, ±233

64
, ±233

32
,

±233

16
, ±233

8
, ±233

4
, ±233

2
, ±233

}
. (98)

However, none of numbers (98) satisfies equality (97). Consequently, the two roots

ξ
(1)
43 and ξ

(2)
43 of (97) are irrational. They are accurately estimated again by using the

bisection method [33, 34]. Since ψ (−1) < 0 and ψ (1) < 0 by −1 < ξ∗∗ < 1, then the
roots are within interval (−1; 1). Due to

ψ (−0.5) =
71

1024
> 0,

lesser root ξ
(1)
43 is iteratively sought within interval (−1; −0.5), whereupon

− 0.8124389649602 < ξ
(1)
43 < −0.8124389649601. (99)

Greater root ξ
(2)
43 is iteratively sought within interval (−0.5; 1), whereupon

− 0.17842575816112 < ξ
(2)
43 < −0.17842575816111. (100)

So,

ξ
(1)
43 < −1

2
< ξ

(2)
43 <

4
√

2− 7

8
<

2
√

2− 3

4
. (101)

Inequality (101) means that, locally,

ψ (ξ) < 0 by ξ ∈

(
ξ
(2)
43 ;

2
√

2− 3

4

)
(102)

and entry k43 < 0 by (91), i. e. payoff matrix K5 does not contain saddle points in
its fourth row. Consequently, K5 does not contain saddle points at all. �
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6.4. Pure strategy solution non-existence in N ×N PDSD. To proceed fur-
ther, one needs to prove the following lemma.

Lemma 1. Entry

ki,i+1 = K (xi, yi+1) = x2i − y2i+1 + x2i y
2
i+1 (103)

of payoff matrix (14) as a function of i = 3, N − 2 is an increasing function.

Proof. Obviously,

yi+1 − xi = ξ +
2i − 1

2i
−
(
ξ +

2i−1 − 1

2i−1

)
=

1

2i
, (104)

so denote a =
1

2i
and take

yi+1 = xi+1 = xi + a (105)

to simplify conversion. By having

yi+2 − xi+1 = ξ +
2i+1 − 1

2i+1
−
(
ξ +

2i − 1

2i

)
=

1

2i+1
=
a

2
(106)

it can be also written that

yi+2 = xi+1 +
a

2
= xi +

3a

2
, (107)

whence

ki+1,i+2 − ki,i+1 = K (xi+1, yi+2)−K (xi, yi+1) =

= x2i+1 − y2i+2 + x2i+1y
2
i+2 −

(
x2i − y2i+1 + x2i y

2
i+1

)
=

= (xi + a)
2 −

(
xi +

3a

2

)2

+ (xi + a)
2

(
xi +

3a

2

)2

− x2i + (xi + a)
2 − x2i (xi + a)

2

=
9

4
a4 +

15

2
xia

3 +
33

4
x2i a

2 + 3x3i a−
a2

4
+ xia > 0 (108)

due to

−a
2

4
+ xia = a

(
xi −

a

4

)
> 0

by

xi >
1

4
>
a

4
=

1

2i+2
for i > 3.

As (104) — (107) are altogether correct by i = 1, N − 3, inequality (108) holds for
i = 3, N − 3, which means that entry (103) for i = 3, N − 2 is an increasing function
of i. �

In fact, Lemma 1 means that, starting from the third row and ending up by the
(N − 2)-th row of payoff matrix KN , the entries right above the main diagonal in-
crease. Due to the skew-symmetry of KN , this directly implies that

ki+1,i = K (xi+1, yi) = x2i+1 − y2i − x2i+1y
2
i (109)

is a decreasing function of i for i = 3, N − 2, i. e. the entries right under the main
diagonal decrease starting from the fourth row and ending up by the (N − 1)-th row.
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Theorem 11. An N × N PDSD (11) by (12) — (14) and (10) for N ∈ N\
{

1, 5
}

with a jitter value of

ξ ∈

(√
2− 2

2
+

1

2N−2
;

2
√

2− 3

4

)
(110)

does not have pure strategy solutions.

Proof. Once again, using (75) and (76), entry k3N < 0 by (110), and payoff matrix
KN does not contain saddle points in its first three rows. Using (83) and (84), entry
kN,N−1 < 0 by (110) and the last row of KN does not contain saddle points as well.
In the fourth row, the last column entry

k4N = K (x4, yN ) = K

(
ξ +

7

8
, 1

)
=

= 2x24 − 1 = 2 ·
(
ξ +

7

8

)2

− 1 6 0 (111)

if

ξ ∈

[
−4
√

2 + 7

8
;

4
√

2− 7

8

]
. (112)

So, k4N 6 0 by

ξ ∈

(√
2− 2

2
+

1

2N−2
;

4
√

2− 7

8

]
. (113)

Meanwhile, k43 < 0 by (91) using (101) and (102). Therefore, the fourth row contains
at least one negative entry and thus it does not contain saddle points.

In the fifth row, entry

k54 = K (x5, y4) = K

(
ξ +

15

16
, ξ +

7

8

)
=

=

(
ξ +

15

16

)2

−
(
ξ +

7

8

)2

−
(
ξ +

15

16

)2

·
(
ξ +

7

8

)2

=

= −ξ4 − 29

8
ξ3 − 1261

256
ξ2 − 2917

1024
ξ − 9169

16384
. (114)

Denote the last term in (114) by a function

ϑ (ξ) = −ξ4 − 29

8
ξ3 − 1261

256
ξ2 − 2917

1024
ξ − 9169

16384
by −∞ < ξ <∞. (115)

The first derivative of function (115) is

dϑ (ξ)

dξ
= −4ξ3 − 87

8
ξ2 − 1261

128
ξ − 2917

1024
(116)

and

−4ξ3 − 87

8
ξ2 − 1261

128
ξ − 2917

1024
= 0

only if

ξ = ξ∗∗∗ =

3
√

13824 + 3
√

21233661 ·
(

3
√

13824 + 3
√

21233661− 87
)

+ 3

96
3
√

13824 + 3
√

21233661
(117)
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where

−0.591 <

3
√

13824 + 3
√

21233661 ·
(

3
√

13824 + 3
√

21233661− 87
)

+ 3

96
3
√

13824 + 3
√

21233661
< −0.59.

The second derivative of function (115) is

d2ϑ (ξ)

dξ2
= −12ξ2 − 87

4
ξ − 1261

128
(118)

and function (118) is negative at point (117):

−1.2 <
d2ϑ (ξ)

dξ2

∣∣∣∣
ξ=ξ∗∗∗

< −1.19 < 0.

This means that (117) is the global maximum point being the single extremum of
function (115). The value of function (115) at maximum point (117) is positive:

0.0297 < ϑ (ξ∗∗∗) < 0.0298.

Meanwhile,

−0.012 < ϑ (−1) < −0.011

and

−0.56 < ϑ (0) < −0.55.

Consequently,

ϑ (ξ) > 0 by − 1 < ξ
(1)
54 < ξ < ξ

(2)
54 < 0,

where ξ
(1)
54 and ξ

(2)
54 are points of ξ at which function (115) turns into zero, ξ

(1)
54 < ξ

(2)
54 ,

i. e. they are the lesser and greater roots of equation

ϑ (ξ) = 0. (119)

By the rational root theorem, every rational root of polynomial (115) must be
among the numbers{

± 1

16384
, ± 1

8192
, ± 1

4096
, ± 1

2048
, ± 1

1024
, ± 1

512
, ± 1

256
, ± 1

128
,

± 1

64
, ± 1

32
, ± 1

16
, ±1

8
, ±1

4
, ±1

2
, ±1,

± 53

16384
, ± 53

8192
, ± 53

4096
, ± 53

2048
, ± 53

1024
, ± 53

512
, ± 53

256
, ± 53

128
,

±53

64
, ±53

32
, ±53

16
, ±53

8
, ±53

4
, ±53

2
, ±53,

± 173

16384
, ± 173

8192
, ± 173

4096
, ± 173

2048
, ± 173

1024
, ±173

512
, ±173

256
, ±173

128
,

±173

64
, ±173

32
, ±173

16
, ±173

8
, ±173

4
, ±173

2
, ±173,

± 9169

16384
, ±9169

8192
, ±9169

4096
, ±9169

2048
, ±9169

1024
, ±9169

512
, ±9169

256
, ±9169

128
,

±9169

64
, ±9169

32
, ±9169

16
, ±9169

8
, ±9169

4
, ±9169

2
, ±9169

}
. (120)
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However, none of numbers (120) satisfies equality (119). Consequently, the two roots

ξ
(1)
54 and ξ

(2)
54 of (119) are irrational. They are accurately estimated again by using the

bisection method [33, 34]. Since ϑ (−1) < 0 and ϑ (0) < 0 by −1 < ξ∗∗∗ < 0, then the
roots are within interval (−1; 0). Due to

ϑ (−0.5) =
391

16384
> 0,

lesser root ξ
(1)
54 is iteratively sought within interval (−1; −0.5), whereupon

− 0.9062423706064 < ξ
(1)
54 < −0.9062423706063. (121)

Greater root ξ
(2)
54 is iteratively sought within interval (−0.5; 0), whereupon

− 0.40495044954854 < ξ
(2)
54 < −0.40495044954853. (122)

So,

ξ
(1)
54 < −1

2
< ξ

(2)
54 <

√
2− 2

2
+

1

2N−2
<

4
√

2− 7

8
<

2
√

2− 3

4
. (123)

Inequality (123) means that, locally,

ϑ (ξ) < 0 by ξ ∈

(
ξ
(2)
54 ;

2
√

2− 3

4

)
(124)

and entry k54 < 0 by (110), i. e. payoff matrix KN does not contain saddle points in
its fifth row. Due to function (109) is decreasing, this entry is the greatest one among
the entries right under the main diagonal, starting from the fifth row and ending up
by the (N − 1)-th row. So, each of these rows contains at least one negative entry.
Therefore, every row of KN contains at least one negative entry by (110), which
implies that the N × N PDSD for N ∈ N\

{
1, 5

}
does not have a pure strategy

solution by (110). �

An important corollary from unifying Theorem 10 and Theorem 11 is that the
N × N PDSD for N ∈ N\ {1, 2, 3, 4} does not have a pure strategy solution by
(110).

7. Discussion and conclusion

The 3×3 PDSD always has a pure strategy solution, whichever the jitter is. According
with Theorem 1, a ξ-jittered middle of the duel time span is the single optimal strategy
of the duelist in a 3× 3 PDSD if the jitter is positive and it is higher than marginal
value (22). Otherwise, the very end of the PDSD becomes an optimal strategy. It is
single if the jitter drops below marginal value (22). When the jitter is exactly equal
to marginal value (22), the 3 × 3 PDSD has four optimal situations (18), (20), (23),
(24): the first two respectively include a ξ-jittered middle of the duel time span and
the very end of the PDSD, whereas the second two are non-symmetric including both
moments. Nevertheless, marginal value (22) is an irrational number, so falling on
such a jitter is far less likely in practice.

This number is also a marginal value in the 4 × 4 PDSD, but it separates half-
interval (37) of pure strategy optimality from open interval (46), within which no
pure strategy solution exists. Another marginal value of the jitter is (69), at which
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the 4× 4 PDSD has four optimal situations: symmetric situations (65), (72), includ-
ing a ξ-jittered three-quarters of the duel time span and the very end of the PDSD,
respectively, and non-symmetric situations (70), (71), including both moments (The-
orem 6). Nevertheless, marginal value (69) is an irrational number, so the case with
non-symmetric optimal situations is practically unlikely.

The 4 × 4 PDSD has three jitter intervals, within which it has a pure strategy
solution, and open interval (46), within which the duel does not have pure strategy
optimality. Within half-interval (37) the single optimal strategy of the duelist is a
ξ-jittered middle of the duel time span (Theorem 3). Then goes the open interval of
pure strategy solution non-existence (Theorem 4). The endpoints of this interval are
positive irrational numbers, where the right endpoint is marginal value (22), and the
left endpoint is the greater root of the two roots of fourth-degree-polynomial equation
(47). Then goes half-interval (64), whose left and right endpoints are marginal value
(69) and the mentioned irrational root, respectively, within which the single optimal
strategy of the duelist is a ξ-jittered three-quarters of the duel time span (Theorem 5).
If the negative jitter drops below marginal value (69), the optimal strategy of the
duelist in the 4× 4 PDSD is to shoot at the very end of the duel (Theorem 7).

In PDSDs bigger than the 4 × 4 one, a ξ-jittered middle of the duel time span is
never optimal (Theorem 2). Such duels, unlike PDSDs with four possible shooting
moments, have two jitter intervals, within which a single pure strategy solution exists,
and open interval (110), within which the N ×N PDSD does not have pure strategy
optimality (Theorem 11). The single pure strategy solution can be either a ξ-jittered
three-quarters of the duel time span or the very end of the PDSD. If the jitter is not
lower than marginal value (69), then the single optimal strategy of the duelist is a
ξ-jittered three-quarters of the duel time span (Theorem 8). Within open interval
(110), whose left endpoint depends on the size of the duel (the number of possible
shooting moments), the N×N PDSD by N ∈ N\

{
1, 4

}
does not have a pure strategy

solution. If the jitter is not higher than that left endpoint, then the optimal strategy
of the duelist in the N×N PDSD is to shoot at the very end of the duel (Theorem 9).

Another contribution to the games of timing consists in determining a series of
jitter marginal values

√
2− 1

2
,

2
√

2− 3

4
,

4
√

2− 7

8

(the last one is from the 5 × 5 PDSD by Theorem 10 being a partial case of Theo-
rem 11), across which either pure strategy solution structure changes or pure strategy
solution existence and non-existence shift. In addition, the study has ascertained
that the greater root of the two roots of fourth-degree-polynomial equation (47) is
irrational and satisfies inequality (56), and this root is another jitter marginal value
across which pure strategy solution non-existence in the 4× 4 PDSD is shifted by the
single pure strategy optimal situation (65). This root, however, does not matter for
bigger duels.

The study can be expanded into non-uniform jitter, where each of possible shooting
moments (5) can have its own jitter. Besides, the duelist’s quadratic accuracy function
can be scaled with a positive coefficient, which particularly is 1 in kernel (2).
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