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Abstract. In this paper we consider singular elliptic problems directed by the double phase

operator, including a gradient-dependent reaction term as well as Dirichlet boundary condi-
tions. Using topological degree methods for a class of non-continuous operators based on the

abstract Hammerstein equation, we prove the existence of weak solutions in the Musielak-

Orlicz-Sobolev space W 1,E
0 (O). Our assumptions are appropriate and different from those

discussed above.
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1. Introduction and main result

In the 1980s, to provide models for strongly anisotropic materials, Zhikov [22, 23]
introduced a class of functionals that involve the nonautonomous operator

F(w) = − div
(
|∇w|%−2∇w + λ(·)|∇w|τ−2∇w

)
.

Zhikov devised F(w) to illustrate this phenomenon, using integrands that adjust their
ellipticity rate based on the characteristics of the point. The function λ(·) helps to
regulate the mixture of two different materials, each characterised by power hardening
rates % and τ respectively (see Ref [23] for more details). F(w) falls into the category
of integral functionals with a non-standard growth condition, according to Marcellini’s
terminology. Recently, Baroni, Colombo and Mingione explored the regularity theory
for minimizers of F(w), obtaining precise results for τ > % and λ(·) ≥ 0 (see references
[3, 4] for detailed information).

Recently, Hästö-Ok [17] extended this study to double phase functionals with a
weight on each phase, i.e., functionals involving the following operator

w 7−→ − div
(
µ(z)|∇w|%−2∇w + λ(z)|∇w|τ−2∇w

)
.

In addition, other recent studies have also investigated the existence of non-trivial
solutions for double phase problems with a weight on the τ phase only. This type of
problem is characterised by the following system{

− div
(
|∇w|%−2∇w + λ(z)|∇w|τ−2∇w

)
= ζk(z, w), z ∈ O,

w = 0, z ∈ ∂O,
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These studies have been carried out under special conditions, namely ζ ∈ R, 1 <
% < τ < N , τ

% < 1 + 1
N , N ≥ 2, where O ⊂ RN represents a bounded domain

with a Lipschitz boundary. In addition, λ : Ō → [0,∞) is Lipschitz continuous, and
k : O × R → R satisfies the Carathéodory condition. In the case where N = 1, a
separate study by the authors in [18] investigated the existence, non-existence and
multiplicity of positive solutions for double-phase problems with a weight on each
phase. The corresponding system is given by{

− (α(t)$% (w′) + λ(t)$% (w′))
′

= ζf(w)h(t), t ∈ (0, 1),
w(0) = 0 = w(1),

such that λ > 0, 1 < % < τ < ∞, and $ε(r) := |r|ε−2r. Certain conditions are also
imposed on α, ζ, f and h.

The aim of this paper is to prove the existence of non-trivial weak solutions for the
double-phase problem with Hardy potential.

(P)


−div

(
|∇w|%−2∇w + κ(z)|∇w|τ−2∇w

)
= |w|%−2w

+κ(z)|w|τ−2w + |w|%−2w
|z|% + κ(z) |w|

τ−2w
|z|τ + ϕ(z, w,∇w) in O,

w = 0 on ∂O,

where O ⊂ RN (N ≥ 2) be a bounded open set containing the origin with smooth
boundary ∂O and 1 < % < τ < N

τ

%
< 1 +

1

N
, the weight function κ : Ō→ [0,∞) is Lipschitz continuous

such that κ(λz) 6 κ(z) for any λ ∈ (0, 1] and any z ∈ Ō (1)

and ϕ : O × R × RN → R is a Carathéodory function which satisfies the following
growth condition

(Hϕ) There exists ε ∈ L
s
s−1 (Ω), 1 < s < % and C > 0, such that

|ϕ(z, γ, ξ)| 6 C
(
ε(z) + |γ|s−1 + |ξ|%

s−1
s

)
,

for a.a. z ∈ O, for all γ ∈ R, and for all ξ ∈ RN .
Furthermore, Browder, in [5], extended the notion of topological degree to opera-

tors belonging to the class (S+) in reflexive Banach spaces. Additional insights into
these concepts, along with detailed information and examples, can be found in classic
works such as [9].

In this article, we investigate singular elliptic problems characterized by the double-
phase operator, incorporating a gradient-dependent reaction term and subject to
Dirichlet boundary conditions. Using compactness methods described in [9, 15], we
also prove the existence of weak solutions for problem (P) in Musielak-Orlicz spaces.
We reformulate it as a new problem governed by a Hammerstein equation. Specif-
ically, using the topological degree theory introduced in Section 3, we establish the
existence of weak solutions for the given problem. This result heavily relies on appro-
priate assumptions.

First we define the operator N , which operates from W1,E
0 (O) into

(
W1,E

0 (O)
)∗

,

as follows

〈Nw, ϑ〉 = −
∫
O

(
|w|%−2w + κ(z)|w|τ−2w + ϕ(z, w,∇w)

)
ϑdz, (2)
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for each ϑ ∈ W1,E
0 (O).

In sequel, let us consider the following Euler-Lagrange functional J : W1,E
0 (O)→ R,

given by

J (w) :=
1

%
‖∇w‖%% +

1

τ
‖∇w‖ττ,κ −

(1

%

∫
O

|w|%

|z|%
dz +

1

τ

∫
O

κ(z)
|w|τ

|z|τ
dz
)
,

it is well known that J is well defined and continuously Gâteaux differentiable whose

Gâteaux derivatives at point w ∈ W1,E
0 (O) is the functional J ′(w) ∈

(
W1,E

0 (O)
)∗

setting by

〈J ′(w) , v〉 = 〈Dw , ϑ〉, for all w, v ∈ W1,E
0 (O),

where the operator D acting from W1,E
0 (O) to its dual

(
W1,E

0 (O)
)∗

is defined by

〈Dw , ϑ〉 =

∫
O

(
|∇w|%−2 + κ(z)|∇w|τ−2

)
∇w∇ϑdz

−
∫
O

( |w|%−2w

|z|%
+ κ(z)

|w|τ−2w

|z|τ
)
ϑdz (3)

for all w, ϑ ∈ W1,E
0 (O).

Following that, we proceed to define weak solutions for problem (P)

Definition 1.1. A measurable function w is called to be a weak solution of (P), if

w ∈ W1,E
0 (O) such that

〈Dw, ϑ〉 = −〈Nw, ϑ〉, for all ϑ ∈ W1,E
0 (O). (4)

We are now ready to unveil our primary outcome.

Theorem 1.1. Let ϕ satisfy (Hϕ). Then, the problem (P) has a weak solution w in

W1,E
0 (O).

The following sections of this paper are structured as follows. In Section 2, we
introduce the notation and provide essential results related to the Musielak-Orlicz-

Sobolev space W 1,E
0 (O) to enhance the understanding of the paper. Section 3 is

devoted to establishing the variational framework associated with the problem (P),
along with the presentation of key lemmas crucial for the proofs of Theorems 1.1.
The proofs of the theorems 1.1 are presented in Section 4.

2. Preliminaries

In this section, we summarize the relevant material on the Musielak-Orlicz space

LE(O) and W1,E
0 (O). For more detail, please see references [8, 20].

Let us denote by R+ = [0,+∞), the function E : O× R+ → R+ defined by

E(z, t) = t% + κ(z)tτ for each z ∈ Ω and t ∈ R+,

with 1 < % < τ and 0 ≤ κ(·) ∈ L1(O), is a generalized N -function, and

E(z, 2t) 6 2τE(z, t) for a.e. z ∈ Ω and t ∈ R+,

which is called condition (42). The Musielak-Orlicz space LE(O) is defined by

LE(O) = {w : O→ R measurable : ρE(w) < +∞},
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and it can be equipped with the norm

‖w‖E = inf
{
λ > 0 : ρE

(w
λ

)
6 1
}
,

where ρE(w) :=

∫
O

E(z, |w|)dz =

∫
O

|w|%+κ(z)|w|τdz is called E-modular. The space

LE(O) is a separable, uniformly convex Banach space. We denote by ‖ · ‖% the norm
in L%(O) and by

Lτ (O, κ) :=
{
w : O→ R measurable : ‖w‖τ,κ :=

(∫
O

κ(z)|w|τdz
) 1
τ

< +∞
}
.

It is straightforward to verify that

Lτ (O) ↪→ LE ↪→ L%(O) ∩ Lτ (O, κ)

are continuous. The relationship between the norm and the E-modular is as follows

Proposition 2.1. The E-modular has the following properties:

(i) for w 6= 0, ‖w‖E = κ⇔ ρE

(w
κ

)
= 1;

(ii) ‖w‖E < 1 (resp. = 1;> 1)⇔ ρE(w) < 1 (resp. = 1;> 1) ;
(iii) ‖w‖E < 1⇒ ‖w‖τE 6 ρE(w) 6 ‖w‖%E ; ‖w‖E > 1⇒ ‖w‖%E 6 ρE(w) 6 ‖w‖τE ;
(iv) ‖w‖E → 0⇔ ρE(w)→ 0; ‖w‖E → +∞⇔ ρE(w)→ +∞.

The space W1,E(O) is defined by

W1,E(O) := {w ∈ LE(O) : |∇w| ∈ LE(O)},
equipped with the norm

‖w‖1,E := ‖w‖E + ‖∇w‖E . (5)

We represent W1,E
0 (O) as the closure of C∞0 (O) in W1,E , equipped with the norm

‖w‖ := ‖∇w‖E ,
which is equivalent to the norm defined in (5), as indicated in [8].

Proposition 2.2. [8]

(i) W1,E(O) and W1,E
0 (O) are separable reflexive Banach space.

(ii) If % 6= N , then W1,E
0 (O) ↪→ Ls(O) for all s ∈ [1, %∗].

If % = N , then W1,E
0 (O) ↪→ Ls(O) for all s ∈ [1, +∞].

(iii) If % ≤ N , then W 1,E
0 (O) ↪→↪→ Ls(O) for all s ∈ [1, %∗).

If % > N , then W1,E
0 (O) ↪→↪→ L∞(O).

(iv) If condition (1) holds, then there exists a constant C > 0 such that

‖w‖E 6 C‖∇w‖E , for all w ∈W 1,E
0 (O).

Making use of this additional notation, the following result gives Hardy inequalities

for the space W1,E
0 (O). The proof is inspired by [12, Lemma 2.1].

Lemma 2.3. Assume that (1) holds true. Then, for any w ∈ W1,E
0 (O) we have

C%‖w‖%C% := C%

∫
O

|w|%

|z|%
dz 6 ‖∇w‖%%; and Cτ‖w‖τCτ,κ := Cτ

∫
O

κ(z)
|w|τ

|z|τ
dz 6 ‖∇w‖ττ,κ,

where Cm :=
(

m
N−m

)−m
when m = % and m = τ .
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Now, let’s delve into the theory of topological degree, which constitutes a pivotal
tool for our results. To begin, we will introduce some classes of mappings. Consider
a real separable reflexive Banach space Γ with its dual space denoted as Γ∗. This
setup includes a continuous dual pairing denoted by 〈·, ·〉, with Γ∗ appearing before
Γ in the pairing order. The symbol ⇀ signifies weak convergence.

Definition 2.1. Let E be another real Banach space. A operator B : O ⊂ Γ→ E is
said to be
(1) bounded, if it takes any bounded set into a bounded set.
(2) demicontinuous, if for any sequence (wn) ⊂ O, wn → w implies Bwn ⇀ Bw.
(3) compact, if it is continuous and the image of any bounded set is relatively com-

pact.

Definition 2.2. A mapping B : O ⊂ Γ→ Γ∗ is said to be
(1) of type (S+), if for any sequence (wn) ⊂ O with wn ⇀ w and

lim sup
n→∞

〈Bwn, wn − w〉 6 0, we have wn → w.

(2) quasimonotone, if for any sequence (wn) ⊂ O with wn ⇀ w, we have
lim sup
n→∞

〈Bwn, wn − w〉 ≥ 0.

Definition 2.3. Let T : O1 ⊂ Γ → Γ∗ be a bounded operator such that O ⊂ O1.
For any operator B : O ⊂ Γ→ Γ, we say that
(1) B satisfies condition (S+)T , if for any sequence (wn) ⊂ O with wn ⇀ w,

yn := T wn ⇀ y and lim sup
n→∞

〈Bwn, yn − y〉 ≤ 0, we have wn → w.

(2) B has the property (QM)T , if for any sequence (wn) ⊂ O with wn ⇀ w,
yn := T wn ⇀ y, we have lim sup

n→∞
〈Bwn, y − yn〉 ≥ 0.

In the following, consider O as the set of all bounded open sets in Γ. For any
O ⊂ Γ, we investigate the subsequent classes of operators

B1(O) := {B : O→ Γ∗ | B is bounded, demicontinuous and of type(S+)},
BT ,B(O) := {B : O→ Γ | B is bounded, demicontinuousand of type(S+)T },
BT (O) := {B : O→ Γ | B is demicontinuous and of type(S+)T },
BB(Γ) := {B ∈ BT ,B(O) | O ∈ O, T ∈ B1(O)}.

Lemma 2.4. [2] Let T ∈ B1(O) be continuous and S : DS ⊂ Γ∗ → Γ be demicontin-
uous such that T (O) ⊂ DS , where O is a bounded open set in a real reflexive Banach
space Γ. Then the following statements are true :
(1) If S is quasimonotone, then I + S ◦ T ∈ BT (O), where I denotes the identity

operator.
(2) If S is of class (S+), then S ◦ T ∈ BT (O).

Definition 2.4. Suppose that O is bounded open subset of a real reflexive Banach
space Γ, T ∈ B1(O) be continuous and let B, S ∈ BT (O). The affine homotopy H :
[0, 1]×O→ Γ defined by

H(t, w) := (1− t)Bu+ tSw, for (t, w) ∈ [0, 1]×O

is called an admissible affine homotopy with the common continuous essential inner
map T .
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Remark 2.1. [2] The affine homotopy described above meets the condition (S+)T .

Following that, we provide the Berkovits topological degree applicable to the class
BB(Γ), for further details, refer to [2].

Theorem 2.5. Let

M =
{

(B,O, h) | O ∈ O, T ∈ B1(O), B ∈ BT ,B(O), h 6∈ B(∂O)
}
.

Then, there exists a unique degree function δ : M −→ Z that satisfies the following
properties:
(1) For all h ∈ O, we obtain δ(I,O, h) = 1. (Normalization)
(2) If H : [0, 1] × O → Γ is a bounded admissible affine homotopy with a common

continuous essential inner map and h: [0, 1]→ Γ is a continuous path in Γ such
that h(t) 6∈ H(t, ∂O) for every t ∈ [0, 1], then the value of δ(H(t, ·),O, h(t)) is
constant for every t ∈ [0, 1]. (Homotopy invariance)

(3) If δ(B,O, h) 6= 0, then the equation Bw = h has a solution in O. (Existence)

3. Proof of Theorem 1.1

The purpose of this section is the demonstration of theorem1.1. Initially, we establish
the following proposition

Proposition 3.1. The nonlinear operator D :W1,E
0 (O)→

(
W1,E

0 (O)
)∗

is

(i) continuous, bounded and strictly monotone operators,
(ii) of type (S+).

Proof. (i) The continuity of D is obvious because D = J ′ and J ∈ C1. We will
now show that D is bounded. To make the proof straightforward, let us define φ :=
‖w‖ and γ := ‖ϑ‖. Applying Hölder’s inequality, Young’s inequality and Hardy’s
inequality, we obtain :∣∣∣〈Dw

φ
,
ϑ

γ

〉∣∣∣
=

∫
Ω

(
|∇w|%−2 + κ(z)|∇w|τ−2

)
∇w∇ϑdz −

∫
O

( |w|%−2w

|z|%
+ κ(z)

|w|τ−2w

|z|τ
)
ϑdz

6
(∫

O

∣∣∣∇w
φ

∣∣∣%dz) %−1
%
(∫

O

∣∣∣∇ϑ
γ

∣∣∣%dz) 1
%

+
(∫

O

κ(z)
∣∣∣∇w
φ

∣∣∣τdz) τ−1
τ
(∫

O

κ(z)
∣∣∣∇ϑ
γ

∣∣∣τdz) 1
τ

+
(∫

O

∣∣∣ w
φz

∣∣∣%dz) %−1
%
(∫

O

∣∣∣ ϑ
γ z

∣∣∣%dz) 1
%

+
(∫

O

κ(z)
∣∣∣ w
φz

∣∣∣τdz) τ−1
τ
(∫

O

κ(z)
∣∣∣ ϑ
γ z

∣∣∣τdz) 1
τ

6
%− 1

%

∫
O

∣∣∣∇w
φ

∣∣∣%dz +
1

%

∫
O

∣∣∣∇ϑ
γ

∣∣∣%dz +
τ − 1

τ

∫
O

κ(z)
∣∣∣∇w
φ

∣∣∣τdz +
1

τ

∫
O

κ(z)
∣∣∣∇ϑ
γ

∣∣∣τdz
+
%− 1

%

∫
O

∣∣∣ w
φz

∣∣∣%dz +
1

%

∫
O

∣∣∣ ϑ
γ z

∣∣∣%dz +
τ − 1

τ

∫
O

κ(z)
∣∣∣ w
φz

∣∣∣τdz +
1

τ

∫
O

κ(z)
∣∣∣ ϑ
γ z

∣∣∣τdz
6
%− 1

%

∫
O

∣∣∣∇w
φ

∣∣∣%dz +
1

%

∫
O

∣∣∣∇ϑ
γ

∣∣∣%dz +
τ − 1

τ

∫
O

κ(z)
∣∣∣∇w
φ

∣∣∣τdz +
1

τ

∫
O

κ(z)
∣∣∣∇ϑ
γ

∣∣∣τdz
+ C1

∫
O

∣∣∣∇w
φ

∣∣∣%dz + C2

∫
O

∣∣∣∇ϑ
γ

∣∣∣%dz + C3

∫
O

κ(z)
∣∣∣∇w
φ

∣∣∣τdz + C3

∫
O

κ(z)
∣∣∣ 1
τ ϑ

γ

∣∣∣τdz
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6 C ′1
(∫

O

(∣∣∣∇w
φ

∣∣∣% + κ(z)
∣∣∣∇w
φ

∣∣∣τ)dz)+ C ′2

(∫
O

(∣∣∣∇ϑ
γ

∣∣∣% + κ(z)
∣∣∣∇ϑ
γ

∣∣∣τ)dz)
6 Cmax

Hence, we have that

‖Dw‖(
W1,E

0 (O)
)∗ = sup

‖ϑ‖≤1

∣∣∣〈Dw, ϑ〉∣∣∣ ≤ Cmax‖w‖,
leading to the conclusion that D is bounded.
The monotonicity of D can be readily inferred from the following inequalities (refer
to [13, 16])(|ξ|%−2ξ − |η|%−2η)(ξ − η) · (|ξ|% + |η|%)

2−%
% ≥ (%− 1)|ξ − η|% if 1 < % < 2,

(|ξ|%−2ξ − |η|%−2η)(ξ − η) ≥
(

1
2

)%
|ξ − η|% if % ≥ 2.

(6)

(ii) Assume that
(
wn
)
⊂ W1,E

0 (O), wn ⇀ w and

lim sup
n→+∞

〈Dwn −Dw,wn − w〉 ≤ 0.

Then
lim inf
n→+∞

〈Dwn −Dw,wn − w〉 ≥ 0,

since D is monotone. Thus

lim
n→+∞

〈Dwn −Dw,wn − w〉 = 0,

that is,

lim
n→+∞

(∫
O

(
|∇wn|%−2∇wn+κ(z)|∇wn|τ−2∇wn−|∇w|%−2∇w−κ(z)|∇w|τ−2∇w

)
×
(
∇wn −∇w

)
dz −

∫
O

( |wn|%−2wn
|z|%

+ κ(z)
|wn|τ−2wn
|z|τ

− |w|
%−2w

|z|%
− κ(z)

|w|τ−2w

|z|τ
)

×
(
wn − w

)
dz
)

= 0. (7)

Hence, (wn)n is bounded in W 1,E
0 (O). By Propositions 2.1-2.2, Lemma 2.3 [7, Theo-

rem 4.9] and the reflexivity of W 1,E
0 (O), there exists a subsequence, still denoted by

(wn)n, and w ∈W 1,E
0 (O) such that

wn ⇀ w in W 1,E
0 (O), ∇wn ⇀ ∇w in [LE(O)]N ,

wn ⇀ w in L%(O, |z|−%), wn ⇀ w in Lτ
(
O \ A, κ(z)|z|−τ

)
,

‖wn − w‖%C% + ‖wn − w‖τCτ,κ → `,

wn → w in Lt(O), wn(z)→ w(z) a.e. in O, |wn(z)| 6 g(z) a.e. in O,

(8)

as n→∞, with t ∈ [1, %∗), g ∈ Lτ (O) and A is the nodal set of weight a given by

A := {z ∈ O : κ(z) = 0}.
In fact, given that κ is a continuous Lipschitz function as indicated by (1), it follows
that O \ A is an open subset of RN . Moreover, by considering Proposition 2.2 and
[7, Theorem 4.9], we ensure that g ∈ Lτ (O) since τ < %∗ according to (1). Now, we
claim that

∇wn(z)→ ∇w(z) a.e. in O, as n→∞. (9)
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Let ψ ∈ C∞(RN ) be a cut-off function with ψ(r) ≡ 1 if r ∈ B(0, 1/2),
ψ(r) ≡ 0 if r ∈ B(0, 1),
0 ≤ ψ ≤ 1 otherwise.

We then introduce the function φR(z) = 1 − ψ(z/R) for all R > 0, ensuring that
φR ∈ C∞(RN ) with  φ(r) ≡ 1 if r ∈ RN \B(0, R),

φ(r) ≡ 0 if r ∈ B(0, R/2),
0 ≤ φ ≤ 1 otherwise.

The sequence (φRwn)n remains bounded in W 1,E
0 (O), as established by Proposition

2.1. We can easily deduce, for all n ∈ N, that

〈Dwn, φR(wn − w)〉 =

∫
O

φR(|∇wn|%−2∇wn + κ(z)|∇wn|τ−2∇wn)(∇wn −∇w)dz

+

∫
O

(|∇wn|%−2∇wn + κ(z)|∇wn|τ−2∇wn)∇φR(wn − w)dz

−
∫
O

φR

( |wn|%−2wn
|z|%

+ κ(z)
|wn|τ−2wn
|z|τ

)
(wn − w)dz. (10)

Certainly, all integrals in (10) vanish when O ⊂ B(0, R/2), given that φR ≡ 0 in
B(0, R/2). Therefore, we focus on selecting R > 0 adequately small such that[

RN\B(0, R/2)
]
∩O 6= ∅. (11)

By Hölder inequality, (8), the facts that φR ∈ C∞(RN ), a is continuous in O and

(wn)n is bounded in W 1,E
0 (O), we get∫

O

(|∇wn|%−2∇wn + κ(z)|∇wn|τ−2∇wn)∇φR(wn − w)dz

6 C(‖∇wn‖%−1
% ‖wn − w‖% + ‖∇wn‖τ−1

τ,κ ‖wn − w‖τ,κ)

6 C(‖wn − w‖% + ‖wn − w‖τ )→ 0, (12)

as n → ∞, for suitable C, C. Furthermore, by (8) and [1, Proposition A.8], consid-
ering that κ > 0 in O \A, we have

|wn|%−2wn ⇀ |w|%−2w in L%(O, |z|−%), |wn|τ−2wn ⇀ |w|τ−2w in Lτ
′
(O\A, κ(z)|z|−τ )

so that

lim
n→∞

∫
O

φR
|wn|%−2wn
|z|%

wdz =

∫
O

φR
|w|%

|z|%
dz, (13)

lim
n→∞

∫
O

φRκ(z)
|wn|τ−2wn
|z|τ

wdz = lim
n→∞

∫
O\A

φRκ(z)
|wn|τ−2wn
|z|τ

wdz

=

∫
O\A

φRκ(z)
|w|τ

|z|τ
dz =

∫
O

φRκ(z)
|w|τ

|z|τ
dz. (14)

While, by (8) it follows that

φR(z)
|wn(z)|%

|z|%
6
(2

%

)%
|wn(z)|% 6

(2

%

)%
g%(z) a.e in O\B(0, R/2).
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Therefore, given that φR ≡ 0 in B(0, R/2), the Dominated Convergence Theorem
yields

lim
n→∞

∫
O

φR
|wn|%

|z|%
dz = lim

n→∞

∫
O\B(0,R/2)

φR
|wn|%

|z|%
dz

=

∫
O\B(0,R/2)

φR
|w|%

|z|%
dz =

∫
O

φR
|w|%

|z|%
dz. (15)

Likewise, employing (1) as well, we obtain, for a suitable constant K > 0

φR(z)κ(z)
|wn(z)|τ

|z|τ
6 K

(2

τ

)τ
gτ (z) a.e in O \B(0, R/2),

which yields joint with the dominated convergence theorem

lim
n→∞

∫
O

φRκ(z)
|wn|τ

|z|τ
dz =

∫
O

φRκ(z)
|w|τ

|z|τ
dz. (16)

Thus, by (7),(10), (12)-(16), we obtain

lim
n→∞

∫
O

φR
(
|∇wn|%−2∇wn + κ(z)|∇wn|τ−2∇wn

)
(∇wn −∇w)dz = 0.

Applying Hölder’s inequality and considering φR 6 1, we observe that the functional

G : h ∈ [LE(O)]N 7→
∫
O

φR
(
|∇w|%−2∇w + κ(z)|∇w|τ−2∇w

)
hdz

is linear and bounded. Hence, by (8) we get

lim
n→∞

∫
O

φR
(
|∇w|%−2∇w + κ(z)|∇w|τ−2∇w

)
(∇wn −∇w)dz = 0.

Thus, defining OR :=
{
z ∈ O : |z| > R

}
for any R > 0, we obtain

lim
n→∞

∫
OR

[
|∇wn|%−2∇wn − |∇w|%−2∇w + κ(z)(|∇wn|τ−2∇wn − |∇w|τ−2∇w)

]
× (∇wn −∇w)dz

6 lim
n→∞

∫
O

φR
[
|∇wn|%−2∇wn − |∇w|%−2∇w + κ(z)(|∇wn|τ−2∇wn − |∇w|τ−2∇w)

]
× (∇wn −∇w)dz = 0. (17)

Given that φR ≡ 1 in RN\B(0, R). We can deduce, for % ≥ 2, utilizing (6), that∫
OR

|∇wn −∇w|%dz ≤M%

∫
OR

(|∇wn|%−2∇wn − |∇w|%−2∇w)(∇wn −∇w)dz, (18)

with M% > 0 a suitable constant.
On the other hand, for 1 < % < 2, using (6) and the Hölder inequality, we derive
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∫
OR

|∇wn −∇w|%dz 6M%

∫
OR

[
(|∇wn|%−2∇wn − |∇w|%−2∇w)(∇wn −∇w)

]%/2
× (|∇wn|% + |∇w|%)(2−%)/2dz

6M%

[ ∫
OR

(|∇wn|%−2∇wn − |∇w|%−2∇w)(∇wn −∇w)dz
]%/2

× (‖∇wn‖%% + ‖∇w‖%%)(2−%)/2

6M%

[ ∫
OR

(|∇wn|%−2∇wn − |∇w|%−2∇w)(∇wn −∇w)dz
]%/2

,

where the last inequality follows by the boundedness of (wn)n in W 1,E
0 (O) and Propo-

sition 2.1 with a suitable new M% > 0. Also, by convexity and since κ(z) ≥ 0 a.e. in
O by (1), we have

κ(z)(|∇wn|τ−2∇wn − |∇w|τ−2∇w)(∇wn −∇w) ≥ 0 a.e. in O. (19)

Thus, combining (17), (18)-(19) we prove that ∇wn → ∇w in
[
L%(OR)

]N
as n→∞,

whenever R > 0 satisfies (11). However, when O ⊂ B(0, R/2) we have OR = ∅.
Thus, for any R > 0 the sequence ∇wn → ∇w in

[
L%(OR)

]N
as n → ∞, and by

diagonalization we prove claim (9).

Since the sequence
(
|∇wn|%−2∇wn

)
n

is bounded in L%
′
(O), by (9) we get

lim
n→∞

∫
O

|∇wn|%−2∇wn∇wdz = ‖∇w‖%%. (20)

On the other hand, as
(
|∇wn|τ−2∇wn

)
n

is bounded in Lτ
′
(O \ A, κ(z)), in light of

(9) and [1, Proposition A.8], we have

lim
n→∞

∫
O

κ(z)|∇wn|τ−2∇wn∇wdz = lim
n→∞

∫
O\A

κ(z)|∇wn|τ−2∇wn∇wdz

= ‖∇w‖ττ,κ. (21)

Similarly, by reasoning as in (13), we can establish

lim
n→∞

∫
O

( |wn|%−2wn
|z|%

w + κ(z)
|wn|τ−2wn
|z|τ

w
)
dz = ‖w‖%C% + ‖w‖τCτ,κ . (22)

Furthermore, using (8), (9) and the Brézis-Lieb Lemma in [6, Theorem 1], we obtain
‖∇wn‖%% − ‖∇wn −∇w‖%% = ‖∇w‖%% + o(1),

‖∇wn‖ττ,κ − ‖∇wn −∇w‖ττ,κ = ‖∇w‖ττ,κ + o(1),

‖wn‖%C% − ‖wn − w‖
%
C%

= ‖w‖%C% + o(1),

‖wn‖τCτ,κ − ‖wn − w‖
τ
Cτ,κ

= ‖w‖τCτ,κ + o(1),

(23)

as n→∞. Thus, by (7), (20)-(22), we get

o(1) = 〈Dwn, wn − w〉 =

∫
O

(
|∇wn|%−2∇wn + κ(z)|∇wn|τ−2∇wn

)
(∇wn −∇w)dz

−
∫
O

( |wn|%−2wn
|z|%

+ κ(z)
|wn|τ−2wn
|z|τ

)
(wn − w)dz
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= ‖∇wn‖%% − ‖∇w‖%% + ‖∇wn‖%τ,κ − ‖∇w‖%τ,κ

−
(
‖wn‖%C% − ‖w‖

%
C%

+ ‖wn‖τCτ,κ − ‖w‖
τ
Cτ,κ

)
+ o(1)

as n→∞. Hence, by (23) it follows that

‖∇wn −∇w‖%% + ‖∇wn −∇w‖ττ,κ =
(
‖wn − w‖%C% + ‖wn − w‖τCτ,κ

)
+ o(1)

= `+ o(1) (24)

as n → ∞. Now, assume for contradiction that ` > 0. Then, from Lemma 2.3 and
(23), we have

lim
n→∞

‖∇wn−∇w‖%%+ lim
n→∞

‖∇wn−∇w‖ττ,κ 6 lim
n→∞

‖wn−w‖%C% + lim
n→∞

‖wn−w‖τCτ,κ

< min{C%, Cτ}
(

lim
n→∞

‖wn − w‖%C% + lim
n→∞

‖wn − w‖τCτ,κ
)

6 lim
n→∞

‖∇wn −∇w‖%% + lim
n→∞

‖∇wn −∇w‖ττ,κ

which is impossible. Therefore ` = 0, so that by (24) we have ∇wn → ∇w in[
L%(O) ∩ Lτ (O, κ)

]N
as n → ∞, implying that wn → w in W 1,E

0 (O) thanks to (1)
and Proposition 2.1. �

Lemma 3.2. Under the condition (Hϕ), the operator N : W1,E
0 (O) →

(
W1,E

0 (O)
)∗

given in (2) is compact.

Proof. We decompose the proof into three distinct steps.

First step: Let’s introduce an operator F : W1,E
0 (O)→ Ls

′
(O) defined as

Fw := −|w|%−2w + κ(z)|w|τ−2w for w ∈ W1,E
0 (O) and z ∈ O.

It is evident that F is continuous. We will now show that F is also bounded.
Let w ∈ W1,E

0 (O). Combine (1), Hölder’s inequality and Proposition 2.2 to get

‖Fw‖s
′

s′ 6 2s
′−1

∫
O

(
|w|(%−1)s′ + |κs

′
||w|(τ−1)s′

)
dz

6 2s
′−1|O|

%′−s′
%′
(∫

O

|w|%dz
) s′
%′

+ 2s
′−1|O|

τ′−s′
τ′ ‖κs

′
(∫

O

|w|τdz
) s′
τ′

6 2s
′−1|O|

%′−s′
%′ ‖w‖(%−1)s′

% + 2s
′−1|O|

τ′−s′
τ′ ‖κs

′
‖∞‖w‖(τ−1)s′

τ

6 C1‖w‖(%−1)s′ + C2‖w‖(τ−1)s′ .

This implies that F is bounded on W1,E
0 (O).

Second step: Let φ :W1,E
0 (O)→ L

s
s−1 (O) be an operator defined as

Φw = −ϕ(z, w,∇w), for any w ∈ W1,E
0 (O).

We proceed to demonstrate that Φ is both bounded and continuous.

To establish boundedness, consider any w ∈ W1,E
0 (O). By property (Hϕ), we have

‖Φw‖s
′

s′ =

∫
O

|ϕ(z, w(z),∇w(z))|s
′
dz 6 C

(
‖ε‖s

′

s′ + ‖w‖ss + ‖∇w‖%%
)
, (25)
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where s′ = s
s−1 . The continuous embedding W1,E

0 (O) ↪→ Ls(O) (1 < s < % <

%∗), W1,E
0 (O) ⊂W 1,%

0 (O) and (25) imply the estimate

|Φu|s
′

s′ 6 C
(
|ε|s

′

s′ + ‖w‖s + ‖u‖%
)
. (26)

This shows that Φ is bounded on W1,E
0 (O).

To establish continuity, assume wn → w in W1,E
0 (O). Then, wn → w in L%(O) and

∇wn → ∇w in
(
L%(O)

)N
. Consequently, there exists a subsequence {wnk}∞k=1 of

{wn}∞n=1 and measurable functions g ∈ L%(O) and h ∈
(
L%(O)

)N
such that wnk(z)→ w(z) and ∇wnk(z)→ ∇w(z), a.e. z ∈ O, as k → +∞;

|wnk(z)| 6 g(z) and |∇wnk(z)| 6 |h(z)|, a.e. z ∈ O and all k ∈ N.
(27)

Given that ϕ is Carathéodory function, we obtain

ϕ(z, wnk(z),∇wnk(z))→ ϕ(z, w,∇w(z)), a.e. z ∈ O, as k → +∞. (28)

Moreover, by (27), we get

|ϕ(z, wnk(z),∇wnk(z))| 6 C
(
ε(z) + |w(z)|s−1 + |∇w(z)|%

s−1
s

)
, (29)

for all k ∈ N and a.e. x ∈ Ω. Noting that ε+ |w|s−1 + |∇w|
%−1
s ∈ Ls′(O). Hence, by

(28), (29), and the Dominated Convergence Theorem, we obtain that∫
O

∣∣ϕ(z, wnk(z),∇wnk(z))− ϕ(z, w,∇w(z))
∣∣s′dz → 0, as k → +∞;

that is
‖Φunk − Φu‖s′ → 0, as k → +∞.

Thus, the entire sequence Φwn converges to Φu in Ls
′
(O).

Third step: We now demonstrate that the operator N : W1,E
0 (O) →

(
W1,E

0 (O)
)∗

is compact. Recall that the embedding i : W1,E
0 (O)→ Ls(O) is compact. Therefore,

we have that the adjoint operator i∗ : Ls
′
(O)→

(
W1,E

0 (O)
)∗

is also compact. Hence,
the compositions i∗ ◦ F and i∗ ◦ Φ are compact. This implies N = i∗ ◦ F + i∗ ◦ Φ is
compact. The proof is complete. �

Now, let’s establish the proof of Theorem 1.1.
Depending on the properties of the operator D as described in Proposition 3.1, and
applying the Minty-Browder’s Theorem on monotone operators (as in [21, Theorem
26 A]), we can conclude that the inverse operator T := D−1, which maps from(
W1,E

0 (O)
)∗

to W1,E
0 (O), is continuous, of type (S+), and bounded. Additionally, by

Lemma 3.2, the operator N is is bounded, continuous and quasimonotone.
Therefore, the equation (4) is equivalent to the abstract Hammerstein equation:

w = T ϑ and ϑ+N ◦ T ϑ = 0. (30)

We will use the theory of degrees introduced in section 3 to solve the above equation
(30). To do this, we first establish the following lemma

Lemma 3.3. The set

G :=
{
ϑ ∈

(
W1,E

0 (O)
)∗

such that ϑ+ tN ◦ T ϑ = 0 for some t ∈ [0, 1]
}

is bounded.
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Proof. Let ϑ ∈ G and take w = T ϑ, then ‖T ϑ‖ = ‖∇w‖E . We divide into two cases:
(i) If ‖∇w‖E 6 1, then ‖T ϑ‖ is bounded.
(ii) If ‖∇w‖E > 1, by Proposition 2.1, Proposition 2.2, Lemma 2.3, the condition
(Hϕ), the Hölder inequality, and the Young inequality, then we get

‖T ϑ‖% = ‖w‖% =

∫
O

(
|∇w|% + κ(z)|∇w|τ

)
dz

6
∫
O

(
|w|% + κ(z)|w|τ

)
dz +

∫
O

( |w|%
|z|%

+ κ(z)
|w|τ

|z|τ
)
dz +

∫
O

∣∣ϕ(z, w,∇w) · w
∣∣dz

6 ‖w‖τ + ‖w‖βE + C3

∫
Ω

(
|ε(z)w(z)|+ |w(z)|s + |∇w(z)|%

s−1
s |w|

)
dz

6 ‖w‖τ + C4‖w‖β + C3

(
‖ε‖s′‖w‖s + ‖w‖ss +

σ

s′
‖∇w‖%% +

1

sσ
s
s′
‖w‖ss

)
,

with β = % if ‖w‖E < 1 and β = τ if ‖w‖E > 1.

Thus, using the continuous embedding W1,E
0 (O) ↪→ Ls(O), we deduce that

‖T ϑ‖% 6 ‖w‖τ + C4‖w‖β + C3

(
‖ε‖s′‖w‖+ ‖w‖s +

1

sσ
s
s′
‖w‖s

)
.

At this time, we can choose σ > 0 small enough, such that C3σ
s′ < 1

2 . Therefore, we
obtain that

‖T ϑ‖% 6 Cmax
(
‖T ϑ‖τ + C4‖w‖β + ‖ε‖s′‖T ϑ‖+ ‖T ϑ‖s +

1

sσ
s
s′
‖T ϑ‖s

)
.

Note that 1 < s < %, and so ‖T ϑ‖ is bounded. This proves that
{
T ϑ | ϑ ∈ G

}
is

bounded.
As N is bounded, and based on (30), we conclude that the set G is bounded in(
W1,E

0 (O)
)∗

. �

Thanks to Lemma 3.3, we can determine a positive constant R such that

‖ϑ‖(
W1,E

0 (O)
)∗ < R, for any ϑ ∈ G.

As a result

ϑ+ tN ◦ T ϑ 6= 0 for every ϑ ∈ ∂BR(0) and each t ∈ [0, 1].

By applying Lemma 2.4, we establish that

I +N ◦ T ∈ BT (BR(0)) and I = D ◦ T ∈ BT (BR(0)).

Since the operators I, N and T are bounded, then I +N ◦ T is also bounded. This
says that

I +N ◦ T ∈ BT ,B(BR(0)) and I ∈ BT ,B(BR(0)).

Now, we can introduce the affine homotopy H : [0, 1]×BR(0)→W∗ setting by

H(t, ϑ) := (1− t)Iϑ+ t
(
I +N ◦ T

)
ϑ for (t, ϑ) ∈ [0, 1]×BR(0).

By means the properties of the degree, as established in Theorem 2.5, we conclude
that

δ(I +N ◦ T , BR(0), 0) = δ(I, BR(0), 0) = 1.

Hence, there exists a function ϑ ∈ BR(0) such that

ϑ+N ◦ T ϑ = 0.
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Implying that w = T ϑ is a weak solution of (P). This concludes the proof.
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