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A Simple Approach to the Study of Global Asymptotic
Stability of Some Modified Continuous-Time Epidemiological
Models for Distributed Denial of Service attacks
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Abstract. In this work, we first revisit two recognized continuous-time epidemiological mod-

els for distributed denial of service (DDoS) attacks on targeted sources in computer networks,
which are described by systems of nonlinear ordinary differential equations (ODEs) with com-

plex dynamics. These models were formulated and analyzed in existing literature but the

global asymptotic stability (GAS) of disease-free equilibrium (DFE) points has not been es-
tablished.

Our main objective is to perform a rigorous mathematical analysis for the complete GAS

of the two mathematical models under consideration. We use a simple approach, which is
based on utilizing the cascade structure of the ODE systems, to study the GAS problem.

More clearly, by taking advantage of the cascade structure, the GAS analysis of the original

nonlinear systems is reduced to the GAS analysis of simple linear systems. After that, the
GAS analysis of the reduced linear systems is completed in a straightforward manner. As

an important consequence, the GAS is confirmed not only for the DEE points but also for

possible disease-endemic equilibrium (DEE) points.
The theoretical findings improve the results presented in the benchmark works. Further-

more, the present approach can be applied to a broad range of mathematical models arising
in real-world applications, with a specific focus on DDoS attacks. To show advantages of

the proposed approach, we consider some other mathematical models of DDoS attacks con-

structed previously. It is proved that the used approach is not only simple but also useful in
investigating the GAS of the mathematical models being considered.

Finally, the theoretical insights are illustrated by a set of illustrative numerical experiments,

in which the validity of the theoretical findings is supported.
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1. Introduction

It is well-known that cyber attacks have always been a serious and permanent threat
to the safety of computer systems, services, equipment and data both of organizations
and individuals. For this reason, many efforts have been made to find solutions and
strategies against cyber attacks. Inspired by classical and standard epidemiological
models (see, for instance, [2, 5, 12, 13, 14, 25]), a great number of mathematical models
for studying the propagation of malware, computer viruses, worms, and distributed
denial of service (DDoS) attacks, etc. have been constructed and analyzed [6, 7, 8, 9,
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10, 21, 26, 27, 28, 29, 30, 31, 32, 35, 36, 40, 41, 42, 43, 44, 45, 46]. The study of these
models is very useful in discovering characteristics and mechanisms of cyber attacks.
Consequently, strategies and measures to prevent cyber attacks can be suggested.

In this work, we revisit two modified epidemiological models for DDoS attacks on
targeted sources in computer networks, which were proposed and analyzed in [10]
and [31]. These models are represented by systems of nonlinear ordinary differential
equations (ODEs), which describe the interaction between targeted nodes and attack-
ing nodes. In each epidemiological model, the entire population of nodes is divided
into two sub-populations, namely attacking and targeted populations. However, the
number of compartments in each sub-population in each model is different. On the
other hand, although they are built on basic principles of mathematical epidemiology,
technical assumptions corresponding to each model are also different. For the sake of
convenience, we will briefly recall the mathematical formulations under consideration
in Subsection 2.2 (see (5) and (9)).

It was proved in [10, 31] that each ODE model being considered always possesses
a disease-free equilibrium (DFE) point for all values of the parameters, whereas,
a unique disease-endemic equilibrium (DEE) point exists if the basic reproduction
number of the attacking population is greater than 1. An important common feature
of both works [10] and [31] is that only the global asymptotic stability (GAS) of the
DEE points was established based on the geometric approach proposed by Li and
Muldowney [23], whereas only the local asymptotic stability of the DFE points was
confirmed. However, previous studies on global dynamics of epidemiological models
suggest a DFE point is often globally asymptotically stable if the basic reproduction
number is less than or equal 1 (see, for instance, [2, 5, 25]). Moreover, it is important
to remark that the GAS of DFE points of epidemiological models is very important
since they correspond to the case of epidemics being extinguished. In particular,
the GAS of the DFE points of the two ODE models being considered can suggest
strategies and measures to prevent cyber attacks (see Remark 3.2).

Motivated by the above reason, our objective is to establish the GAS of the DFE
points of the models (5) and (9). To achieve this objective, we use a simple approach,
which is based on using the cascade structure of the ODE models and appropriate
Lyapunov functions, to investigate the GAS of the DFE points. More clearly, we
first analyze the GAS of the systems corresponding to the attacking populations by
suitable Lyapunov functions. After that, by taking advantage of the cascade structure,
the GAS analysis of the original nonlinear systems is reduced to the GAS analysis of
linear systems of ODEs with constant coefficients. Consequently, the GAS not only
of the DFE points but also of DEE points is easily obtained, which improves the
results constructed in the benchmark works [10, 31]. On the other hand, the present
approach is simpler than the geometric approach used in [10, 31] and can be applied
to a broad range of mathematical models arising in real-world applications, with a
particular focus on DDoS attacks. In Section 5, we show that the used approach is
not only simple but also useful in examining the GAS of some other mathematical
models of DDoS attacks, which were formulated in [1, 21, 26, 36].

It should be emphasized that the cascade structure has been utilized in [11] to
study the GAS of some malware and computer virus propagation models described
by ODEs. Although the Lyapunov stability theory [22, 24] has been one of the
most successful approaches to the GAS problem of dynamical systems (see, e.g.,
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[16, 17, 18, 19, 20, 37, 38, 39]), the construction of Lyapunov functions for the ODE
models (5) and (9) is not a trivial task. However, thanks to the present approach,
the GAS analysis is done in simple manner, in which Lyapunov function candidates
for the sub-populations of the models (5) and (9) can be determined easily.

The plan of this work is as follows:
Some preliminaries, auxiliary results and the mathematical models under consider-
ation are provided in Section 2. The analysis of GAS is presented in Sections 3.
Numerical experiments supporting the theoretical assertions are conducted in Section
4. In Section 5, the GAS analysis of some other mathematical models considering
the effect of external attacking nodes is considered. The last section includes some
discussions and conclusions.

2. Preliminaries and auxiliary results

This section provides some preliminaries and auxiliary results that will be used in the
next sections.

2.1. Global asymptotic stability of continuous-time dynamical systems.
Consider a general continuous-time autonomous dynamical system of the form

dy(t)

dt
= f(y(t)), t ≥ 0, y(0) = y0 ∈ Rn, (1)

where y is a vector function and the right-hand side function f is assumed to satisfy
suitable conditions such that solutions of (1) are unique [15, 34]. Assume that y∗ =
0 is an equilibrium point of (1), that is f(y∗) = 0. We now state the Lyapunov
stability theorem for continuous-time dynamical systems of the form (1) [15] (see also
[22, 24, 34]).

Theorem 2.1. Let y∗ = 0 be an equilibrium point for (1). Let V : Rn → R be a
continuously differentiable function such that

V (0) = 0 and V (y) > 0, ∀y 6= 0,

‖y‖ → ∞ =⇒ V (y)→∞,

V̇ (y) < 0, ∀y 6= 0,

then y∗ = 0 is globally asymptotically stable.

Before ending this subsection, we recall from [33] a result for the GAS of two
cascade connected nonlinear systems. Consider a triangular system

ẏ1 = f1(y1), (2)

ẏ2 = f2(y1, y2), (3)

where y1 ∈ Rm1 and y, f2 ∈ Rm2 . The variable of the space Rm3 = Rm1 × Rm2 is
denoted by y3. Assume that f1(0) = f2(0, 0) = 0. Then, y2 = 0 is an equilibrium
point of

ẏ2 = f2(0, y2). (4)

Theorem 2.2. If (4) and (2) are both globally asymptotically stable, and every orbit
of (2)-(3) are bounded for t > 0, then (2)-(3) is globally asymptotically stable.



84 H. T. PHAM AND M. T. HOANG

2.2. The mathematical models of DDoS attacks and their dynamical qual-
itative properties. In this subsection, we recall the mathematical models of DDoS
attacks given in [10] and [31].

In both models, the entire populations of nodes are divided into two sub-populations,
namely, targeted and attacking populations. In this first model [10], the targeted pop-
ulation is partitioned into three compartments, which are
(1) susceptible compartment: St;
(2) infected compartment: It;
(3) recovered compartment: Rt.

Meanwhile, the attacking population is partitioned only into two sub-classes, namely
(1) susceptible compartment: S;
(2) infected compartment: I.

Based on principles of mathematical epidemiology and a series of technical hypotheses,
the following ODE model was given to describe the interaction between the compart-
ments of the attacking population and targeted population [10]:

dSt
dt

= −βStI + ξtRt,

dIt
dt

= βStI − γIt,

dRt
dt

= γIt − ξtRt,

dS

dt
= µ− βSI − µS + ξI,

dI

dt
= βSI − (ξ + µ)I, (5)

where St, It and Rt stand for the number of susceptible, infected and recovered
nodes in the targeted population, respectively, and S and I represent the number
of susceptible and infected nodes in the attacking population, respectively. Since
dSt/dt + dIt/dt + dRt/dt = dS/dt + dI/dt = 0, the total populations are constant.
Without loss of generality, we can assume that St + It + Rt = S + I = 1 for t ≥ 0.
Then, (5) admits the following set as a positively invariant set

Ω1 = {(St, It, Rt, S, I) ∈ R5
+ |St + It +Rt = S + I = 1}. (6)

In the model (5):
(1) µ represents the rate of addition of new vulnerable systems and their removal

from the network;
(2) β is the infectivity contact rate; γ is the recovery rate for the targeted systems;
(3) ξt and ξ are the rates at which the recovered targeted nodes and the disinfected

attacking hosts again become susceptible to the attack.
For the model (5), the basic reproduction number for the attacking population was
calculated as

R1
0a =

β

ξ + µ
. (7)

It was proved in [10] that:
(1) the model (5) always has a DFE point E0

1 = (S0
t , I

0
t , R

0
t , S

0, I0) = (1, 0, 0, 1, 0)
for all values of the parameters, whereas, a unique DEE point E∗

1 exists if and
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only if R1
0a > 1. Furthermore, if E∗

1 exists, it is given by

S∗
t =

ξt

ξt +

(
1 +

ξt
γ

)
(β − ξ − µ)

,

I∗t =
ξt

ξtγ

β − ξ − µ
+ (γ + ξt)

,

R∗
t = 1− S∗

t − I∗t ,

I∗ =
β − ξ − µ

β
,

S∗ = 1− I∗. (8)

(2) the DFE point is locally asymptotically stable if R1
0a < 1 and is unstable if

R1
0a > 1;

(3) the DEE point is not only locally asymptotically stable but also globally asymp-
totically stable if it exists.

In the second model [31], the entire population of nodes is also divided into attacking
and targeted populations but the targeted population is divided into four compart-
ments:
(1) susceptible compartment: St;
(2) infected compartment: It;
(3) quarantined compartment: Qt;
(4) recovered compartment: Rt;

and the attacking population is also divided in two compartments: susceptible (S)
and infected (I) compartments. Let us denote by St, It, Qt and Rt the number of
susceptible targeted, infectious targeted, quarantine targeted and recovered targeted
nodes and by S, I the number of susceptible nodes and infectious attacking nodes,
respectively. Based on some technical hypotheses (see (H1)-(H6) in [31]), the following
dynamic model was given in [31]

dSt
dt

= −βStI + εtRt,

dIt
dt

= βStI − γIt,

dQt
dt

= γIt − ηQt,

dRt
dt

= ηQt − εtRt,

dS

dt
= µ− βSI − µS + εI,

dI

dt
= βSI − (µ+ ε)I, (9)

where
(1) µ is the rate of newborn and natural death of nodes from the network;
(2) β is the infectivity contact rate;
(3) γ is the quarantine rate;
(4) η is the recovery rate;
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(5) ε is the rate at which recovered targeted nodes are again susceptible;
(6) εt is the rate at which attacking nodes become susceptible.

Similarly to the model (5), we also assume that St + It + Qt + Rt = S + I = 1 for
t ≥ 0. So, the model (9) admits the following set as a positively invariant set

Ω2 = {(St, It, Qt, Rt, S, I) ∈ R6
+|St + It +Qt +Rt = S + I = 1}. (10)

For the model (9), the basic reproduction number for the attacking population was
calculated as

R2
0a =

β

ε+ µ
. (11)

Dynamics of (9) was established as follows [31]:
(1) the model (9) always has a DFE point E0

2 for all values of the parameters;
whereas, a unique DEE point E∗

2 exists if and only if R2
0a > 1;

(2) the DFE point is locally asymptotically stable if R2
0a < 1 and is unstable if

R2
0a > 1;

(3) the DEE point is not only locally asymptotically stable but also globally asymp-
totically stable if it exists.

It is clear that only the local stability of the DEE points was confirmed. In the next
section, we will establish the complete GAS of the models (5) and (9).

3. Global asymptotic stability analysis

In this section, we analyze the complete GAS of (5) and (9). First, we need the
following simple result, which is useful in analyzing the GAS problem.

Lemma 3.1. Consider a dynamical system described by a scalar ODE

dy

dt
= y(λ1 − λ2y), y(0) = y0 ∈ R, (12)

where λ1 and λ2 are real numbers with λ2 > 0. Then, we have
(1) If λ1 ≤ 0, then y0 = 0 is a globally asymptotically stable equilibrium point of

(12) with respect to the set R+.
(2) If λ1 > 0, then y∗ = λ1/λ2 is a globally asymptotically stable equilibrium point

of (12) with respect to the set R+ − {0}.

Proof. First, it follows from (12) that

y(t) = y(0)e
∫ t
0
y(τ)(λ1−λ2y(τ))dτ .

Therefore, y(t) ≥ 0 for t > 0 whenever y(0) ≥ 0. Furthermore, if y(0) > 0, then
y(t) > 0 for t > 0. So, (12) admits R+ and R+ − {0} as positively invariant sets.

To prove the GAS of the trivial equilibrium point y0 = 0, consider a Lyapunov
function V1(y) = y. Then, the derivative of V1 along solutions of (12) satisfies

dV1
dt

=
dy

dt
= λ1y − λ2y2 ≤ −λ2y2.

Hence, by Lyapunov stability theorem (Theorem 2.1), y0 is globally asymptotically
stable.
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To show the GAS of the unique positive equilibrium point y∗ = λ1/λ2, consider a
Lyapunov function candidate (see [16, 17, 18, 19, 20, 37, 38, 39])

V2(y) = y − y∗ ln

(
y

y∗

)
− y∗.

Then, we have

dV2
dt

=
y − y∗

y

dy

dt
=
y − y∗

y
λ2y(y∗ − y) = −λ2(y − y∗)2,

which implies the GAS of y∗. The proof is complete. �

3.1. Global stability analysis of (5). We now analyze the complete GAS of (5).
Since Ω1 given in (6) is a positively invariant set of (5), it is sufficient to consider the
following reduced system

dIt
dt

= βI(1− It −Rt)− γIt,

dRt
dt

= γIt − ξtRt,

dI

dt
= β(1− I)I − (ξ + µ)I, (13)

on a feasible set given by

Ω∗
1 = {(It, Rt, I) ∈ R3

+ |It +Rt ≤ 1, I ≤ 1}. (14)

Now, the DEE and DFE points are reduced to Ẽ0
1 and Ẽ∗

1 , respectively, where

Ẽ0
1 = (I0t , R

0
t , I

0) = (0, 0, 0), Ẽ∗
1 = (I∗t , R

∗
t , I

∗). (15)

Here, I∗t , R
∗
t and I∗ are defined in (8). The following theorem is the main result of

this subsection.

Theorem 3.2 (GAS analysis of the StItRtSI model (5)). (i) The DFE point Ẽ0
1 of

the reduced model (13) is globally asymptotically stable whenever R1
0a :=

β

ξ + µ
≤ 1.

(ii) Suppose that R1
0a :=

β

ξ + µ
> 1. Then, the DEE point Ẽ∗

1 of the reduced model

(13) is globally asymptotically stable if I(0) > 0.

Proof. Proof of Part (i). First, consider the last equation of (13), which can be
written in the form

dI

dt
= I
[
(β − ξ − µ)− βI

]
. (16)

Note that (β− ξ−µ) ≤ 0. So, Lemma 3.1 indicates that the trivial equilibrium point
I0 = 0 of (16) is globally asymptotically stable. Now, by applying Theorem 2.2, we
only need to study the GAS of the following reduced system of (13)

dIt
dt

= −γIt,

dRt
dt

= γIt − ξtRt. (17)
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Here we have substituted I = 0 into the first equation of (13). The system (17) has a
unique equilibrium point e0 = (0, 0). We now show that e0 is globally asymptotically
stable. Indeed, consider a Lyapunov function candidate defined by

V3(It, Rt) =
1

2
τI2t +

1

2
R2
t , τ > 0.

Then, the derivative of V3 along solutions of (17) satisfies

dV3
dt

= τIt
dIt
dt

+Rt
dRt
dt

= −τγI2t + γItRt − ξtR2
t

= −ξt
(
R2
t − 2

γ

2ξt
ItRt +

γ2

4ξ2t
I2t

)
+

(
γ2

4ξt
− τγ

)
I2t

= ξt

(
Rt −

γ

2ξt
It

)2

+

(
γ2

4ξt
− τγ

)
I2t .

So, if τ > γ/(4ξt), then V3 satisfies the Lyapunov stability theory. Consequently, e0

is a globally asymptotically stable equilibrium point of (17). Combining this with the

GAS of I0 = 0 of (16), we conclude that Ẽ0
1 of (13) is globally asymptotically stable.

Proof of Part (ii). Assume that β > ξ + µ. Then, I∗ = (β − ξ − µ)/β is a
globally asymptotically stable equilibrium point of (16). Thanks to Theorem 2.2, it
is sufficient to consider the following system obtained by substituting I = I∗ into the
first two equations of (13)

dIt
dt

= βI∗(1− It −Rt)− γIt,

dRt
dt

= γIt − ξtRt. (18)

Note that e∗ = (I∗t , R
∗
t ) is a unique equilibrium point of (18). The next step is to

prove that e∗ is globally asymptotically stable. Indeed, it is easy to see that (18) can
be rewritten in the form

dIt
dt

= −(βI∗ + γ)(It − I∗t )− βI∗(Rt −R∗
t ),

dRt
dt

= γ(It − I∗t )− ξt(Rt −R∗
t ). (19)

Consider a Lyapunov function candidate given by

V4(It, Rt) =
1

2
γ(It − I∗t )2 + βI∗

1

2
(Rt −Rt)∗.

Then,

dV4
dt

= γ(It− I∗t )
dIt
dt

+βI∗(Rt−R∗
t )
dRt
dt

= −γ(βI∗ + γ)(It− I∗t )2−βI∗ξt(Rt−R∗
t )

2,

which implies the GAS of e∗. This is the desired conclusion. This proof is complete.
�

Remark 3.1. From Theorem 3.2, the GAS not only of the DEE point but also of the
DFE point of the full model (5) is obtained. This improves the conclusions in [10].
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3.2. Global stability analysis of (9). In this subsection, the complete GAS of (9)
will be established. Since Ω2 defined in (10) is a positively invariant set of (9), it is
sufficient to consider the following reduced system

dIt
dt

= βI(1− It −Qt −Rt)− γIt,

dQt
dt

= γIt − ηQt,

dRt
dt

= ηQt − εtRt,

dI

dt
= β(1− I)I − (µ+ ε)I, (20)

on a feasible region defined by

Ω∗
2 = {(It, Qt, Rt, I) ∈ R4

+ |It +Qt +Rt ≤ 1; I ≤ 1}. (21)

Now, the DEE point is reduced to Ẽ0
2 with

Ẽ0
2 = (I0t , Q

0
t , R

0
t , I

0) = (0, 0, 0, 0).

Note that, E∗
2 = (S∗

t , I
∗
t , R

∗
t , S

∗, I∗) is given by

I∗ =
β − µ− ε

β
,

S∗ = 1− I∗,

I∗t =
βI∗

βI∗ + βI∗
γ

η
+ βI∗

γ

εt
+ γ

,

Q∗
t =

γ

η
I∗t ,

R∗
t =

γ

εt
I∗t ,

S∗
t = 1− S∗

t − I∗t −R∗
t . (22)

So, the DEE point of (9) is simplified to Ẽ∗
2 = (I∗t , Q

∗
t , R

∗
t , I

∗). The following theorem
is the main result of this subsection.

Theorem 3.3 (GAS analysis of the StItQtRtSI model (9)). (i) The DFE point Ẽ0
2

of the reduced model (20) is globally asymptotically stable whenever R2
0a =

β

µ+ ε
≤ 1.

(ii) Suppose that R2
0a =

β

µ+ ε
> 1. Then, the DEE point Ẽ∗

2 of the reduced model

(20) is globally asymptotically stable if I(0) > 0.

Proof. Proof of Part(i). Consider the last equation of (20), which can be re-written
in the form

dI

dt
= I
[
(β − µ− ε)− βI

]
. (23)
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If follows from Lemma 3.1 that I0 = 0 is globally asymptotically stable as β−µ−ε ≤ 0.
So, we only need to consider the following reduced system of (20)

dIt
dt

= −γIt,

dQt
dt

= γIt − ηQt,

dRt
dt

= ηQt − εtRt, (24)

which is obtained by substituting I = 0 into the first three equations of (20).
The system (24) has a unique equilibrium point f0 = (0, 0, 0). We will show that

this equilibrium point is globally asymptotically stable. Note that (24) also has the
cascade structure. From the first equation of (24) that

It(t) = It(0)e−γt,

which implies that I0t = 0 is globally asymptotically stable. So, the GAS analysis of
(24) is reduced to the GAS analysis of

dQt
dt

= −ηQt,

dRt
dt

= ηQt − εtRt, (25)

Similarly to the proof of Part (i) of Theorem 3.2, we obtain that (0, 0) is a globally
asymptotically stable equilibrium point of (25) by using a Lyapunov function

V (Qt, Rt) =
1

2
τ∗Q2

t +
1

2
R2
t , τ∗ >

η

4εt
.

Therefore, f0 = (0, 0, 0) of (24) is globally asymptotically stable. This is the desired
conclusion. The proof of this part is complete.
Proof of part (ii). Since β > µ+ ε, I∗ = (β − µ− ε)/β is a globally asymptotically
stable equilibrium point of (23). So, it is sufficient to focus on the reduced system

dIt
dt

= βI∗(1− It −Qt −Rt)− γIt,

dQt
dt

= γIt − ηQt,

dRt
dt

= ηQt − εtRt. (26)

It is easy to verify that (26) possesses a unique positive equilibrium point f∗ =
(I∗t , Q

∗
t , R

∗
t ), where I∗t , Q

∗
t and R∗

t is given in (22).
By using stability theory of systems of linear ODEs [4, 34], it is enough to show

that all eigenvalues λ of the Jacobian matrix of (26) evaluated at f∗ satisfy Re(λ) < 0.
The Jacobian matrix of (26) at f∗ is

J(f∗) =

−(βI∗ + γ) −βI∗ −βI∗
γ −η 0
0 η −εt

 .

The characteristic polynomial is given by

P (x) = x3 + a1x
2 + a2x+ a3,
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where

a1 = εt + η + γ + I∗β,

a2 = η(γ + I∗β) + εt(η + γ + I∗β) + I∗βγ,

a3 = εt[η(γ + I∗β) + I∗βγ] + I∗βηγ.

It is clear that a1 > 0, a2 > 0 and a3 > 0. On the other hand,

a1a2 − a3 = (β2εt + β2η + β2γ)(I∗)2

+ (βε2t + 2βεtη + 2βεtγ + βη2 + 2βηγ + βγ2)I∗

+ ε2tη + ε2tγ + εtη
2 + 2εtηγ + εtγ

2 + η2γ + ηγ2 > 0.

From the Routh-Hurwitz criteria [2, Theorem 4.4 and Section 4.5], we conclude that all
the roots x∗ of P (x) satisfy Re(x∗) < 0. This shows that f∗ is globally asymptotically
stable. This is the desired conclusion. The proof is complete. �

Remark 3.2. We deduce from the complete GAS of (5) and (9) that a condition for
the suppression of cyber attacks is that the reproduction numbers of the attacking
populations are less than or equal to 1.

4. Numerical simulation

In this section, numerical examples are reported to support the theoretical findings.
Here, we use the classical four stage Runge-Kutta (RK4) method (see [3, 34]) with a
small step size h = 10−4 to numerically solve the models (5) and (9).

Example 4.1 (GAS of the model (5)). Consider (5) with the following sets of pa-
rameters given in Table 1.

Table 1. The parameters used in Example 4.1.

Set β γ ξt ξ µ R1
0a GAS equilibrium point

1 0.2 0.02 0.1 0.15 0.1 0.8 (1, 0, 0, 1, 0)
2 0.25 0.01 0.1 0.2 0.3 0.5 (1, 0, 0, 1, 0)
3 0.4 0.05 0.2 0.1 0.15 1.6 (0.2105, 0.6316, 0.1579, 0.6250, 0.3750)
4 0.8 0.06 0.2 0.25 0.15 2 (0.1034, 0.6897, 0.2069, 0.5, 0.5)

Figures 1-4 depict phase spaces of the reduced system (13) over the time interval
[0, 1000]. In each figure, each blue curve represents a phase space associated with a
particular initial data, the red circle marks the position of the globally asymptotically
stable equilibrium point and the green arrows show the evolutionary trajectory of the
model.

It is clear that the GAS of the DFE and DEE points of the model (5) is confirmed.
So, the theoretical assertions presented in Subsection 3.1 are supported.



92 H. T. PHAM AND M. T. HOANG

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.2

0.4

0.6

0.8

1

I
t

R
t

I

Figure 1. The phase spaces of the reduced system (13) for Set 1 of
the parameters.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.2

0.4

0.6

0.8

1

I
t

R
t

I

Figure 2. The phase spaces of the reduced system (13) for Set 2 of
the parameters.
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Figure 3. The phase spaces of the reduced system (13) for Set 3 of
the parameters.
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Figure 4. The phase spaces of the reduced system (13) for Set 4 of
the parameters.

Example 4.2 (GAS of the model (9)). Consider (9) with the following two sets of
parameters given in Table 2.

Table 2. The parameters used in Example 4.2.

Case β γ η ε εt µ R2
0a GAS equilibrium point

1 0.4 0.15 0.15 0.25 0.3 0.25 0.8 (1, 0, 0, 0, 1, 0)
2 0.5 0.1 0.25 0.3 0.15 0.3 0.8333 (1, 0, 0, 0, 1, 0)
3 0.6 0.05 0.2 0.25 0.1 0.15 1.500 E1

4 0.4 0.1 0.25 0.1 0.2 0.1 2.0000 E2

In Table 2, E1 and E2 are given by: E1 = (0.1250, 0.5000, 0.1250, 0.2500, 0.6667, 0.3333)
and
E2 = (0.2083, 0.4167, 0.1667, 0.2083, 0.5000, 0.5000).

We now observe dynamics of the reduced system (20) on the time interval [0, 100].
The solutions are sketched in Figures 5-8. It is clear that the GAS of the DFE and
DEE points of the model (9) is confirmed, which supports the theoretical assertions
constructed in Subsection 3.2.

5. GAS analysis of some mathematical models considering the effect of
external attacking nodes

In this section, to show advantages of the approach used in Section 3, we revisit
some mathematical models of DDoS attacks, which consider the effect of external
attacking nodes and were proposed recently in [1, 21, 26, 36]. Our objective is show
that the approach is useful in studying the GAS of the mathematical models under
consideration. Here, we will ignore arguments and detailed algebraic manipulations
because they are performed similarly as in Section 3.
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Figure 5. The solutions of the reduced system (20) for Set 1 of the
parameters.

In [26], an ODE model integrating the effect of external nodes in the attacking
population was proposed in the following form

dSt
dt

= −βStIa + εtRt,

dIt
dt

= βStIa − γIt,

dRt
dt

= γIt − εRt,

dSa
dt

= −βSaIa − µSa + εaIa + σEa − αSa,

dIa
dt

= βSaIa − µaIa − εaIa − αIa,

dEa
dt

= αSa + αIa − σEa + µ− µEa. (27)

In the model (27), the targeted population is classified to three classes:
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Figure 6. The solutions of the reduced system (20) for Set 2 of the
parameters.

• susceptible targeted nodes: St;
• infectious targeted nodes: It;
• recovered targeted nodes: Rt;

and the attacking population is classified to three classes:
• susceptible attacking nodes: Sa;
• infectious attacking nodes: Ia;
• external attacking nodes: Ea;

Also, all the parameters are assumed to be positive because of their implications in
epidemiology. The description and explanation of the model are given in [26].

In [36], another ODE system modeling attacks of computer viruses on targeted
networks was proposed, in which the effect of external attacking nodes is considered.
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Figure 7. The solutions of the reduced system (20) for Set 3 of the
parameters.

This system has the form

dSt
dt

= −β1StIa + αRt,

dIt
dt

= β1StIa − γIt,

dRt
dt

= γIt − αRt,

dSa
dt

= −β2SaIa + k1Ea − ηSa − µSa,

dIa
dt

= β2SaIa + k2Ea − ηIa − µIa,

dEa
dt

= ηSa + ηIa − k1Ea − k2Ea − µEa + ξ,
(28)

The description and explanation of the model are given in [36] (see Table 1 in [36]).
For the models (27) and (28), the basic reproduction numbers for the targeted and

attacking populations were determined. For each model, it was shown that a DFE
point always exists for all values of the parameters, whereas a unique DEE point
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Figure 8. The solutions of the reduced system (20) for Set 4 of the
parameters.

exists if and only if the basic reproduction number of the attacking population is
greater than 1. Moreover, the DFE point is locally asymptotically stable if the basic
reproduction number is less than 1 and is unstable otherwise. Meanwhile, based on
the geometric approach [23], the DEE point was proved to be globally asymptotically
stable.

By applying the approach used in Section 3, we can establish the complete GAS
of (27) and (28), which improves the results in [26, 36].

In [21], Kumari et al. introduced an ODE model for virus dynamics of distributed
attacks on targeted networks. The GAS analysis of this model presented in [21] was
quite complex. However, thanks to the present approach, the GAS problem can be
solved easily.

The present approach can be applied to more complex models of DDoS attacks,
for example, to a mathematical model considering two levels of security (low-security
and high-security) in the targeted population formulated in [1]. The complete GAS
of this model can be easily accomplished by using the proposed approach.
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6. Concluding remarks and discussions

As the first and also the main conclusion of this study, we have established the com-
plete GAS of two modified epidemiological models for DDoS attacks, which are de-
scribed by systems of nonlinear ordinary differential equations (ODEs) with complex
dynamics. By a simple approach, which is based on utilizing the cascade structure
of the ODE models and suitable Lyapunov function candidates, the GAS problem
has been resolved easily. By taking advantage of the cascade structure, the GAS
analysis of the original nonlinear systems is reduced to the GAS analysis of simple
linear systems. After that, the GAS analysis of the reduced systems is completed in a
straightforward manner. As an important consequence, the GAS has been confirmed
not only for the DEE points but also for the DEE points. Therefore, the obtained
results improve the ones constructed in [10, 31]. Also, the complete GAS can suggest
strategies and measures to prevent attacks (Remark 3.2).

The present approach is simple and can be applied to a broad range of mathematical
models arising in real-world applications, with a specific focus on DDoS attacks. In
Section 5, we have shown that the approach is not only simple but also useful in
analyzing the GAS of some mathematical models of DDoS attacks under the effect of
external attacking nodes.

In the near future, we are going to extend the approach and obtained results to the
study of mathematical models of DDoS attacks. In particular, the following issues
will be of particular interest:
• Proposing extended versions of the ODE models under consideration and exam-

ining their dynamics and applications.
• Constructing discrete-time models for DDoS attacks with applications in com-

putational modeling and predicting real-life cyber attack scenarios.
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