
Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 32, 2005, Pages 207–213
ISSN: 1223-6934

On the extension of Longstaff and Evans-Keef-Okunev models
related to the pricing of zero-coupon bonds
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Abstract. We obtain the term structure of interest rate of a zero-coupon bond and we extend
two classical models - the model of Longstaff and the model of Evans-Keef-Okunev, using the
McShane stochastic calculus.
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1. Finance is one of the fastest developing areas in the modern banking and cor-
porate word. This, together with the sophistication of modern financial products,
provides a rapidly growing impetus for new mathematical models and modern math-
ematical methods.

When an evolution of a financial asset is affected by exterior disturbances, its
time-development can offen be dicribe by a system of ordinary differential equations,
provided that the disturbances are smooth functions. But, for round reasons financial
analysts want to apply the theory when the noises belong to a larger class, including
for example white noise. A unified theory was give by E.J.McShane ([7],[8]) who in-
troduced so called belated integrals and stochastic differential systems which enjoying
the following three properties: inclusiveness, consistency and stability. McShane’s cal-
culus had proved to very valuable in modeling and it finding applications in physics,
engineering and economics.

In McShane’s Calculus, the standard equation

Xi(t, ω) = Xi(0, ω) +

t∫

0

f i(s,X(s, ω))ds+ (1)

+
r∑

j=1

t∫

0

gi
j(s, X(s, ω))dzj(s, ω) +

r∑

j,k=1

t∫

0

hi
j,k(s,X(s, ω))dzj(s, ω)dzk(s, ω)

in the adequate hypotheses can be replaced by what he calls a canonical extension
(canonical form or canonical system) of equation (1):

Xi(t, ω) = Xi(0, ω) +

t∫

0

f i(s,X(s, ω))ds+ (2)
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r∑

j=1

t∫

0

gi
j(s,X(s, ω))dzj(s, ω) +

1
2

r∑

j,k=1

t∫

0

gi
j,k(s,X(s, ω))dzj(s, ω)dzk(s, ω)

in which

gi
j,k(t, x, ω) =

n∑
m=1

[∂gi
j(t, x, ω)/∂xm]gm

k (t, x, ω)

i = 1, 2, ..., n; j, k = 1, 2, ..., r; t ∈ [0, a]; x ∈ IRn.
The solution of the stochastic differential equation in canonical form has a stability

under modification of the zj that is not possessed by the equations with other choices
for gi

j,k (including the traditional choice zero). We can be sure that any other extension
that gives different solutions certainly lacks stability.

Moreover, the solutions of the canonical extension do not depend on the coordinate
system in which we choose to expres them, the property that is not in general possessed
by other equations. Also, it must be mentioned an especial suitability for retaining
adequate agrement with experiment when the noises are idealized to ”white noise”
(see [10, pp 228-234], [11], [19], [20]).

In conclusion, McShane’s Calculus had proved to be very valuable in modeling and
in finding application in finances under canonical form.

2. Let T ∗ be a fixed horizon date for all market activities. A bond is a contract,
paid for up-front, that yields a known amount on a known date in the future, the
maturity date, T ≤ T ∗. The bond may also pay a known cash divident (the coupon)
at fixed times during the life of the contract. If there is no coupon the bond is known
as zero-coupon bond.

In the financial analysis sense, by a zero-coupon bond (or a discount bond) of
a maturiy T we mean a financial security paying to its holder one unit of cash at a
prespecified date T in the future. This mean that, by convention, the bond’s principal
(known also as face value or nominal value) is one dollar.

We assume throughout that bonds are default-free, that is, the possibility of default
by the bond’s issuer is excluded. The price of a zero-coupon bond of maturity T at
any instant t ≤ T will be denote by B(t, T ); it is thus obvious that B(T, T ) = 1
for any maturity date T ≤ T ∗. Since there are no other payments to the holder, in
practice a discount bond sells for less than the principal before maturity - that is,
at a discount (hence the name). This is because one could no incetive to invest in a
discount bond costing more than its face value.

We assume that, for any fixed maturity T ≤ T ∗, the bond price B(t, T ) follows a
strictly positive and adapted process on a filtered probability space (Ω,F , IP). The
problem of valuting a bond can be illustrated in the question ” How much should I
pay now to get a guaranteed $1 in 10 years’ time ?”

Let us consider a zero-coupon bond with a fixed maturity date T ≤ T ∗. The simple
rate of return from holding the bond over the time interval [t, T ] equals

1−B(t, T )
B(t, T )

=
1

B(t, T )
− 1.

The equivalent rate of return, with continuous compounding, is commonly referred,
ro as a yield-to-maturity on a bond, i.e. an adapted process Y (t, T ) defined by the
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formula

Y (t, T ) = − 1
T − t

ln B(t, T ), ∀ t ∈ [0, T ].

The term structure of interest rate, known also as the yield curve, is the function that
related the yield Y (t, T ) to maturity T. It is obvious that, for arbitrary fixed maturity
date T, there is a one-to-one correspondence between the bond price process B(t, T )
and its yield-to-maturity process Y (t, T ) and we have the formula

B(t, T ) = e−Y (t,T )(T−t), ∀ t ∈ [0, T ].

Suppose we hold one bond. The change in the value of that bond is a time-step dt
(from t to t + dt) is dB

dt dt. Arbitrage consideration (see [13], [22]) lead as to equate
this with the return from a bank deposit receiving interest at a rate r(t). Thus we
conclude that

dB

dt
= r(t)

and the solution of this ordinary differential equation is

B(t) = e
R T

t
r(τ)dτB(T )

or equivalent, the function Bt solves the differential equation dBt = rtBtdt, with the
conventional initial condition B0 = 1.

3. In view of our uncertainty about the future course of interest rate, it is natural
to model it as a random variable. Most traditional stochastic interest rate models are
based on the exogenous specification of a short-term rate of interest. We write rt to
denote the instantaneous interest rate (also referred to as a short-term interest rate,
or spot interest rate for borrowing or leading prevailing at time t over the infinitesimal
time interval [t, t + dt]. In a stochastic setup, the short-term interest rate is modelled
as an adapted process, say r, defined on a filtered probability space (Ω,F , IP) for some
T ∗ > 0. We assume throughout that r is a stochastic process with almost all sample
path integrable on [0, T ] with respect to the Lebesgue measure.

We suppose that the interest rate r is gouverned by a stochastic differential equation
by the McShane type of the following form:

drt = µ(t, r)dt + σ(t, r)dzt + ρ(t, r)(dzt)2.

Pricing of a bond is technically harder than pricing an option, since there is no
underlying asset with which to hedge (see [13], [22]). In this situation only alterna-
tive is to hedge with bonds of different maturity dates. For this reason we setup a
portofolio containing two bonds with different maturities, T1 and T2. The bond with
maturity T1 has the price P1 and the bond with maturity T2 has price P2. We denote
the value of this portofolio with V. Thus we have that

V = x1P1 + x2P2 (3)

with the condition
x1 + x2 = 1 . (4)

We suppose that

dPi(t, r, Ti)
Pi(t, r, Ti)

= µp(t, r)dt + σp(t, r)dzt + ρ(t, r)(dzt)2, i = 1, 2, (5)
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where
µp(t, r) =

1
P (t, r)

(Pt + µ(t, r)Pr) (6)

σp =
σ(t, r)
P (t, r)

Pr (7)

ρp(t, r) =
1

P (t, r)
[ρ(t, r)Pr +

σ2(t, r)
2

Prr] (8)

where Pt = ∂P
∂t , Pr = ∂P

∂r and Prr = ∂2P
∂r2 .

We assume that the portofolio is without risk (risk-free) i.e.

dV

V
= rdt . (9)

Thus, we obtain
dV

V
= [x1µ1(t, r) + x2µ2(t, r)]dt + [x1σ1(t, r) + x2σ2(t, r)]dzt+

+[x1ρ1(t, r) + x2ρ2(t, r)](dzt)2
(10)

and (using the no arbitrage condition, see [13]) we obtain that




x1µ1(t, r) + x2µ2(t, r) = r (a)
x1σ1(t, r) + x2σ2(t, r) = 0 (b)
x1ρ1(t, r) + x2ρ2(t, r) = 0 (c)

(11)

From (12).(a) and (12).(b) results that

x2 =
rσ2(t, r)

µ1(t, r)σ2(t, r)− µ2(t, r)σ1(t, r)
, x2 =

−rσ1(t, r)
µ1(t, r)σ2(t, r)− µ2(t, r)σ1(t, r)

(12)

and from the relation (5) results that

µ1(t, r)− r

σ1(t, r)
=

µ2(t, r)− r

σ2(t, r)
not= λ(t, r), (13)

λ is called, in financial literature as the risk premium or the market price for risk.
In a similarly way, from (12).(b) and (12).(c) we obtain that

ρ1(t, r)
σ1(t, r)

=
ρ2(t, r)
σ2(t, r)

not= η(t, r), (14)

η can be interpreted as a supplementary (bonus) risk premium .

µp(t, r) = r + λ(t, r)σp(t, r) (15)

and from (15)
ρp(t, r) = η(t, r)σp(t, r) . (16)

These with (7), (8) and (9) yield the system
{

Pt + (µ(t, r)− λ(t, r)σ(t, r))Pr = rP
(ρ(t, r)− η(t, r)σ(t, r))Pr + 1

2σ2(t, r)Prr = 0 (17)

and this implies that the equation of structure term for pricing on bond is

Pt + (µ + ρ− σ(λ + η))Pr +
1
2
σ2Prr = rP (18)

with the final condition
P (T, r) = 1 . (19)
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In almost situation λ(t, r) if fixed on the market and analogous η(t, r) and hence
they are determinsitic functions.

4. In this paragraph we present two classical models pricing of a zero-coupon bond.

Example 1. We start with the model developement by F. A. Longstaff ( [9]) for the
classical Itô case and we assume that the dynamic of the interest rate is gouverned by
the following stochastic differential equation by McShane type

drt = −a
√

rdt + σ
√

rdzt + l(dzt)2 . (20)

which is in the canonical form for l = σ2

4 . We take µ(t, r) = −a
√

r, σ(t, r) = σ
√

r

and ρ(t, r) = l = σ2

4 in the equation of structure term (19) and we have

Pt + [−a
√

r − σ
√

r(λ + η) +
σ2

4
]Pr +

σ2

2
rPrr = rP, P (T, r) = 1. (21)

We take √
r = x, τ = T − t

and we have that

Pτ = (
α

2
Px +

l

2x
Px − σ2

8x
Px) +

σ2

8
Pxx − Px2 − Pl.

We search a solution by the following form

P (τ, x) = eA(τ)x2+B(τ)x+C(τ), (22)

then we obtain



A(τ) =
√

2 tanh
[
−√2τσ2−2

√
2

2 σ

]
σ

B(τ) = −cosh
[

τσ√
2

]− 2(a+σ(λ+η))
σ2 + A(τ)

a+σ(λ+η)
σ2

2

C(τ) =
∫ τ

0

(σ2

4
A(s) +

a + σ(λ + η)
4

B2(s)− a + σ(λ + η)
2

B(s)
)
ds

(23)

(the explicite analytical expression for C(τ) was obtained but it is in the respect to
Gamma and Hypergeometric functions and was omitted to write here).

Remark 1. The solution of the equation (21) it is

rt = [2
√

r0 + at + σzt]2 . (24)
We observe that the coefficient functions of equation (21) satisfy a non-lipschitz

condition as in [5] and thus the uniqueness of the solution of this equation it is assured.

Example 2. We consider the model of L. T. Evans, S. P. Keef, J. Okunev (see [8])
for Itô case for the evolution of short-term interest rate and we assume an adequate
equation in the McShane sense as the following form

drt = ae−kt
√

rdt + σe−kt
√

rdzt + le−2kt(dzt)2 (25)

with l = σ2

4 in the canonical form.
In this case, the equation of structure term (19) become

Pt + (−ae−kt
√

r +
σ2

4
e−2kt − σe−2kt(λ + η)

√
r)Pr +

1
2
σ2e−2ktPrr = rP . (26)

In a similar manner as in the above example we search an explicite formula for the
price of a zero-coupon bond by the form (23).

The functions A(τ), B(τ) and C(τ) result from the following differential system:
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



A′(τ) = σ2

2 e−2k(T−τ)A2(τ)− 1
B′(τ) = a− σ(λ + η)e−k(T−τ)A(τ) + e−2k(T−τ) σ2

2 A(τ)B(τ)
C ′(τ) = e−k(T−τ) a−σ(λ−η)

2 B(τ) + e−2k(T−τ) σ2

8 (2A(τ) + B2(τ))
with initial conditions A(0) = B(0) = C(0) = 0.

We note that, in this case, the expressions for A(τ), B(τ) and C(τ) can be obtained
but they are in respect to Bessel and Hypergoemetric functions and they were not
given here. Naturally, if we replace parameters of model (a, σ, λ, η and k) with their
estimations we obtain a simplified forms for this functions.

The solution of the equation (26) it is

rt =
[√

r0 +
a

2
t +

σ

2

∫ t

0

e−ksdzs

]2

. (27)

and from Theorem 2 [5] we have an unique solution.
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