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Theoretical and Numerical Studies for a Delayed Swelling
Porous Thermoelastic Soils Model
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BouzeTTOoUTA

ABSTRACT. In this paper, we consider a one-dimensional swelling problem in porous elastic
soils with second sound and a constant internal delay, where the heat conduction is given
by Cattaneo’s law. We show that the system is well-posed using the semigroup approach.
Then, based on the energy method as well as by constructing a suitable Lyapunov functional,
we prove that the unique dissipation given only by the second sound is strong enough to
provoke an exponential decay of the solution without any relationship between the system
parameters. For the numerical study, we discretize the continuous problem by performing
a temporal discretization using Euler scheme and the classical finite difference method for
spatial discretization. To solve the discretized problem, we propose to introduce a fixed point
algorithm and derive the condition for which the proposed algorithm converges. Finally, we
present some numerical test to illustrate the theoretical results by taking different delay weights
and show that the studied system is highly reactive to small delays.
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1. Introduction

Swelling porous media have attracted many researchers and this is due to its preva-
lence in a lot of disparate fields including soil science, hydrology, forestry, geotechnical,
chemical, mechanical engineering. Among the important researches that have been
realized in this area is the study of the asymptotic behavior of the swelling soils that
belongs to porous media theory in the case of fluid saturation. The swelling soils are
caused by the chemical attraction of water where water molecules are incorporated in
the clay structure in between the clay plates separating and destabilizing the mineral
structure. Furthermore, the clay’s particle has the properties is that it consists of
lattice hydrated aluminum and magnesium silicate minerals which form a unit (parti-
cle). Thus the clay’s particle is a mixture of clay platelets and absorbed water (vicinal
water). For a brief descriptions concerning the details historical development /review
related to the general theory of the mixtures, we refer the readers to Bedford and
Drumbheller [1] and Eringen [7].

The basic field equations for the theory of swelling of one-dimensional porous elastic
soils are given by

puutt:Taj"’_Pl"'_Fla pzztt:Hx_P2+F27 (1)
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where the constituents u and z represent the displacement of the fluid and elastic
solid material. The parameters p, and p, are the densities of each constituent which
are assumed to be strictly positive constants. T, H are the partial tensions, Fi, Fb
are the external forces, P;, P, are internal body forces associated with the dependent
variables u, z. Here we assume that the constitutive equations of partial tensions are

given as in [12] by
T I e TR Ug
H ) \ a a3 Ze )’
—_——

M
where M is a positive definite symmetric array, i.e.,

oy > a%. (2)

Many investigations have been realized regarding the theory of swelling porous elastic
soils and among them, we cite the work of Quintanilla [24] when he considered the
following problem

Pz2tt — A1 Z2px — A2Ugy — /BITZL’ + 5 (Zt - ut) — HzRpxt = 07 in (Ou L) X (07 OO) )
Pultt — PUgy — A22zx — ﬁZTm - 6 (zt - ut) = 07 in (Oa L) X (07 OO) ) (3)
CTt - ﬁlzwt—/82uwt - kaw = 0; in (07 L) X (05 OO) )

with the initial conditions
w(z,0) = wo(z), ut (2,0) =u; (z), 2z (x,0) = 20 (),
2zt (2,0) = =z (z), T(z,0) =Ty (z), 2 € (0, L),
and homogeneous Dirichlet boundary conditions
u(x,t) =z (x,t) =T (z,t) =0, £ =0,L, t € (0,00).
Under the following condition on the constants
B1=B2=0, aj < ai€, az >0,

the author established an exponential stability result for the solution of (3) in the
isothermal case (AT = 0). Furthermore, in the nonisothermal case and (1, 82 # 0, he
showed that the combination of the thermal effects with the elastic effects provokes
exponential stability.

In [29], Wang and Guo considered a problem of swelling of one-dimensional porous
elastic soils given by

Pulit = Q1 Ugy + Q2Zzy, in (07 L) X (Oa OO),

P=Ztt = Q3Zge + Q2Uzy + P27y (T) 2, in (0, L) x (0,00),
u(0,t) = uy (L, t) = 2(0,t) = 2z, (L,t) =0, t € (0,00), (4)
u(z,0) =up (z), u (z,0) =uy (), z € (0, L),

z(x,0) = 29 (z), 2t (x,0) =21 (z), 2 € (0, L),
where v (x) is an internal viscous damping function satisfying the condition
L
/ v (z)dx > 0,
0

and they proved an exponential stability of the system by using the spectral method.
We refer the reader to [2, 16] for some other interesting related results.
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In [27], the authors considered the following system

P22t — 12z — Q2Uz, = 0, in (0, L) x (0,00),
Pulitt — A3Ugze — Q2250 + Y (8) g (ur) = 0, in (0, L) x (0,00),
w(0,t) = uy (L,t) = 2(0,t) = 2, (L,t) =0, t € (0,00),
u(z,0) = ug (z), ug (x,0) =wuy (), z € (0, L),

2 (2,0) = 20 (), 2z (x,0) =2 (x), x € (0, L)

and under some properties of convex functions they showed that the dissipation given
only by the nonlinear damping term ~ (¢) g (u;) is strong enough to provoke an expo-
nential decay rate.

Recently, in [26], the authors considered the following swelling problem in porous
elastic soils with fluid saturation, viscous damping and a time delay term

P22t — 12z — Q2Uzy +E12¢ + &22¢ (2,0 —7) =0, in (0,L) x (0,00),
Pulitt — A3Ugy — G224 = 0, in (0, L) x (0,00),

2(0,t) = 2z, (L, t) = u(0,t) = u, (L,t) =0, t € (0,00),

u(x,0) =ug (z), u (z,0) =uy (), z € (0, L),

2 (2,0) =29 (), 2z (x,0) =2 (z), z€ (0, L).

Under the appropriate assumption on the weight of the delay term, they established
an exponential decay of the solution.

Motivated by the above mentioned work, in this paper we consider the following
problem

Pz 2t = Q1 Zggp + Q2 Ugq m (O,L) X (0,00)
Pu Uit = Q3 Ugy + Q2 20 + B0, — pug (x,t —7) in (0,L) x (0,00) (5)
cty = —qy + B, in (0, L) x (0, 00)
Toqr =—q—kbq, in (0,L) x (0,00)

with the boundary conditions
2(0,t) = 25 (L,t) = u(0,t) = uy (L,t) =6, (0,t) =0 (L,t) =¢q(0,t)=0, t >0 (6)

and the initial data

z2(2,0) =29 (x) , z(x,0)=21(z) , 0(x,0)=6(x) |,

u(z,0) =uo(z) , ue(2,0)=ui(z) , q(z,0)=q(z) ,

ug (¢, —t) = fo (z,t), in(0,L) x (0,7)
where 6 = 0 (z,t) represents the temperature difference, ¢ = ¢ (x,t) is the heat flux
and the coefficients a1, as, as, ¢, 8, 19, k are positive constants represent the constitu-
tive parameters defining the coupling among the different components of the materials,
w1 is a real number, 7 > 0 represents the time delay. The initial data zg, 21, ug, u1, 6o, qo
belongs to a suitable functional space and fj is a history function. From physical point
of view, it is well known that the model using the classic Fourier’s law (79 = 0) leads
to the physical paradox of infinite speed of heat propagation. To avoid this physical
paradox, one of the theories that treats this problem is the advent of the second sound
effects observed experimentally in materials at a very low temperature. The second
sound effects emerge when heat is transported by a wave propagation process instead
of the usual diffusion. This theory suggests to replace the classic Fourier’s law by
the Cattaneo’s law (79 > 0). For more papers related to the second sound and its
influence on the asymptotic behavior of solutions for different types of problems, we
refer the reader to [3, 6, 9, 14, 19, 20, 18, 31].

(0,L)

x €
ze(0,L) (7
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Our aims in this paper are: First, we prove the existence and uniqueness of the
solution of the system by using the semigroup arguments. Second, based on the
multipliers method, we construct a suitable Lyapunov functional which allows us to
estimate the energy of the system and we prove that the unique dissipation given by
the second sound is strong enough to stabilize exponentially the system regardless of
the wave speeds of the system or any other condition on coefficients in spite of the ex-
istence of the delay without the damping mechanism to control the undesirable delay
effects that may be a source of instability of systems which are uniformly asymptot-
ically stable in the absence of delay unless additional control terms have been used
(see[4, 5, 11, 30]). Also, the introducing of delay may lead to ill-posedness, as shown
in many works such as [5, 25] and the references therein. For the numerical part, we
perform a temporal discretization based on the FEuler scheme and the classical finite
difference method for spatial discretization. In order to solve the discretized problem,
we introduce a fixed point algorithm and we search for the necessary condition for
which the proposed algorithm converges. Finally, we present the results of some nu-
merical experiments to validate the theoretical result using MATLAB software and
by taking different delay weights, we show that the considered system is very reactive
to small delays which confirms that the time delay is not arbitrary in the considered
problem.

The paper is organized as follows: In Section 2, we give the existence and unique-
ness result of solutions of the problem (5) by using some results from the semigroup
theory. In section 3, we establish the exponential stability result. In section 4, we
give a numerical study with illustrative examples.

2. Well-posedness

In this section, we give the existence and uniqueness of solutions for the system (5)
using semigroup theory.
First, we introduce as in [17], new dependent variable

p(x,p,t) =u (z,t —p71) in (0,L) x (0,1) x (0,00). (8)

A simple differentiation shows that ¢ satisfies

7@ (2, p,1) + @p (2, p,8) =0 in (0, L) x (0,1) x (0,00). (9)
Hence problem (5) takes the form:

Pz Ztt = Q1 Zag + 2 Usg in (0, L) x (0, 00)
puutt:a3umz+a2zzw+ﬁex_M@(w71at) ) (O L)X(O’OO)

cOp = =Gz + By in (07L) (0,00) (10)
Toqr = —q— kO, n (07L) ( )

T =—Pp in (0,L) x (0,1) x (0,00)

with the boundary and the initial data

Z(Ovt):Zm(L’t):u(Ovt):uw(Lvt): I(O t) 9( ) Q( =
(,0) =20 () , 2z (x,0)=2(x) , 6(z,0)= 0() , ©€(0,L

u(x,()):uo(ac) ) ut(xvo):ul(x) ) Q( ,0):(] ( ) ) xE(O’L
(2, p,0) = fo(z,pT) in (0, L) x (0,7)
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Second, we introduce the vector function U = (z,v,u,,0,q, )", with v = z;, and
v ;VZtéonsider the following spaces:

H'(0,L) = {feH'(0,L); f(0)=0},

Hy(0,L) = {feH'(0,L); f(L)=0},

H?(0,L) = H?*(0,L)nH(0,L),
and

H=H"' (0, L)xL? (0, L)x H' (0, L)x L? (0, L)x L* (0, L)x L* (0, L) x L* ((0, L) x (0,1)).

Then H, along with the inner product

~ L L o2 L
<U7 U>H = pz/ vodx + pu/ Ypdx + (()[3 — a?) / Uy Uz dT
0 0 0

L L
(%) Qo ~ 5
—I—/O (\/071% + \/alzx> (\/071% + \/a1z$> dx + c/o 00dx

L 1
L
T ~ ~
+ 32 [Cagda il [ ot ptdoda (12)
0
0 0

is a Hilbert space for any U = (z,v,u,1,0,q,¢)T € H and U = (2,9, 4, 9,0, G, 5)T €
H.

The system (10) can be rewritten as follows:

{ Ui+ (A+BU =0, t>0,
U(.’E,O) = UO (:E) = (20’217u07u1ﬂ907q07f0)T7

where the operator A : D (A) C H — H is defined by

—v
(6] (6%)
- T —Uga
z Pz
-
—%u” - %zm - EHI + Mw + ﬁgo (z,1,1)
AU = Pu u Pu Pu Pu
1 B
E%ﬁ - iﬂ}x
1
nl TRk
0 1 0
TSDP

The domain of A is given by
D(A) ={U e |zue B (0,L); vp,q€ H (0,1);

0 € HL(0,L);9,0, € L*((0,L) x (0,1))
2z (L) = ug (L) = 0, (0) =0},
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and the operator B : D (B) = H — H is defined by

B — 1
Pu

coogooo

Now we have the following existence and uniqueness result

Theorem 2.1. Let Uy € H and assume that (2) holds. Then, there exists a unique
solution U € C (Ry,H) for problem (10)-(11). Moreover, if Uy € D (A), then

UeC(Ry,D(A))NC (Ry,H).

Proof. We use the semi-group approach. So we prove that A is a maximal monotone
operator and that B is a Lipschitz continuous operator.
First, we prove that A is monotone. Let U € D (A) , then we have

L L L 1
1
<AU,U>H=|u|/wdx+u/w<x71,t>dx+;/ dde-+lul [ [ epedpds (13
0 0 0 0

Using integration by parts and the fact that ¢ (z,0,t) = ¢ (x,t) , the last term in the
right-hand side of (13) gives

L1 . L . L
//Lppgodpdx:§/<p2(x,1,t)dx—§/w2dx.
00 0 0

Also, using Young inequality we get

L L
—u/ww(x,l,t)dx<|ﬂl/w dx + i/ (z,1,t)d
0 0

Consequently, (13) yields

(AU, U),,

R‘\H

L
/tf >0
0

Therefore, the operator A is monotone. Next, we prove that the operator Z + A is
surjective. For any F' = (f1, f2, f3, fa, 5, f6s f7)T € H , we prove that there exists a
unique U € D (A) such that

(Z+AU=F. (14)



SWELLING POROUS ELASTIC SOILS 107
The problem (14) , leads to solve the following system

z—v=f € H(0,L),

sz—alzm—QQUm:sz2 ELQ(O,L)7
(pU+|U‘)¢_0‘3U$w_QQZxx_60£+u<p(x7lvt) = pu fa er? (OvL)a (15)
Ce“”‘]m*ﬂd}m:c.}% GLQ(O,L),

(To+1)q+k0m:T0f6QLQ(O,L),

T+, =1fr€L*((0,L) x (0,1)).

The last equation in (15) with ¢ (z,0,t) = ¢ (z,t) has a unique solution given by
p
oz, p,t) = (z,t)e P +Te TP / e" 7 f7 (z,0,t)do. (16)
0

From the sixth equation in (15) , we define

L L
0 (z,t) = Togl/qw)dy—%/fe(y)dy (17)

x

Inserting v =2z — f1 , ¥ =u— f3, (16), (17) in (15)2 , (15)4 , (15)5 , we get

—0 Zgp + P22 — Qo Uz = g1 € L2 (0,L),

1
7043Umx+>\u7a22zz+mq:92 ELQ(OvL)v
k
L (18)
/q(y)dy—ﬂuxZQ:zGLQ(O,L),

x

c(ro+1)

4z + A

where

g1=p:(fi+ f2) €L*(0,L),

1
]
02 = pufs+ A fs+ 220 8, fwe”/e”ﬁ (z.0,t)do € L*(0, L),
0

F
L
m=cli+ 52 [fal)dy-ph e 120.L),

T

A= pu+lpl+pe.
To solve (18), we consider
B((z,u,9);(%1,9) =G (%1,q), (19)

. . 2
where B : [Hl (0,L) x H' (0, L) x L? (0, L)| — R is the bilinear form defined by
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L L L L
1
B((z,u,q);(i,ﬂ,d)):pz/zédx+)\/uﬂdx+%/q(jdm—l—al/zz@dw
0 0 0 0
L L L

+a3/uxﬂxdx+a2/ux§xd$+o¢2/zxﬂxdz

0 0 0
( )2 L /L L
c(10 + -
+()]€72/ /q(y)dy /q(y)dy da
0 T T
. L L
ﬂ(TOk‘+ ) (/qﬂdz/u&dw ,
0 0
and G : H' (0,L) x H' (0, L) x L? (0, L) — R is the linear form given by

L L L L

. - s +1 -
g(za%Q):/glzd$+/92Ud$+mT/93 /q(y) dy | dx.
0 0

0 T

Let V=H'(0,L) x H' (0,L) x L? (0, L) equipped with the norm
2

2 2 2 2 2 a2
G = 03l ol sl + | s ]
2
then, we can easily prove that
L L L
1
B (w0 el =p. [ 2doen [wdo s 252 [ o
0 0 0

o2 L L o 9

2 2

-2 d —uy + Jarz ) d

+(a3 al)/um x—f—/( alu + a12> T
0

2
2 MO H(Z,uvq)HV7

2
. T0+1 « . .
where My = min {pz, A, % 1,3 — —2 . Thus, B is coercive. Moreover, we
a1

can easily see that B and G are bounded. Consequently, by Lax-Milgram Lemma,
system (18) has a unique solution (z,u,q) € V satisfying (19).
Substituting z and  in (15); and (15)3 , respectively, we obtain

v, € HH(0,L),
then, inserting ¢ in (17) and (15)¢ we get
0cH(0,L).
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Similarly, inserting ¢ in (16) and bearing in mind (15)7, we obtain
@, 0, € L*((0,L) x (0,1)).
Moreover, if we take (2,%) = (0,0) € H' (0, L) x H' (0, L) , then (19) reduces to

L L L L L
O/MHC(TO’“H)O/ !q(y)dy !q(y>dy d:c—,eo/u@da:
[ Ydy | dz,vg € L*(0,L). (20)
- [ fa
That is
L
fooen {fro)
L L L
= [ -2 Jawa ) 4o | [away ) avaezon. e
0 T T

which implies

L
qx:ﬂux—c(miljl) (/q(y)dy) +g3, € L*(0,L).

So,
ge H'(0,L),
and the other hand, we have (21). Thus

L
q<o>/q<y>dy=o7 vie L*(0,L).
0

Since ¢ € L? (0, L) is arbitrary. Then,

q(0) =0.
Consequently
qe H'(0,L).
If we choose (@, G) = (0,0) € H* (0,L) x L?(0, L) in (19) we have
L L
/ (124 + aouy) Zpde = /(g1 — p.z) Zdx,VZi € H(0,L). (22)
0 0

This last is also true for any function ¢ € C' (0, L), ¢ (0) = 0 which is in H* (0, L),
thus

— Zpp — Qolizy = §1 — P22, € L? (0,L).
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Similarly, if we select (Z,G) = (0,0) € H' (0, L) x L?(0,L) in (19), we find

L L
/(ozguz + aazz) / <92 —Au— (Tok+ D) ) @dx,Va € H' (0,1). (23)
0 0

This last is also true for any function ¢ € C'(0,L), ¢ (0) = 0 which is in H' (0, L),
thus

—Q3Ugy — O2Zpe = g2 — AU — Wq, € L*(0,L).
Therefore,
gy Zew € L2 (0, L).
So,
z,u € H?(0,L).
Finally, from (15)g, we get
05 (0) =0,

and from (22), (23), we find
Z(L) [enze (L) + agug (L)] =0,
(L) [ozuy (L) + agzy (L)) =0
Since %,% € H' (0, L) are arbitrary. Then
2z (L) = ug (L) = 0.

Hence, there exists a unique U € D (A) such that (14) is satisfied. Consequently, the
operator A is maximal. With this, we conclude that A is a maximal monotone opera-
tor. On the other hand, it is obvious that operator B is Lipschitz continuous. Conse-
quently, A 4 B is the infinitesimal generator of a linear contraction Cy-semigroup on
‘H. Therefore, the well-posedness result follows from the Lummer Phillips theorem (

see [22] ). O

3. Exponential decay

In this section, we state and prove technical lemmas needed for the proof of our
stability result.

Lemma 3.1. Let (z,u,0,q,¢) be the solution of (10)-(11). Then, the energy func-
tional E (t), defined by

L L 2 L
Pz 2 Pu 2 1 a2 2
E(t)="1 dx + 2 dr+ = (s — =2 d
1 [ Qo 2 c [
- o) de+= | 6%d
waf (e ) aog [ v

L 1
L
+ 0 q2dx+w//<p2 (z,p,t) dpdx, (24)
0 0

2k 2
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satisfies

?MH

) < |u|/utdx / 2da. (25)

1
Proof. Multiplying (10); , (10)2 , (10)s , (10)4 by z¢ , us , 0, 74 respectively, in-

tegrating over (0, L), and Multiplying(10)5 by |u| ¢ , integrating over (0, L) x (0, 1)
then,using integration by part and taking into account the boundary conditions and
summing them up, we obtain

d L
2Tlt/ (p““?+pzzt2+092+0‘3u92c+a12§+2azzmux+%q2) da
1
d |p|7
a9 dpd
+dt2//<p x,p,t) dpdx o
0

ug p (z,1,t) dz.

T —

L 1L L
:%/ufd %/ / (x,1,t)dx —
0 0 0

Using the fact that

2 L L 2
@3 P
O{Sui + 0412320 + 20{2sz$ = (Oég — C“) /0 U;idl‘ + /0 (\/aug: + 1/0412Z) dz

(27)
Then, using Young’s inequality on the last term in (26) we have
L L L
—,u/utcp(x,l,t)dxglﬁ;/ufd / (z,1,t)d (28)
0 0 0
Inserting (27) and (28) in (26), we get (24) and (25). O

Lemma 3.2. Let (z,u,0,q, ) be the solution of (10) - (11). Then, the functional

L o L
I(t) = pu/ wgudr — —pz/ ziudzx, t >0,
0 aq 0

satisfies for any e1 > 0,

1 o2 L a2p2 L L
I/t < _Z _ 2 / 2d u 2Fz / 2d / 2d
1) < 5 (as a1> ; usdr + | p +451a% ; uydr + &1 ; 2idz

+ Co/ (0% + ¢” (z,1,1)) da, Vt > 0. (29)
0
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Proof. By differentiating I;(t), using (10)1,(10)2 and integrating by parts together
with the boundary conditions, we obtain

o2\ [L L L
I(t) = — <a3 — 2> / u?dx + pu/ uldr — 5/ u Odx
aq 0 0 0

L
— %pz/ Ug 2edx —u/ucp (z,1,t)d (30)
aq
0
Young’s and Poincaré’s inequalities lead to

L L L
1 2
—u/u(p(m,l,t)dxg 1 (0&3—32) /uida&—!—C’o/go2 (z,1,t) dx, (31)
0 0 0

L 1 o2 L L
- B u fde < - (a3 - 2) / u?dx + CO/ 0?dz, (32)
0 4 @1/ Jo 0
and : . .
o a2
— a—?pzA Urzedxr < 61/0 Z2dr + 4521/;42% /0 uidz. (33)
Substituting (31) , (32) and (33) in (30), we get (29). O

Lemma 3.3. Let (z,u,0,q,¢) be the solution of (10)-(11). Then, the functional

L 2 L
(6% Qg (&%)
I (t) = pyo up | ——u+ a1z d;v——z/ z(u+w/ozz)d:1c7t>07
A= 2/0 t(\/OTl 1) " fy vor '

satisfies, for any e9 > 0,

a2pz L L L
Ié(t) < _22a1 : thdaj—‘rcl/o ufdm+C€2 ; (92+ui+(p2 (.’L‘,l,t)) dx
2

+ea /OL (\(/);271% + \/oszw) dz. (34)

Proof. By differentiating I5(t), using (10)1,(10)2 and integrating by parts together
with the boundary conditions, we obtain

! a%p t 2 O‘%p k
I(t) = — z d w1 — z d
2(1) veoa Jo AOTT 02 (p “ 041\/071) /o e

L 2 L
— (g (ag — Zi) / Uy (Ozlum + \/alzz) dr + a2Pu u%da:
0 vV Vv

L

+\/a1zm> dﬂf*‘LLOéQ/QO x,1,t) (

0

i) oo

(35)

Using Young’s and Poincaré’s inequalities, we get

a%p g %P k 2 v 2
uy/ o — — = dr < 22 dr +C dr, (36
Qs <p a; o 041)/0 upzede < o zidr + 1/0 uidz (36)
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L
_,uag/gp x,1,1) (u—i—./ z)dm

L
2
( a2 Uy + /o1 zz) dx + C., /@2 (x,1,t) dx, (37)
0

2 L
« o
— Qo <a3 — ai) / Uy (;uz + \/alzm> dx
0 vV

IN
w|Q
o\h o

L 2 L
€2 Q2 2
<= | dr+C dz, 38
73/0 (\/071 +w/a1z) x + 52/0 usdx (38)
an

—aﬁ/ —u + a1z doe < 22 ' 22 4 + a1z 2d:c—|—C /L92dx
2 T T =~ 3 0 \/0471 x 1~x g2 o .
(39)

Inserting (36)-(39) in (35), we obtain (34). O

Lemma 3.4. Let (z,u,0,q, ) be the solution of (10) - (11). Then, the functional

L L
I5(t) :pu/ uutderpz/ zzpdx, t > 0,
0 0

satisfies

Ii(t) < /L 22 .+ 2d 1 a3 /L 2
st =— | \/071% vz | dr— o | as o) ), usdx

L L L
+ p- / zidz + py, / ujdz + Co / (0% + ¢* (z,1,1)) da. (40)
0 0 0

Proof. Differentiating the functional I3(t) using (10)1, (10), and integrating by parts,
we obtain

L L L L
Ii(t) = pz/ 22dx + pu/ uldr — ag/ u?dx — 2a2/ Uy 2 dT
0 0 0 0

L L L
- / 22dx — B/ Ouydx — ,u/uga (z,1,t) dx. (41)
0 0

0

L L L
— ag/ uidm - 2042/ UgZedT — 0q / Zidl‘
0 0 0
2 L L 2
042 2 042
=—|laz—— uyde — +Vaiz, | dex. 42
( ’ a1>/0 /0 (\/al ' ) ( )

Note that




114 C. BOULKHELOUA, H. E. KHOCHEMANE, AND L. BOUZETTOUTA

So, (41) becomes

L L L r
Ii(t) = pz/ zfderpu/ uldr — Ou,dx f,u/uga(:v,l,t) dx
0 0 0
0

2 L L 2
a3 5 / < Qo )
—|ag — —= uydr — Uy + /12, | dz. 43
( ’ a1> /o 0o \Vval ' (43)
Using Young’s and Poincaré’s inequalities
L 1 o2 L L
- 5/ Oupdr < ~ (ag = 2) / uidr + 02/ 02dz. (44)
0 4 a1/ Jo 0
L . L
u/ugo (z,1,t)d <4< 3—>/uidaz+C’2/ (x,1,t)dx. (45)
0 0
Substituting (44) and (45) into (43), we get (40). O

Lemma 3.5. Let (z,u,0,q, ) be the solution of (10)-(11). Then, the functional

L L
I(t) = —cpu/ 0 (/ ut (y) dy) dx, Vt >0,
0 T

satisfies, for any e3,e4,€5 > 0, the following estimate

I4()<—@/ d$+53/Luid£L’+€4/L <a2uz+\/a12m>2d=’f
0 0 0 Va1

pu [* 2 1 1 1 g 2 f 2
+ 55 quJng <1+++ )/ 0dx+65/g0 (x,1,t)dx. (46)
26 es &) Jo

Proof. By differentiating I4(t), using (10)2, (10)3 and integrating by parts, we obtain

L L L
I (t) = pu/ quedr — ﬂpu/ uidr + caz Ou,dx
0 0 0
L

L
L L
+ca2/ 9z$d:v+cﬁ/ 92dx+cu/9/<p(y,1,t) dy dz. (47)
0 0
0

xT

Using the fact that

L L
cag/ Ou,dx + ca2/ 0z,dx
0 0

L
0%) (65
<a3 - ) / Ouzdr + \/T/o g (\/oTlu”” + \/0129:) dzx
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Then, (47) can be rewritten as follows

L L o2 L
I (t) = pu/ quids — ﬁpu/ uidr +c <a3 — aj) / Oudx
0 0 0

L L
+ e 0 (aQuI + \/alzw) dx + cﬁ/ 0%dx
0

Va1 Jo v/ 1
L L
+cu/9/<p(y,l,t)dydm. (48)
0 T
Young’s inequality leads to
2 L L L
c <a3 - %) / Ougdr < 53/ uldr + %/ 02dz, (49)
Qi 0 0 €3 Jo
L L 2 L
cQg (%)} Q2 Cs 2
0| —u, + o zm) dr <e / <uz+\/a zm> dr + — 0=dx,
Vol Jo <\/O{1 ! * 0 Vo1 ! €4 Jo
(50)
and
L L L
pu/ quidx < B / uldr + Pu ¢*d. (51)
0 2 Jo 28 Jo
Young’s and Cauchy Schwarz inequalities lead to
L L L c L
cu/ﬂ/cp(y,l,t) dydx < 55/@2 (2,1,t) do + — /szaj. (52)
€
0 = 0 ® 9
Estimate (46) follows by substituting (49)-(52) into (48). O

Lemma 3.6. Let (z,u,0,q, ) be the solution of (10) - (11). Then, the functional

I5(t) = —CT()/O 0 (/ q(y) dy) dx, ¥Vt >0,

satisfies, for any g > 0, the following estimate

ok L L 1 L
IL(t) < ——/ 02dx + 56/ uidz + Oy (1 + ) / ¢*dz. (53)
2 Jo 0 €/ Jo

Proof. By differentiating I5(t), using (10)s, (10)4 and integrating by parts, we obtain

L L L
IL(t) = — ck/ 0%dx + 7'0/ ¢?dx — Toﬂ/ ugqdx
0 0 0

+C/OL9</ILq(y)dy>dx. (54)

Using Young’s inequality, we get

L L c, [F
— T()ﬂ/ upqdr < 56/ uldr + —/ ¢*dz. (55)
0 0 €6 Jo
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Young’s and Cauchy Schwarz inequalities leads to

L L ok L L
c/ 0 (/ q(y) dy> dr < ?/ 0%dx + C’4/ ¢*dz. (56)
0 x 0 0

Inserting (55)-(56) in (54), we obtain (53). O

Lemma 3.7. Let (z,u,0,q,¢) be the solution of (10)-(11). Then, the functional

:T//le (2, p, 1) dp de, (57)

satisfies
L L L 1
Ii(t) §/ut2dx—e_7 /<p (x,1,t) dx+7//<p2 (x,p,t)dpdz | . (58)
0 0 00
Proof. By differentiating I () and using (10)5, we obtain
L L L1
Ii(t) = /uf dx — eiT/goQ (z,1,t) dx — T//€77p<p2 (z,p,t) dpdz.
0 0 00

Using that fact that ¢ (x,0,t) = ¢ (z,t) and e™™ < e 7? <1 for all p € [0, 1], we get
(58). O
Now, we define the Lyapunov functional L(¢) by

L(t) = NE(t)+ NiIy (t) + Nolo (t) + 2 (I3 + Iy) (t) + N3I5 (t) + Nalg(t),  (59)
where N, N1, No, N3, N, are positive constants.

Theorem 3.8. Let (z,u,0,q,¢) be the solution of (10)-(11). Then, there exist two
positive constants k1 and ko such that the Lyapunov functional (59) satisfies

r1E () < L(t) < keE(t), ¥Vt >0, (60)
and
L'(t) < —pLE(t), b1 > 0. (61)
Proof. From (59), we have
L s L
|L(t) — NE ()| < Nlpu/ |ugu| dx + Nla—pz/ |z¢u| dx
0 1 0
L 2 L
(D) &5 Qg
+Nuoz/u< )dx—i—Nz/z( )dx
2Pu X2 o t \/a 1 2a1p o t \/071 1

L L L
+ 2py / |uwg| dx + 2p, / |22¢| dx + 2¢py, / dx
0 0

+N3070/0L 9(/:q(y)dy>

9(/:%(3/)@)

L1
dx—l—N4T//e—T”<p2 (x,p,t)dpdx.
00
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By using the Young’s, Poincaré’s, Cauchy-Schwarz inequalities, we obtain
IL(t) = NE ()| <vE(t), v >0,
which yields
(N=mE@®)<L{E)<(N+7)E({)),
by choosing N (depending on Ny, Na, N3 and Ny) sufficiently large we obtain (60).
Now, By differentiating £ (¢), exploiting (25), (29), (34) (40), (46), (53), (58) and
1 1 1

1
settingsl:E,EQZE,53:55:§,54:Z756 Fs we get
N L
ﬁ’(t)g[puﬂuwzvl <pu+“if; 1)01N22pu11v4]/u%dx
! 0
[N 7 N. 7
_ 7777]\[304 1+N3}/q2dx{a2pz 2120z]/2t2d$
kB NG
0 0
- 2 N L
_ <a3%> (1+1)082N21]/u dx
(051 2
0
[ ck N
- 62318C32C2C52NQCON1} 02da

o\h O\h

L ) 1
1
2/( Uy + zz> dr —Te TNy /<p2 x,p,t)dpdx
0 0

—[e7TNy—1-2C5 — NoCey — N1Co| [ ¢* (z,1,t)d (62)

O\h

Now, we select our parameters appropriately as follows:
First, we choose Ny large enough so that

O‘%pz
2,/0&1

Next, we select IV; large enough so that

N2—1—2pz>0.

1 a3
- O[g—f (N1+2) 052N2—1>0.
2 (e75]

We take N3 large such that
CkNg
2
We pick Ny large so that
e "Ny —1-2Cy — .N'QC'62 — N1Cp > 0.
We choose N large enough so that (60) remains valid, further
N  py

— 18C53 — 2C5 — 052N2 — CoN7 > 0.
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Finally, by taking |u| so small that All these choices with the relation (62) leads to

L 2
L'(t) <—a /o (zf +u? 4 ul + (Ozluw + \/alzx)

1

+02 + ¢* + /902 (z,p,t)dp | da. (63)
0
On the other hand, from Eq. (24), we obtain (61). O

Now, we can state and prove the following stability result

Lemma 3.9. Let (z,u,6,q,¢) be the solution of (10) - (11). Then, for any Uy €
D (A), there exist two positive constants Ay and Ag such that

E(t) < e ™Mt Wt >0. (64)
Proof. By using the estimation (61), we get

L'(t) < —p1E(t), t >0,
having in mind the equivalence of E(t) and L(t) we infer that

L'(t) < =M\L(F), t >0, (65)

where A\ = & A simple integration of (65) gives
K2
L(t) < L(0)e M >0,
£(0)
K1

equivalence relation (60) again. The proof is complete. (|

which yields the serial result (64) with Ay =

and by using the other side of the

4. Numerical study

In this section, we established the existence and uniqueness of the solution to sys-
tem (10) - (11), but it is challenging to determine the exact value of the solution.
To address this, in the following, we will numerically solve the system in the one-
dimension domain ) of length L., allowing us to determine approximations of the
solution. To this end, we will employ the Euler scheme for discretizing temporal vari-
able and the classical finite differences method for discretizing space. To solve the
discretized problem, we use a fixed point algorithm with study of their convergence.
In addition, we provide an example where the numerical experiment demonstrates
that the discrete energy E™ decays exponentially for different choices of the system
parameters, supporting the asymptotic behavior of the discretized issue solution.

Let us introduce the functions z = z;, ¥ = u; and for any N,m,M € N, we
introduce the nets

e i L

Qv ={zi=p;=ih, i=0,1,..,N+1, Whereh:m 1,
T

Ty ={tn =nAt, n=0,1,.. M +1, WhereAt:M—i—l %,

YTy ={th=nAt, n=-M,-M +1,..,0, with0< M' < M }.



SWELLING POROUS ELASTIC SOILS 119

such that the width of delay mesh is 7 = M'At.
Now, using a backward Euler scheme in time and finite differences in space, we
define the following approximation of the derivatives:

R i1 — Pi1 [ '
za (Tirtn) = y Qu (Tiytn) = ————, irtn ;
b (1. t2) g 6o wit) = P TEL g (g, = P
¢7_1—M' _¢7_1—M'—1
qbt(xi,tn,M/): t L y 1§’L'§N, 1§n§M

At

where ¢ = ¢ (x,t) be a function with second order partial derivatives. As a result, our
problem consists to find (2,4, 0, ¢, ) satisfying the discrete formulation of the system
(10) - (11) presented by the following numerical scheme

Pz _ a Qs
Z@Er -z ) = (2l — 220 + 20 ) + hg( ey = 2ul +ul ),

At 1 K3 h2

pi(az —uy” b= 04;23 (ufyy —2ul +uf_ ) + az( 2P, — 220 + 2 )
Atﬁ h h

Ton (1, —0r ) — & (“?71\4/ - U?fMLl) ;

. -1 I} o (66)
At(@" - = o (41 — i) + Qh( i1~ W),

70 n— 1)

k
At (6" — 4 =—q - oh (071 —071)

T —1 1

A7 (o —wii') = o (F 1 — e0i-1)

= 2 (x4, tn), 2 = zi (@, tn), Ul = u(x,ty), WF = w (zi,t), 9? =

0 (2istn), @ = q(@ita), i ™™ = (@i tn-rr), ¢ = ¢ (xspj ta) for all i =
n—M'’

where 2

SN, j=12...,mandn=1,2,.., M, with ¢ (2;, pmt1,tn) = u; accord-
ing to (8). To simplicity our numerical calculations in our scheme, we consider the
discrete boundary conditions given by

— n n __ ngn
2y =ug =0x11 =qy =0, 2541 = 2§, U1 = Uy, 07 =0, (67)

and initial conditions

20 =20 (x;), ud = ug (z;), 69 = 0o (;), ¢ = qo (z;)

29 = 21 (x;) and 00 = uy (x;)

oo = Uy, up ™M = fo (i ta—nrr) s @)= Jo (@i, pjt—nrr), tnnr € T,
~n—M'

PRp1N+1 = Uy
(68)

where
2P =2 AEEP and wl = ul T+ Ata?

3
foralli=1,2,.... Nand n=1,2,...., M.
Note that to find {z",a", 0", ¢", ¢"}, we need to solve five coupled systems of
algebraic equations. So, to solve the problem (66)-(68) at each time step we propose
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to consider the following fixed-point algorithm:

a At _ _ _ as At _ _
B = o T 2 T T S G 2 T )
z 4
B < VAN A -1 d-1y , At 4 -1 -1
u;" = PN (wigy = 2w +ul )+ P (zin =227 +200)
u
At A~ ! ’
+2ﬁ ; (92}1 L gri- 1) et 1 (u?fM _ M 71) 7
Pu

At _ At —~
Q?J _ anl < n,d—1  n,l 1) + ﬂ (’LL:-I_,;_ll U?jl);

i %h 441 i—1 och

At kAL N .
(1 + 7)(] ! = - (02+1 - 01 ll) +q7, 17

T0 ¢ 2h7’0
n,d nfl,lfliﬁ n,d—1  n,l-1
Pij = Pij ohr \Fij+l ~ Pij-1
(69)
with
n,0 _ _n—1 n,0 _  n—1 n,0 _ pgn—1 n0 _ n—1 nd _ _n—1]1 ~n,l
Z; =z ) Uy - ’LL ’ 91 - 91 y 4q; =q; y 2 T % + AtZl s
n,l n—1 l Anl n,0 _ ~n—M’
u, =, + Atu,; ", e
(70)

foralli,j=1,2,...,. Nyn=1,2,... M and [ =1,2,....

At each time step, we solve the scheme (69) by an iterative procedure that was stopped
when the difference between two successive iterations became smaller than a given
tolerance €.

4.1. Convergence of the proposed point fixed algorithm. Let
an <’\n l) Un J (An l) én,l — (’9\”’[) An,l — (’ﬁ’l)
v J1<i<N’ v Ji<i<n’ v Ji<i<n’ @ i 1<i<N’

Il = (‘p23’l)1<i n Then, the system (69)-(70) can be rewritten as follows
= At At
Zn,l:althZTL,lfl_'_OQh AUnl 1_|_Zn 1
Pz Pz
An,l_a?’At n,l—1 oy At 1, BAt -1 n—1
Ol = o AUMT 4 T A+ S B O™ +0
_ﬁ (UH—M/ _ Un—M'—l
Pu
71)
At BAL - (
n—1 _ n,l—1 n,l
© © % h cQ™ + —- 2l DU
At k At
1 = n,l _ ~—_BO™ l n—1
( + . ) Q 2o +Q
19n,l — ﬂnfl,lfl _ At E,Lgn,lfl

2h T
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with

ZnO Zn— 1 UnO Un— 1 @nO on— 1 QnO Qn 1 an Zn— 1l+AtZ”l
Unl Un— 1l+AtUnl 19" _Un M’

(72)
where A, B,C, D are real matrices of dimensions (n x n) and F is a real matrix of
dimension (n2 X n2) defined as follows

A =diag(1,-2,1), D = diag(—1,0,1),

1 0 0 0 - 0 -1 1 0 0 - 0
-1 1 0 0 - 0 -1 0 1 0 - 0
0 -1 1 0 0 -1 0 1
C = , B=
0 0 -1 0 0 0 -1 0
1 0 : 0 1
0 0 0 -1 1 0 0 0 -1 0
D E F
E, D .
E=| " , E1 = Opnygn
. R Eq
E, --- Ey D

Now, we are ready to state and prove the following convergence result

Lemma 4.1. Let (2"’1, ﬁ”’l, @"’l, @”’l,ﬁ”’l) be the solution of the system (71)-(72).

Then, the fized point algorithm proposed to solve the system (71)-(72) converges if
and only if the following condition is satisfied

Al < min {12|]}E|[h\/ i at s s0.p

1—v1+4+4 k
where (At)y = Vit with r = o2 1ICI[1IBI[ and ]|.|[ represent a subordi-
c
nate matriz norm to the vector norm |||, .
Proof. From (71); we can write
agAt

Hgmm _ ‘ Oflﬁt

<

|A| Han Zn,l—lHV |A| HUnl Uml_l”v’

(74)

On the other hand, we use the fact that

an Zn— 1+Athl
an 1_Zn 1+Atznl 1’

and
Unl Un— 1—|—Af,Unl
Unl 1 _ S L 1+AtUnl 1
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Then, (74) can be rewritten as follows

’ < Oq(At)
1% p.h?

After literations, we get

l
a1(At)? -~ ~
< ( 1( ) ]|A|[> HZn,l - Zn,O

Jall || - 27| +ﬂ Jal ||t - 0|

HZ\n,IJrl _ Z\n,l
v p.h?

H /Z\n,lJrl o Z\n,l

’v - p.h? ’V

k=l—1 k+1
{rl—k _ [ynid—k—1 H . 75
+a22:%< Q | ()

By using with (71)s, we can easily obtain

Hﬁn,l+1 _ gl ’ < ( 3(At)? 114 ) HUn 1 _ o ’
v puh? v
At At

p(Uh ) |A| HZn J+1 an ’ =+ 2B - |B|[ H@n,l _ @n,l—lHV'
(76)

Also, from (71)3 and (71)4, we have

n n, At n, n,l— IBAt 3n rin,
Jontt—emt|l, < sl @ - vy, + DI gt - o

(77)

and LA

n, n, M t n, n, p— T

lQ =@l = == UBIL[|e™ ! =€l m =15 (79)

From (71)5, we can write
Hﬁn,l+1 _ ,lgn,lHV < Hﬁn—l,l _ ﬁﬂ—l,l—l“v + ﬂ HEH Hﬁn,l _ ﬁn,l_le’ (79)
2h T

we estimate the last term of (79), every time, and replacing the result in (79), we

obtain
no no
RS 35 6D DL )
=0 1 i=1
with
At
Z:%Hﬂ"’l—19”’0"‘/7/422%“]5“,
0
and
i—1
_ —2 l—(01402)-3 l_jz::(’gj_l ) ) .
2S5 DI SIS DRSS SN R e T
i 1=0 09=0 03=0 ;=0

where

G = { 0, it =0, (81)

0;, otherwise,

v
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and for all7 > 1

ZCJ i i
-1 l—01—-21—(01+02)—3

Z Z Z Z M lgk ’lgn_“_kzilak_(i_l) —ﬁn_i7l_kélak_i

01=0 o025=0 o3=0 ;=0 %

For ng sufficiently large such that > o =1 — i, the estimate (80) becomes

k=1
no I—1 l—o1—2 l_zcj_l 4
[ o7 — 19"Z|\V<ZZ D> > - Z o | A A
i i=0 01=0 02=0 o;=0

In order to (ﬁ"’l) converge for [ — oo, it is necessary that ps < 1, which leads to

2h T
At < TEL (82)

Now, by replacing (75) into (76), we have

l
as(At) PO
A H n’li " H
(W | |[) gt =m0

An)? I+1 o o
) -2,

p.h?
1 k+2
gz ( |A|[> HUnA,lfk _ Un,lfkle

L
pub

1>0

HUn J+1 Unl

\%4

+ I|B|[||e™" — o™, . (83)

From (77), we get

At At
||@n,l o @n,l71||v S ﬂ”CH ||Qn,l71 o Qn,l72||v 5 |D| HUnl Unl IHV.
From (78), we arrive at
kAt
HQn,l 1 in Qva H1 |B| H@nl 1 @n,l—QHV’
then,
[ L M- [T ]
ﬁAt 1-2 R R
< ,y(l)leG)n 1_gn OHV 11D Z,kaUn,l—k _ Un,l—k—lHV,
k=0

where
_kpa (At)?

0 =L liciB
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Therefore, the estimate (83) becomes

H ﬁn,l-‘rl _ f]\n,l

v

< (a;;(uAt) ]|A|[> (Sj>2<w]|A|[>l+l Hﬁn,l_ﬁn,o

v

141
az (a1 (At)? Snl _ on0 B At -1 1 0
(S nal) || zmr -2+ S 1B e - e
+a1< Ll V+2puh1| 17 I
1—2 2 k+2
a1 (At) 1 (At Ik d—k—1
——1|A — | = B|[1I1D|] HU" - U™ H .
(@) ( L) [>+ A0 B D )
k=0
To reduce this last estimation, we use the following notation

ﬁn,lJrl o ﬁn,l

‘ S X1 ’ﬁn,l o ﬁn,O
|4

‘ + X2.1 HZn,l o Zn,O
14

v

1—2
+xsal|Omt —0m0 L+ Y &,

0’1=0

ﬁn,lfol N (’}n,lfo'lfl” ’ (84)
1%

where l -
| [as(An) az\ 2 [ ar(AL)?
Y= (MuAu) +(2) <thQ]|AI[> ,
+1
x2,la2<a1(At)1|A[> ,
aq puh
At
I ]\Bl[vé‘l,
N Q9 O[l At 1 BAt o1
b= [ (2) ( o A|> L (22 yorag

By using the same iterative process as in the estimation of (79), we can estimate the
last term of (84) as follows

no—1
. n,1 _ 31,0
| < (xu+ ZL) ot om0
no— 1
+ <>m+ > \If) |2 - zne
no—1 no
(ot S o)t o 4 3
=1

=1

H fjn,l-{-l _ ﬁn,l

v

with
i1

1= 37 ¢j—(i+1)
j=0
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i—1
=% o= (i+1)
i=0

v, = Z 2l i Hfam
— G‘k 7

0‘1:0 02:0 0'7',:0
i—1

1= ¢—(i+1)
j=0

d; = _— H&W

Slfzak 7 iy

0’1:0 0'2:0 0‘1:0
1= 3 = (it1)
-2 l—01-3 i=0 no 29 29
n,l— o;—(no—1) nl—> o;—ng
A, = E E E I |§(7i U i=1 — i=1 ,
01=0 o05=0 o;=0 i=1 Vv

(o2 (o202 AR BANY ) 1
= [ (22) (25 0an) (%) IBIDIg | k=T

and 5 is defined by (81).
Until Zazflfnofl ((>no+1),

i=0
’nofl R N
< (o Sl -,

no— 1

+ <>m+ > w) |zmr -z
no— 1

+ <X3,z + 3 ‘In-) |[emt—em?,
i=1

I*Z si—(i+1)
no -2 170'173

>y v e

=0 0'1:O 0’2:0

H ﬁn,l+1 _ ﬁn,l

U’n 1 Un ,0

In order to ((7 "*l) N converge, it’s necessary and sufficient to the following conditions
>0

hold

a (At)
3( ]|A|[ At < h 043]|AH
(651 At)
R alnAu )
al(At)
Pl I At <y [
and
Yo < 1.

This last condition is equivalent to
(A1)”

rm <1, (86)
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with
k

:WHCHHBH,

the inequation (86) holds if and only if
At €](A)y, (At),,

where
1—+1+4 1
(), = —Y T <o, (A, = —
Because At > 0, Therefore, (86) holds if and only if

At €]0, (At),].

By the same technique, we can easily obtain

Hz\n,l-‘rl o Zn,l

no—1
s (Z @;) joni —en,
=1

- z G—(i+1)

ng -2 l—o01—3 i=

DI SN VN | 4

=0 01=0 o02=0

with

or+1
. - (6] O[l(At)z "
gdk - (041) ( pth ]|A[> ) k

i—1
=30 ¢—(i+1)
i=o

)LD I IR M

0’1:0 0’2:0 O'i:O

i—1
=3 ¢—(+1)
j=o

LEP VD ML S T WH@’“

0'1:0 0'2:0 O'iZO

i—1
=3 o= (it1)
3=0

o= ) 31_ UHHE"“

0'1=0 O'2=0 O'ri=0

we deduce that under the same conditions (85) on At , the sequence (E”Z)

verges.

no—1 R R
‘V < (XM + Z @) Hzn,l N Zn,oHV
no—1
(o Bl o,

Un2 Unl

‘ )

1>0

(87)

con-
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From (77)
H@n,l _ @n,l—l”v
At -2 R R
< 7(1)—1”@”’1 _ @n,OHV + %HDH Z 7([);1 Un,lfcrl _ Un,lfcnleV
0'1:0

Un7l—01 o Un7l—01—1 HV’

1—2
<y et el + Y €

o1=0

where
B At
11
§o, = ’Yglﬂ]|D|[~
By using the same technique as in the estimation of the last term of (84), we deduce
that
| J—1 -1 1 0
o7~ 01, <5k e - om0

no—1
P (X
=1

Zni_ En,oHV n (I);/H@ng _ @n,oHv)

ﬁn,l _ ﬁn,O ‘ 4 \I/”
v 4

no+1— Z oj—(i+1)

no -2 1—61—3 j=i—1 no
1530 D10 DESIED DU | (4 S Y
=1 0’1=O 0'2=0 0'1',=0 =1
with
At
7.0 k=11,

gg,\ ’YO 2 h ]|D|[7

i1
=3 ¢—(i+1)
=0

-2 |l—01—-3 J
LD > 1I¢
i on?
0 llfz or—1 el

0‘1:0 0‘2:0 o=
i—1
1= o (i+1)
1—2 l—01-3 j=0
"o __
W=D o XX, Hﬁak»
0'120 ag:O 0’1‘:0 - k=1 ak i
i—1
=3 ¢j—(i+1)
j=0

-2 |l—01—3 J
@Q’:Z Z Z 31_ - ZHg

O’1=0 0'2=0 0'7;=0
In order to the sequence (@”’l) />0 converges, it’s necessary and sufficient that vo < 1.

From (78), if (@"*l)l>0 convergeg, then, (Q"’Z)DO converges under the same condition

n (@"’l)l>0. Therefore, from (82), (85) and (87), the fixed point iterative scheme
converges if and only if At verifies (73). O
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4.2. Approximation of the discrete energy. To approximate the continuous
energy (24), we use the trapezoidal quadrature formula to compute the integral I =

/OL f(x)dx

N+1
In= aif(x;)~1,
i=0
. N . h .
where the weights {a;};_, are given by ap = ay41 = 7 and fori =1,2,..., N, a; = h.
Concerning the trapezoidal quadrature formula in tow dimensional case to compute
the last part of (24), we use the following approximation

2
| [ #dude =T (0.0 + o) + Fanan o) + fansn )

n?

+ 5 Z (f(xi,vo) + f(@iyn+1))
i=1

Therefore, the discrete energy at the time step ¢,, of system (66)-(68) is given by

N+1
U n
E" fzazpz 0 pu (@) +e(07) + 2 (@) +on ((z)])" (89)

+az ((u2)])” +2b (u0)] (22)]]

h2
+ %[ 1 ((‘Po 0)2 + (@g,N+1) (Y1, 0)2 + (QD?VH’NH)2)
h2 N 9 h2 N h2 N
T > (v8,)" + 5 > (k) 5 > (o)
Jj=1 j=1 =1
h2 N 5 ) N N )
Y Z (Pingr) +h ZZ (1),
i=1 i=1 j=1
with
ﬂ;l = Ut (xiatn)7 (uac):t = %,
B= a(mta), () = T

which is a discretization of the continuous energy (24).

4.3. Numerical illustration. In the table below, we consider five different choices
of delay’s weight and we note that the asymptotic behavior was reached in the last
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case even if in the first four cases the weights of delay are not considerable. This shows
the great influence of the delay on the stability of this type of system throughout time.

Case | Weight of delay | Iterations time | Asymptotic behavior
1 pw=0.9 200 Unreached
2 u=10.03 200 Unreached
3 w=0.005 200 Unreached
4 w = 0.0004 200 Unreached
5 © = 0.00008 200 Reached

Tablel. Asymptotic behavior for different cases of delay’s weight.

In the next, we describe the following numerical example where the asymptotic be-
havior was reached, that is the case when py = 0.00008 and for different choices of
the system parameters with the condition (2) holds.

For this numerical test, we choose the following different values for the coefficients
of the system

p: =35 a3=02 p=08, a;=0.1, =005 7=0.1
pu=15 a; =01, c=4, 10=0.06, c=1.5, k=105

We run our code for the following discretization parameters: N = 100, m = 150,
M =200, L =1, T =1 and take ¢ = 10~°. With the following initial conditions

20 (x) = 1072 (:v3 - ;:ﬁ) , 71 (x) = é (22% — 4z), up (z) = é (22% — 2z),

fo(z,t—7)= 5 1073 cos(z). Cos(ﬁ (t—1))

with the above parameters choice, we deduce that

2h T Pu Pu
= 4.901960, h =0.013424, h = 0.018985,
112l V as]|All V e JIA]]

= 0.029000, (At), = 34.766946.

v ]\AH
with
]|M|[:m?XZ\Mij|o
j

Note that

. f2hT Pu Pu \/ Pz }
dt = 0.005 < 0.013424 =min h h h (An), b
{wu \/03]A|[ \/a11|A|[ ar A (A2

which confirms the convergence of the algorithm.

Here are the evolution in time of the solutions z,u, 0, ¢, ¢ (z,1,t) and of the discrete
energy. In above numerical test, the condition (73) holds and graphics presented in
the Figures 1,5 show the evolution in time of the approximations solutions z, u, 6, g
and ¢(x,1,t) on the interval [0, T, for different choices of the system parameters and
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)

FIGURE 1. FIGURE 2.
Evolution in time of the function Evolution in time of the function
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FIGURE 3. FIGURE 4.
Evolution in time of the function Evolution in time of the function
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FIGURE 5. FIGURE 6.
Evolution in time of the function Evolution in time of the discrete
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of the initial data. Furthermore, the Figure 6 shows that the approximate energy (88)
decays in an exponential manner which confirms the main theoretical result obtained.
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