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Abstract. In this paper, we obtain a fixed point result for multi-valued mappings satisfy-
ing Feng-Liu type integral inequality in the framework of partial metric space without using

Pompeiu-Hausdorff distance. Our result extends an existing result in the integral setting for

partial metric space. A common fixed point result and a coupled fixed point result of integral
type are also obtained. The results are supported by suitable examples. An application is

given to functional equations arising in dynamical programming.
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1. Introduction

Partial metric space extends the notion of metric space by allowing for a non-zero self
distance between the points. This concept was pioneered by S. G. Matthews in 1994
[23] while investigating the denotational semantics of dataflow networks. His work
signified the applicability of the Banach contraction mapping theorem in a broader
context of partial metrics for program verification applications. Following this de-
velopment, many authors have derived different fixed point results in partial metric
space (refer to [2, 3, 11, 14, 16, 20, 26]).

Fixed point theory for multi-valued mappings was initiated by Nadler [24] in 1969
by derivation of fixed point results considering complete metric space for multi-valued
contraction mapping. In 2006, Feng and Liu [13] proved a fixed point result for multi-
valued contractive mappings which is a generalization of Nadler’s fixed point theorem.
In [17], Jaleli and Samet derived a new type of contraction mapping in the framework
of generalized metric space by introducing a set of functions θ from (0,∞)→ (1,∞)
with some specific conditions. Later in 2015, Altun and Minak [1] established a new
contraction type multi-valued mapping in metric space considering Jaleli and Samet’s
technique for single valued mappings by adding a weaker condition on θ. Based on
these, Nguyen and Phuong [25] extended the result of Feng and Liu [13] for multi-
valued mappings using a wider class of functions θ by replacing the intervals by [0,∞)
and [1,∞).

The theory of dynamic programming originates from the domain of multistage de-
cision processes, where the emergence of certain functional equations plays a pivotal
role for its development. In [7, 8], Bellman first derived the existence of solutions for
a certain class of functional equations through the application of Banach fixed point
theorem. Later Baskaran and Subrahmanyam [5], Belbas [6], Bhakta and Mitra [9],
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Bhakta and Choudhury [10], Liu [21], Kaliaj [18], Rasham et al.[27] and others estab-
lished the existence, uniqueness and iterative approximation of solution for different
types of functional equations by using fixed point results.

Motivated by these works, in this paper, we establish an extension of the fixed point
result by Nguyen and Phuong [25], considering partial metric space in the integral
settings. Furthermore, we derive a common fixed point result and a coupled fixed
point result satisfying Feng and Liu inequality for multi-valued mappings. The results
are obtained without using Pompeiu-Hausdorff distance. An illustrative application
is presented which demonstrates the utilization of the common fixed point result to
the existence of solution for a system of functional equations that emerges within
certain types of continuous multistage decision processes.

2. Preliminaries

Before proceeding to the main findings, several fundamental definitions and related
results are presented.

Definition 2.1. [23] For a non-empty set X, let p : X ×X → [0,∞) be a mapping
satisfying the following axioms :
P0 : 0 ≤ p(x, x) ≤ p(x, y),
P1 : p(x, x) = p(x, y) = p(y, y) if and only if x = y,
P2 : p(x, y) = p(y, x),
P3 : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y),

for all x, y, z ∈ X.
Then p is called the partial metric and the pair (X, p) forms a partial metric space.

Some examples are as follows.
(i) If X = R+ ∪ {0}, p(x, y) = 1 + |x − y| for all x, y ∈ X, then (X, p) is a partial

metric space.
(ii) Let X = {0, 1, 4} and p(x, y) = 1

4 |x − y| +
1
2 max{x, y} for all x, y ∈ X. Then p

is a partial metric on X (refer to [3]).

Definition 2.2. [23] Let (X, p) be a partial metric space.
(i) A sequence {xn} in (X, p) is said to be Cauchy if and only if lim

n,m→∞
p(xn, xm)

exists and is finite.
(ii) A sequence {xn} in (X, p) converges to y in X if and only if lim

n→∞
p(xn, y) =

lim
n→∞

p(xn, xn) = p(y, y).

Definition 2.3. [23] A partial metric space (X, p) is said to be complete if and
only if every Cauchy sequence {xn} in (X, p) converges to a point y in X, that is,
p(y, y) = lim

n,m→∞
p(xn, xm).

For a partial metric space (X, p), suppose P (X) denotes the collection of all subsets of
X and CBp(X) signifies the set containing all non-empty closed and bounded subsets
of X relative to the partial metric p.

Let (X, p) be a partial metric space. A point x ∈ X is said to be a fixed point of
a multi-valued mapping T : X → P (X) if x ∈ Tx.
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Definition 2.4. [19] Let (X, p) be a partial metric space, C ⊂ X and f : C → R+ be
a mapping on C. Then f is called a lower semi-continuous mapping on C whenever

lim
n→∞

p(xn, x) = p(x, x) implies f(x) ≤ lim
n→∞

inf f(xn).

3. Main Results

We consider the family Θ of all functions θ : [0,∞)→ [1,∞) satisfying the following
conditions ( refer to [17, 25]):

(Θ1) θ is non-decreasing,
(Θ2) for each sequence {tn} ⊂ [0,∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0+.

Also, let Φ be the family of all functions φ : [0,∞)→ [0,∞) satisfying
(Φ1) φ is a continuous mapping,
(Φ2) φ is Lebesgue integrable and summable,
(Φ3) for every ε > 0,

∫ ε
0
φ(t) dt > 0.

Using the above (θ, φ) functions, first we derive the following multi-valued fixed point
result considering the Feng-Liu type integral inequality. Our result extends the fixed
point result of Nguyen and Phuong [25] in the integral setting for partial metric space.

Theorem 3.1. Let (X, p) be a complete partial metric space and T : X → CBp(X)
be a multi-valued mapping such that x→ p(x, Tx) is lower semi-continuous. Assume
that there exist real numbers a, s, r ∈ (0,∞) with s > r, l ∈ (0,∞], k ∈ [0, 1) and a
function θ ∈ Θ, φ ∈ Φ such that

(A1)
∫ θ(t)

0
φ(t) dt ≥ 1 for all t ≥ 0.

(A2) For any sequence {λn} in [0,∞), lim
n→∞

∫ θ(λn)

0

φ(t) dt = 1 if and only if lim
n→∞

λn =

0+.

(A3) lim
µ→0+

∫ θ(µ)

0
φ(t) dt− 1

(
∫ µ

0
φ(t) dt)r

= l.

If for any x ∈ X with p(x, Tx) > 0, there is y ∈ X such that∫ p(x,y)

0

φ(t) dt ≤ a

(∫ p(x,Tx)

0

φ(t) dt

)s

and

∫ θ(p(y,Ty))

0

φ(t) dt ≤

(∫ θ(p(x,Tx))

0

φ(t) dt

)k
,

then there exists u ∈ X such that u ∈ Tu.

Proof. Let A = {x ∈ X : p(x, Tx) > 0}. If A = ∅, then T has a fixed point in X.
Suppose A 6= ∅. Let x0 ∈ A, then there exists x1 ∈ X such that∫ p(x0,x1)

0

φ(t) dt ≤ a

(∫ p(x0,Tx0)

0

φ(t) dt

)s

and

∫ θ(p(x1,Tx1))

0

φ(t) dt ≤

(∫ θ(p(x0,Tx0))

0

φ(t) dt

)k
.
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If x1 /∈ A, then x1 is a fixed point of T . Suppose x1 ∈ A. Then there exists x2 ∈ X
such that ∫ p(x1,x2)

0

φ(t) dt ≤ a

(∫ p(x1,Tx1)

0

φ(t) dt

)s

and

∫ θ(p(x2,Tx2))

0

φ(t) dt ≤

(∫ θ(p(x1,Tx1))

0

φ(t) dt

)k
.

If x2 /∈ A, then x2 is a fixed point of T . If x2 ∈ A, then continuing in the above way,
we can generate a sequence {xn} in X such that xn ∈ A with∫ p(xn,xn+1)

0

φ(t) dt ≤ a

(∫ p(xn,Txn)

0

φ(t) dt

)s
(1)

and

∫ θ(p(xn+1,Txn+1))

0

φ(t) dt ≤

(∫ θ(p(xn,Txn))

0

φ(t) dt

)k
for all n ∈ N ∪ {0}.

Using (A1),

1 ≤
∫ θ(p(xn+1,Txn+1))

0

φ(t) dt ≤

(∫ θ(p(xn,Txn))

0

φ(t) dt

)k

≤

(∫ θ(p(xn−1,Txn−1))

0

φ(t) dt

)k2

≤ ...... ≤

(∫ θ(p(x0,Tx0))

0

φ(t) dt

)kn+1

. (2)

Since k ∈ [0, 1), lim
n→∞

∫ θ(p(xn,Txn))

0

φ(t) dt = 1.

By (A2),

lim
n→∞

p(xn, Txn) = 0+. (3)

Then by (A3), there exist r ∈ (0,∞) and l ∈ (0,∞] such that

lim
n→∞

∫ θ(p(xn,Txn))

0
φ(t) dt− 1(∫ p(xn,Txn)

0
φ(t) dt

)r = l .

Suppose l <∞, then there is some k0 ∈ N such that∣∣∣∣∣∣
∫ θ(p(xn,Txn))

0
φ(t) dt− 1(∫ p(xn,Txn)

0
φ(t) dt

)r − l
∣∣∣∣∣∣ ≤ l

2
for all n ≥ k0,

i.e.,

∫ θ(p(xn,Txn))

0
φ(t) dt− 1(∫ p(xn,Txn)

0
φ(t) dt

)r ≥ l

2
for all n ≥ k0,

and so, (∫ p(xn,Txn)

0

φ(t) dt

)r
≤ 2

l

(∫ θ(p(xn,Txn))

0

φ(t) dt− 1

)
.
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Again, suppose l =∞. Let M > 0. There exists k1 ∈ N such that∫ θ(p(xn,Txn))

0
φ(t) dt− 1(∫ p(xn,Txn)

0
φ(t) dt

)r ≥M for all n ≥ k1.

Thus, for l ∈ (0,∞], there exist C > 0 and k2 ∈ N such that(∫ p(xn,Txn)

0

φ(t) dt

)r
≤ C

(∫ θ(p(xn,Txn))

0

φ(t) dt− 1

)
for all n ≥ k2,

and so,(∫ p(xn,Txn)

0

φ(t) dt

)r
≤ C

(∫ θ(p(x0,Tx0))

0

φ(t) dt

)kn
− 1

 . (by (2))

Since lim
n→∞

(∫ θ(p(x0,Tx0))

0

φ(t) dt

)kn
− 1

 = 0,

so, lim
n→∞

(∫ p(xn,Txn)

0

φ(t) dt

)r
= 0.

Thus, there exists k3 ∈ N such that∫ p(xn,Txn)

0

φ(t) dt ≤ 1

n1/r
for all n ≥ k3. (4)

From (1) and (4), we get,∫ p(xn,xn+1)

0

φ(t) dt ≤ a

ns/r
for all n ≥ k3.

Now, for m > n ≥ k3,∫ p(xn,xm)

0

φ(t) dt ≤
∫ p(xn,xn+1)

0

φ(t) dt+

∫ p(xn+1,xn+2)

0

φ(t) dt+ ...

...+

∫ p(xm−1,xm)

0

φ(t) dt

=

m−1∑
i=n

∫ p(xi,xi+1)

0

φ(t) dt ≤ a

∞∑
i=n

1

is/r
.

Since s > r, lim
n→∞

∫ p(xn,xm)

0

φ(t) dt = 0, and so, using (Φ3), p(xn, xm) → 0 as

m,n→∞, i.e., {xn} is a Cauchy sequence in (X, p) and so, converges to some u ∈ X.
Therefore,

lim
n→∞

p(xn, u) = p(u, u) = lim
n→∞

p(xn, xn).

Since x→ p(x, Tx) is lower semi-continuous and xn → u as n→∞, we have,

p(u, Tu) ≤ lim
n→∞

inf p(xn, Txn)

i.e., p(u, Tu) = 0 (by (3))

and so, u ∈ Tu. �
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The following example exhibits the above Theorem.

Example 3.1. Let X = [0,∞), and define a complete partial metric p on X by
p(x, y) = max{x, y} for all x, y ∈ X. Let T : X → CBp(X) be defined by

Tx =

{
[0, x], if x ∈ [0, 1)

[nx, (n+ 2)x], if x ∈ [n, n+ 2), n = 1, 3, 5, . . .
(5)

Assume θ(t) = 2
√
t with r = 1

4 , a = 1 = s, k = 1
3 and φ(t) = t2 + t + 1

6 for all
t ∈ R+ ∪ {0}.

Figure 1. Graphical representation of fixed point.

Case 1: For x ∈ [0, 1), p(x, Tx) = x.
We take y = 0. Then∫ p(x,y)

0

φ(t) dt =

∫ x

0

(t2 + t+
1

6
) dt =

x3

3
+
x2

2
+
x

6

and

a

(∫ p(x,Tx)

0

φ(t) dt

)s
=
x3

3
+
x2

2
+
x

6
.

Also, ∫ θ(p(y,Ty))

0

φ(t) dt =

∫ θ(0)

0

(t2 + t+
1

6
) dt = 1

and (∫ θ(p(x,Tx))

0

φ(t) dt

)k
=

(
23
√
x

3
+

22
√
x

2
+

2
√
x

6

)1/3

.

Case 2: For x ∈ [n, n+ 2), where n = 1, 3, 5..., we have, p(x, Tx) = nx.
For y = 0, ∫ p(x,y)

0

φ(t) dt =
x3

3
+
x2

2
+
x

6
and

a

(∫ p(x,Tx)

0

φ(t) dt

)s
=
n3x3

3
+
n2x2

2
+
nx

6
.

Also, ∫ θ(p(y,Ty))

0

φ(t) dt = 1 ,
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and (∫ θ(p(x,Tx))

0

φ(t) dt

)k
=

(
23
√
nx

3
+

22
√
nx

2
+

2
√
nx

6

)1/3

.

Clearly, all the conditions of Theorem 3.1 are satisfied and so, T has fixed point.
Here, all the points lying on [0, 3] are the fixed points of T which can be seen from the
graphical representation of multi-valued mapping T , i.e., (5) and Tx = x (the orange
line) as shown in Figure 1.

Remark 3.1. Theorem 3.1 does not guarantee the uniqueness of the fixed point
which is clear from the above example.

Next we establish a common fixed point result.

Theorem 3.2. Let (X, p) be a complete partial metric space and S, T : X → CBp(X)
are multi-valued mappings such that x→ p(x, Sx) and x→ p(x, Tx) are lower semi-
continuous. Assume that there exist real numbers a, s, r ∈ (0,∞) with s > r, l ∈
(0,∞], k ∈ [0, 1) and θ ∈ Θ, φ ∈ Φ satisfying (A1), (A2), (A3) of Theorem 3.1.
If for any x ∈ X with max{p(x, Sx), p(x, Tx)} > 0, there is y ∈ X such that∫ p(x,y)

0

φ(t) dt ≤ a

(∫ 1
2 [p(x,Sx)+p(x,Tx)]

0

φ(t) dt

)s

and

∫ θ( 1
2 [p(y,Sy)+p(y,Ty)])

0

φ(t) dt ≤

(∫ θ( 1
2 [p(x,Sx)+p(x,Tx)])

0

φ(t) dt

)k
,

then there exists u ∈ X such that u ∈ CF (S, T ), where CF (S, T ) denotes the set of
common fixed points of S and T .

Proof. Let A = {x ∈ X : max{p(x, Sx), p(x, Tx)} > 0}. If A = ∅, then clearly
x ∈ CF (S, T ). Suppose A 6= ∅. Let x0 ∈ A. Then there exists x1 ∈ X such that∫ p(x0,x1)

0

φ(t) dt ≤ a

(∫ 1
2 [p(x0,Sx0)+p(x0,Tx0)]

0

φ(t) dt

)s

and

∫ θ( 1
2 [p(x1,Sx1)+p(x1,Tx1)])

0

φ(t) dt ≤

(∫ θ( 1
2 [p(x0,Sx0)+p(x0,Tx0)])

0

φ(t) dt

)k
.

For x1 ∈ A, there exists x2 ∈ X such that∫ p(x1,x2)

0

φ(t) dt ≤ a

(∫ 1
2 [p(x1,Sx1)+p(x1,Tx1)]

0

φ(t) dt

)s

and

∫ θ( 1
2 [p(x2,Sx2)+p(x2,Tx2)])

0

φ(t) dt ≤

(∫ θ( 1
2 [p(x1,Sx1)+p(x1,Tx1)])

0

φ(t) dt

)k
.

Continuing in the above way, we can generate a sequence {xn} in X such that for
xn ∈ X, there exists xn+1 ∈ X with∫ p(xn,xn+1)

0

φ(t) dt ≤ a

(∫ 1
2 [p(xn,Sxn)+p(xn,Txn)]

0

φ(t) dt

)s
(6)
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and

∫ θ( 1
2 [p(xn+1,Sxn+1)+p(xn+1,Txn+1)])

0

φ(t) dt

≤

(∫ θ( 1
2 [p(xn,Sxn)+p(xn,Txn)])

0

φ(t) dt

)k
for all n ∈ N ∪ {0}. (7)

By (A1) and (A2), it can be shown that

lim
n→∞

[p(xn, Sxn) + p(xn, Txn)] = 0,

i.e., lim
n→∞

p(xn, Sxn) = 0 and lim
n→∞

p(xn, Txn) = 0. (8)

Proceeding similar to the previous theorem, we can show that there exist k3, k4 ∈ N
such that ∫ p(xn,Sxn)

0

φ(t) dt ≤ 1

n1/r
for all n ≥ k3 (9)

and ∫ p(xn,Txn)

0

φ(t) dt ≤ 1

n1/r
for all n ≥ k4. (10)

Taking n0 = min{k3, k4} and using (6), (9), (10) we get,∫ p(xn,xn+1)

0

φ(t) dt ≤ a

(∫ 1
2p(xn,Sxn)

0

φ(t) dt+

∫ 1
2p(xn,Txn)]

0

φ(t) dt

)s
≤ a2s

ns/r
for all n ≥ n0. (11)

Now, for m > n ≥ n0,∫ p(xn,xm)

0

φ(t) dt ≤
m−1∑
i=n

∫ p(xi,xi+1)

0

φ(t) dt ≤ a2s
∞∑
i=n

1

is/r
.

Since s > r, lim
n→∞

∫ p(xn,xm)

0

φ(t) dt = 0, and so, from (Φ3), p(xn, xm)→ 0 as m,n→

∞, i.e., {xn} is a Cauchy sequence in (X, p). Let xn → u ∈ X as n→∞.
Since x → p(x, Sx) and x → p(x, Tx) are lower semi-continuous, as in Theorem 3.1,
we can show that u is a common fixed point of S and T . �

Example 3.2. Let X = {0, 1, 2}, and define a complete partial metric p on X by
p(x, y) = max{x, y} for all x, y ∈ X. Let S, T : X → CBp(X) be defined by

Sx = {x} for all x ∈ X and Tx =

{
{0}, if x = 0

{1}, otherwise .

Assume θ(t) = et with r = 1
4 , a = 1 = s, k = 1

2 and φ(t) = t2 + t + 1
6 for all

t ∈ R+ ∪ {0}.

We have,

p(2, S2) = 2, p(1, S1) = 1, p(0, S0) = 0,

p(2, T2) = 2, p(1, T1) = 1, p(0, T0) = 0.
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Case 1: For x = 2, we take y = 1. Then∫ p(x,y)

0

φ(t) dt =

∫ 2

0

φ(t) dt = 5 ,

a

{∫ 1
2 [p(x,Sx)+p(x,Tx)]

0

φ(t) dt

}s
=

∫ 2

0

φ(t) dt = 5 ,

and

∫ θ( 1
2 [p(y,Sy)+p(y,Ty)])

0

φ(t) dt =

∫ θ(1)

0

φ(t) dt =
e3

3
+
e2

2
+
e

6
= 10.84 ,(∫ θ( 1

2 [p(x,Sx)+p(x,Tx)])

0

φ(t) dt

)k
=

(∫ θ(2)

0

φ(t) dt

) 1
2

=

(
e6

3
+
e4

2
+
e2

6

) 1
2

= 12.76 .

Case 2: For x = 1, taking y = 0, we get,∫ p(x,y)

0

φ(t) dt =

∫ 1

0

φ(t) dt = 1 ,

a

{∫ 1
2 [p(x,Sx)+p(x,Tx)]

0

φ(t) dt

}s
=

∫ 1

0

φ(t) dt = 1 ,

and

∫ θ( 1
2 [p(y,Sy)+p(y,Ty)])

0

φ(t) dt =

∫ θ(0)

0

φ(t) dt = 1 ,(∫ θ( 1
2 [p(x,Sx)+p(x,Tx)])

0

φ(t) dt

)k
=

(∫ θ(1)

0

φ(t) dt

) 1
2

=

(
e3

3
+
e2

2
+
e

6

) 1
2

= 3.29 .

Case 3: For x = 0, let y = 0.

Now,

∫ p(x,y)

0

φ(t) dt = 0 ,

a

(∫ 1
2 [p(x,Sx)+p(x,Tx)]

0

φ(t) dt

)s
= 0

and

∫ θ( 1
2 [p(y,Sy)+p(y,Ty)])

0

φ(t) dt =

∫ θ(0)

0

φ(t) dt = 1 ,(∫ θ( 1
2 [p(x,Sx)+p(x,Tx)]

0

φ(t) dt

)k
=

(∫ θ(0)

0

φ(t) dt

) 1
2

= 1 .

Thus, all the conditions of Theorem 3.2 are satisfied and clearly 0 and 1 are the
common fixed points of S and T here.

The concept of coupled fixed point was introduced by Guo and Lakshmikantham
in 1987 [15], in the context of coupled quasi-solutions of the initial value problems for
ordinary differential equations. In a partial metric space (X, p), an element (x, y) ∈
X ×X is said to be a coupled fixed point of T : X ×X → P (X) if x ∈ T (x, y) and
y ∈ T (y, x). In the following, we derive a coupled fixed point theorem using integral
inequalities.

Theorem 3.3. Let (X, p) be a complete partial metric space and T : X × X →
CBp(X) be a multi-valued mapping such that (x, y) → p(x, T (x, y)) and (y, x) →
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p(y, T (y, x)) are lower semi-continuous functions. Assume that there exist real num-
bers a, s, r ∈ (0,∞) with s > r, l ∈ (0,∞], k ∈ [0, 1) and θ ∈ Θ, φ ∈ Φ satisfying the
conditions (A1), (A2), (A3) of Theorem 3.1.
If for any (x, y) ∈ X ×X with max{p(x, T (x, y)), p(y, T (y, x))} > 0, there is (u, v) ∈
X ×X such that∫ 1

2 [p(x,u)+p(y,v)]

0

φ(t) dt ≤ a

(∫ 1
2 [p(x,T (x,y))+p(y,T (y,x))]

0

φ(t) dt

)s
(12)

and

∫ θ( 1
2 [p(u,T (u,v))+p(v,T (v,u))])

0

φ(t) dt ≤

(∫ θ( 1
2 [p(x,T (x,y))+p(y,T (y,x))])

0

φ(t) dt

)k
,

(13)
then there exists (w, z) ∈ X ×X such that w ∈ T (w, z) and z ∈ T (z, w).

Proof. Let A = {(x, y) ∈ X × X : max{p(x, T (x, y)), p(y, T (y, x))} > 0}. If A = ∅,
then T has a coupled fixed point in X ×X. Let A 6= ∅ and (x0, y0) ∈ A. Then there
exists (x1, y1) ∈ X ×X such that∫ 1

2 [p(x0,x1)+p(y0,y1)]

0

φ(t) dt ≤ a

(∫ 1
2 [p(x0,T (x0,y0))+p(y0,T (y0,x0))]

0

φ(t) dt

)s
and∫ θ( 1

2 [p(x1,T (x1,y1))+p(y1,T (y1,x1))])

0

φ(t) dt

≤

(∫ θ( 1
2 [p(x0,T (x0,y0))+p(y0,T (y0,x0))])

0

φ(t) dt

)k
.

If (x1, y1) /∈ A, then (x1, y1) is a coupled fixed point. Let (x1, y1) ∈ A. Then there
exists (x2, y2) ∈ X ×X such that∫ 1

2 [p(x1,x2)+p(y1,y2)]

0

φ(t) dt ≤ a

(∫ 1
2 [p(x1,T (x1,y1))+p(y1,T (y1,x1))]

0

φ(t) dt

)s
and∫ θ( 1

2 [p(x2,T (x2,y2))+p(y2,T (y2,x2))])

0

φ(t) dt

≤

(∫ θ( 1
2 [p(x1,T (x1,y1))+p(y1,T (y1,x1))])

0

φ(t) dt

)k
.

Continuing in the above way, we can generate sequences {xn} and {yn} in X such
that (xn, yn) ∈ A with∫ 1

2 [p(xn,xn+1)+p(yn,yn+1)]

0

φ(t) dt ≤ a

(∫ 1
2 [p(xn,T (xn,yn))+p(yn,T (yn,xn))]

0

φ(t) dt

)s
(14)
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and

∫ θ( 1
2 [p(xn+1,T (xn+1,yn+1))+p(yn+1,T (yn+1,xn+1))])

0

φ(t) dt

≤

(∫ θ( 1
2 [p(xn,T (xn,yn))+p(yn,T (yn,xn))])

0

φ(t) dt

)k
. (15)

Proceeding as in Theorem 3.1, it can be shown that

lim
n→∞

[p(xn, T (xn, yn)) + p(yn, T (yn, xn))] = 0,

i.e., lim
n→∞

p(xn, T (xn, yn)) = 0, and lim
n→∞

p(yn, T (yn, xn)) = 0 (16)

and there exist k3, k4 ∈ N such that∫ p(xn,T (xn,yn))

0

φ(t) dt ≤ 1

n1/r
for all n ≥ k3 (17)

and

∫ p(yn,T (yn,xn))

0

φ(t) dt ≤ 1

n1/r
for all n ≥ k4. (18)

Take n0 = min{k3, k4} and using (14), (17), (18), we get,∫ 1
2 [p(xn,xn+1)+p(yn,yn+1)]

0

φ(t) dt ≤ a(

∫ 1
2p(xn,T (xn,yn))

0

φ(t) dt

+

∫ 1
2p(yn,T (yn,xn))

0

φ(t) dt)s

≤ a2s

ns/r
for all n ≥ n0.

For m > n ≥ n0,∫ 1
2p(xn,xm)

0

φ(t) dt ≤
∫ 1

2p(xn,xn+1)

0

φ(t) dt+

∫ 1
2p(xn+1,xn+2)

0

φ(t) dt+ ...

...+

∫ 1
2p(xm−1,xm)

0

φ(t) dt

≤
∫ 1

2 [p(xn,xn+1)+p(yn+1,yn+2)]

0

φ(t) dt+

∫ 1
2 [p(xn+1,xn+2)+p(yn+1,yn+2)]

0

φ(t) dt+ ...

...+

∫ 1
2 [p(xm−1,xm)+p(ym−1,ym)]

0

φ(t) dt

=

m−1∑
i=n

∫ 1
2 [p(xi,xi+1)+p(yi,yi+1)]

0

φ(t) dt ≤ 2sa

∞∑
i=n

1

is/r
.

Therefore, lim
n→∞

∫ 1
2p(xn,xm)

0

φ(t) dt = 0, and so, from (Φ3), p(xn, xm)→ 0 as m,n→

∞, i.e., {xn} is a Cauchy sequence in (X, p) and converges to some w ∈ X.
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Similarly, {yn} is a Cauchy sequence in (X, p) converging to some z ∈ X.
Therefore,

lim
n→∞

p(xn, w) = p(w,w) = lim
n→∞

p(xn, xn),

and lim
n→∞

p(yn, z) = p(z, z) = lim
n→∞

p(yn, yn).

Since (x, y) → p(x, T (x, y)) and (y, x) → p(y, T (y, x)) are lower semi-continuous and
xn → w, yn → z, using (16), we have,

p(w, T (w, z)) ≤ lim
n→∞

p(xn, T (xn, yn)) = 0 i.e., w ∈ T (w, z)

and p(z, T (z, w)) ≤ lim
n→∞

p(yn, T (yn, xn)) = 0 i.e., z ∈ T (z, w).

Thus, (w, z) is a coupled fixed point of T . �

We illustrate the above theorem by the following example.

Example 3.3. Let X = [0, 1] with a complete partial metric p(x, y) = max{x, y} for
all x, y ∈ X. Let T : X ×X → CBp(X) be defined by

T (x, y) =

{
x+ y

2

}
for all x, y ∈ X.

Assume θ(t) = et with r = 1
2 , a = 1 = s, k = 1

3 and φ(t) = t2 + t + 1
6 for all

t ∈ R+ ∪ {0}.

For any (x, y) ∈ X ×X, we take (u, v) = (0, 0).∫ 1
2 [p(x,u)+p(y,v)]

0

φ(t) dt =

∫ 1
2 (x+y)

0

(t2 + t+
1

6
) dt, (19)

a

(∫ 1
2 [p(x,T (x,y))+p(y,T (y,x))]

0

φ(t) dt

)s
=

∫ 1
2 [max{x, x+y

2 }+max{y, x+y
2 }]

0

(t2 + t+
1

6
) dt.

(20)

Again,

∫ θ( 1
2 [p(u,T (u,v))+p(v,T (v,u))])

0

φ(t) dt =

∫ θ(0)

0

(t2 + t+
1

6
) dt = 1, (21)(∫ θ( 1

2 [p(x,T (x,y))+p(y,T (y,x))])

0

φ(t) dt

)k
=

(∫ θ( 1
2 [max{x, x+y

2 }+max{y, x+y
2 }])

0

φ(t) dt

) 1
2

.

(22)

The two graphs depict the conditions of Theorem 3.3. In Figure 2, the brown and
blue surfaces correspond to (20) and (19), that is, the RHS and LHS of condition (12)
respectively. Similarly, in Figure 3, the red and green surfaces correspond to (22)
and (21), that is, the RHS and LHS of condition (13) respectively. Consequently, all
the conditions of Theorem 3.3 are satisfied. Thus, T possesses coupled fixed points,
which are clearly the set of points {(x, x) : x ∈ [0, 1]} here.
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Figure 2. Figure 3.

4. Application to functional equations arising in dynamical programming

In this section, we find the existence of a common solution for a system of functional
equations arising in dynamic programming with the help of Theorem 3.2. For Banach
spaces U and V , let W ⊂ U be a state space and D ⊂ V denote the decision
space. Let C(W ) denote the space of all continuous real valued functions on W .
Then C(W ) is a partial metric space with respect to the partial metric p(u, v) =
sup
x∈W
|u(x) − v(x)|, u, v ∈ C(W ). We consider the following system of functional

equations:

F (x) = sup
y∈D
{H(x, y, h(µ(x, y))}

and G(x) = sup
y∈D
{K(x, y, g(µ(x, y))} for all x ∈W,

(23)

where x and y represent the state and decision vectors respectively, µ denote the
transformations of the process, H and K are bounded functions from W ×D × R to
R, F (x) and G(x) denote the maximum return functions with the initial state x and
h, g ∈ C(W ).

For X = C(W ), let S, T : X → CBp(X) be two multi-valued mappings defined by:

Sh(x) = {u : u(x) = sup
y∈D
{H(x, y, h(µ(x, y)))}}

and Tg(x) = {z : z(x) = sup
y∈D
{K(x, y, g(µ(x, y)))}},

(24)

where x ∈W and h, g ∈ X.

Theorem 4.1. Let H,K : W × D × R → R be two bounded functions and for
X = C(W ), let S, T : X → CBp(X) be two multi-valued mappings defined by (24).
Assume that the following conditions hold:
for each h ∈ X, there exists g ∈ X such that

(i)
∫ |h(x)−g(x)|

0
φ(t) dt ≤ a

(∫∆1(x,y,h)

0
φ(t) dt

)s
,

(ii)
∫ e∆2(x,y,g)

0
φ(t) dt ≤

(∫ e∆1(x,y,h)

0
φ(t) dt

)k
,

where ∆1(x, y, h) = 1
2{|H(x, y, h(µ(x, y)))|+ |K(x, y, h(µ(x, y)))| − 2|h(x)|},

∆2(x, y, g) = 1
2{|H(x, y, g(µ(x, y)))|+ |K(x, y, g(µ(x, y)))|+ 2|g(x)|}
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for x ∈W, y ∈ D, a, s ∈ (0,∞), k ∈ [0, 1) and φ ∈ Φ satisfying (A1), (A2), (A3)
of Theorem 3.1.

Then there exists a solution of the system of functional equations (23).

Proof. Since H and K are bounded, there exists M > 0 such that

sup{|H(x, y, t)|, |K(x, y, t)| : (x, y, t) ∈W ×D × R} ≤M.

Let h ∈ X and u ∈ Sh, v ∈ Th be arbitrary.
Then u(x) = sup

y∈D
{H(x, y, h(µ(x, y))} and v(x) = sup

y∈D
{K(x, y, h(µ(x, y))}

and so,

u(x) ≥ H(x, y, h(µ(x, y))) and v(x) ≥ K(x, y, h(µ(x, y))) for all y ∈ D. (25)

Now, for x ∈W,

∆1(x, y, h) ≤ 1

2
{|u(x)|+ |v(x)| − 2|h(x)|} (using (25))

=
1

2
{|u(x)| − |h(x)|+ |v(x)| − |h(x)|}.

Thus, ∆1(x, y, h) ≤ 1

2
{ sup
x∈W
|u(x)− h(x)|+ sup

x∈W
|v(x)− h(x)|}

=
1

2
{p(u, h) + p(v, h)}. (26)

From (i), we get,∫ |h(x)−g(x)|

0

φ(t) dt ≤ a

(∫ ∆1(x,y,h)

0

φ(t) dt

)s

≤ a

(∫ 1
2{p(u,h)+p(v,h)}

0

φ(t) dt

)s
. (using (26))

Since u and v are arbitrary, so,∫ |h(x)−g(x)|

0

φ(t) dt ≤ a

(∫ 1
2{ inf
u∈Sh

p(u, h) + inf
v∈Th

p(v, h)}

0

φ(t) dt

)s

i.e.,

∫ p(h,g)

0

φ(t) dt ≤ a

(∫ 1
2{p(Sh,h)+p(Th,h)}

0

φ(t) dt

)s
.

Again let g ∈ X and w ∈ Sg, z ∈ Tg be arbitrary. Then for x ∈W ,

w(x) = sup
y∈D
{H(x, y, g(µ(x, y))} and z(x) = sup

y∈D
{K(x, y, g(µ(x, y))}

and so,

w(x) ≥ H(x, y, g(µ(x, y))) and z(x) ≥ K(x, y, g(µ(x, y))) for all y ∈ D. (27)

Again from (ii), ∫ e∆2(x,y,g)

0

φ(t) dt ≤

(∫ e∆1(x,y,h)

0

φ(t) dt

)k
.
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So,

∫ esupy∈D ∆2(x,y,g)

0

φ(t) dt ≤

(∫ esupy∈D ∆1(x,y,h)

0

φ(t) dt

)k
,

i.e.,

∫ e
1
2
{|w(x)|+|z(x)|+2|g(x)|}

0

φ(t) dt ≤

∫ e
1
2
{|u(x)|+|v(x)|−2|h(x)|}

0

φ(t) dt

k

.

Now,

∫ e
1
2
{|w(x)−g(x)|+|z(x)−g(x)|}

0

φ(t) dt ≤
∫ e

1
2
{|w(x)|+|z(x)|+2|g(x)|}

0

φ(t) dt

≤

∫ e
1
2
{|u(x)−h(x)|+|v(x)−h(x)|}}

0

φ(t) dt

k

.

Again,

sup
x∈W

∫ e
1
2
{|w(x)−g(x)|+|z(x)−g(x)|}

0

φ(t) dt ≤ sup
x∈W

∫ e
1
2
{|u(x)−h(x)|+|v(x)−h(x)|}}

0

φ(t) dt

k

,

i.e.,

∫ e
1
2
{p(w,g)+p(z,k)}

0

φ(t) dt ≤

∫ e
1
2
{p(u,h)+p(v,h)}

0

φ(t) dt

k

.

Since u, v, w and z are arbitrary, so,

∫ e

1
2
{ inf
w∈Sg

p(w, g) + inf
z∈Tg

p(z, g)}

0

φ(t) dt

≤

∫ e

1
2
{ inf
u∈Sh

p(u, h) + inf
v∈Th

p(v, h)}

0

φ(t) dt


k

,

i.e.,

∫ θ[ 1
2{p(Sg,g)+p(Tg,g)}]

0

φ(t) dt ≤

(∫ θ[ 1
2{p(Sh,h)+p(Th,h)}]

0

φ(t) dt

)k
.

Thus, S and T satisfy all the conditions of Theorem 3.2 with θ(t) = et, t ∈
[0,∞). Hence, S and T have a common fixed point and thus the system (23) has a
solution. �

5. Conclusion

We have deduced fixed point results for multi-valued mappings satisfying Feng-Liu
type integral inequality in partial metric space. In all the results, the completeness
of partial metric space is being considered. The validity of our results in case of
incomplete partial metric space is a scope for further research. In [22], Majid et al.
obtained some fixed point results for monotone multi-valued mappings considering
partially ordered complete D∗-metric space using integral type contractive conditions.
Similar investigation can be done for the integral type mappings depicted in this paper
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in the context of partially ordered D∗-metric space. Moreover, the applicability of
our results in case of system of fractional order integral inclusions is another area of
further discussion.
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