Ground State Solutions for a Kirchhoff Type Equation Involving p-Biharmonic Operator with Exponential Growth non-linearity

RACHED JAIDANE

ABSTRACT. In this article, we study the following non local weighted problem

$$g\Big(\int_{B} (w(x)|\Delta u|^{\frac{N}{2}})dx\Big)\Delta(w(x)|\Delta u|^{\frac{N}{2}-2}\Delta u) = |u|^{q-2}u + f(x,u) \quad \text{in } B, \quad u = \frac{\partial u}{\partial n} = 0 \text{ on } \partial B,$$

where B is the unit ball in \mathbb{R}^N and w(x) is a singular weight of logarithm type. The nonlinearity is a combination of a reaction source f(x, u) which is critical in view of exponential inequality of Adams' type and a polynomial function. The Kirchhoff function g is positive and continuous. The energy function loses compactness in the critical case. To remedy this, we introduce a new asymptotic condition for non-linearity and go through an intermediate problem. Using the Nehari manifold method, the quantitative deformation lemma and results from degree theory, we establish the existence of a ground-state solution.

2020 Mathematics Subject Classification. 35J20, 49J45, 35K57, 35J60, 46E35. Key words and phrases. Weighted Sobolev space, Kirchhoff, p-biharmonic operator, Critical exponential growth, Adams' inequality.

1. Introduction and Main results

In this paper, we consider the non local fourth order weighted elliptic equation:

$$(P) \begin{cases} g\left(\int_{B} (v_{\beta}(x)|\Delta u|^{\frac{N}{2}}) dx\right) \Delta(v_{\beta}(x)|\Delta u|^{\frac{N}{2}-2} \Delta u) = |u|^{q-2}u + f(x,u) \text{ in } B \\ u = \frac{\partial u}{\partial n} = 0 \quad \text{on } \partial B \end{cases}$$

$$u = \frac{\partial u}{\partial n} = 0$$
 on $\frac{\partial B}{\partial n}$

(1.1)

where B = B(0,1) is the unit open ball in \mathbb{R}^N , q > N, f(x,t) is continuous in $B \times \mathbb{R}^N$ and behaves like $\exp\{\alpha t^{\frac{N}{(N-2)(1-\beta)}}\}$ as $|t| \to +\infty$, for some $\alpha > 0$ uniformly with respect to $x \in B$. The weight $v_{\beta}(x)$ is given by

$$v_{\beta}(x) = \left(\log \frac{e}{|x|}\right)^{\beta(\frac{N}{2}-1)}, \ \beta \in (0,1).$$

$$(1.2)$$

The Kirchhoff function g is positive, continuous and verifies some mild conditions.

The study of Kirchhoff problems was initiated in 1883, when Kirchhoff [22] studied the following equation

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L |\frac{\partial u}{\partial x}|^2 dx\right) \frac{\partial^2 u}{\partial x^2} = f(x, u), \tag{1.3}$$

Received Aplil 12, 2024. November 11, 2024.

where ρ , P_0 , h, E, L represent physical quantities. This model extends the classical D'Alembert wave equation by considering the effects of the changes in the length of the strings during the vibrations. We call (1.3) a nonlocal problem since the equation contains an integral over [0, L] which makes the study of it interesting. After Lions in his pioneering work [25] presented an abstract functional analysis framework to (1.3). We mention that non-local problems also arise in other areas, for instance, biological systems where the function u describes a process that depends on the average of itself (for example, population density), see for instance [4, 5] and its references.

Recently, Trudinger-Moser inequalities [29, 31] have been extended to the Sobolev space with logarithmic weight

$$W^{1,N}_{0,rad}(B,\rho) = \operatorname{closure}\{u \in C^{\infty}_{0,rad}(B) | \int_{B} |\nabla u|^{N} \varrho(x) dx < \infty\}.$$

The result was established by Calanchi and Ruff, that is

Theorem 1.1. [7]

(i) Let $\beta \in [0,1)$ and let ϱ given by $\varrho(x) = \left(\log \frac{1}{|x|}\right)^{\beta(N-1)}$, then

$$\int_{B}^{e^{|u|^{\gamma}}} dx < +\infty, \forall u \in W^{1,N}_{0,rad}(B,\varrho), \text{ if and only if } \gamma \leq \gamma_{N,\beta} = \frac{N}{(N-1)(1-\beta)} = \frac{N'}{1-\beta}$$

and

$$\sup_{\substack{u \in W_{0,rad}^{1,N}(B,\varrho)\\ \int_{B} |\nabla u|^{N}w(x)dx \le 1}} \int_{B} e^{\alpha |u|^{\gamma_{N,\beta}}} dx < +\infty \iff \alpha \le \alpha_{N,\beta} = N [\omega_{N-1}^{\frac{1}{N-1}} (1-\beta)]^{\frac{1}{1-\beta}}$$

where ω_{N-1} is the area of the unit sphere S^{N-1} in \mathbb{R}^N and N' is the Hölder conjugate of N.

(ii) Let ρ given by $\rho(x) = \left(\log \frac{e}{|x|}\right)^{N-1}$, then

$$\int_{B} \exp\{e^{|u|^{\frac{N}{N-1}}}\}dx < +\infty, \ \forall \ u \in W^{1,N}_{0,rad}(B,\varrho)$$

and

$$\sup_{\substack{u\in W_{0,rad}^{1,N}(B,\varrho)\\ \|u\|_{\varrho}\leq 1}} \int_{B} exp\{\beta e^{\omega_{N-1}^{\frac{1}{N-1}}|u|^{\frac{N}{N-1}}}\}dx < +\infty \ \Leftrightarrow \ \beta \leq N,$$

where ω_{N-1} is the area of the unit sphere S^{N-1} in \mathbb{R}^N and N' is the Hölder conjugate of N and B is the unit ball in \mathbb{R}^N .

This result has allowed the study of elliptic problems with logarithmic weights involving exponential growth nonlinearities in the sense of Theorem 1.1 (see[1, 6, 8, 9, 11, 13, 15, 19, 21, 35]).

To give some motivation for our study, we give a brief overview of Adam's inequalities in a bounded domain of \mathbb{R}^N . We then proceed to discuss the extension of these inequalities to second-order Sobolev spaces with logarithmic weights.

The notion of critical exponential growth was extended to higher order Sobolev spaces by Adams' [2]. More precisely, Adams' proved the following result, for $m \in \mathbb{N}$

and Ω an open bounded set of \mathbb{R}^N such that m < N, there exists a positive constant $C_{m,N}$ such that

$$\sup_{u \in W_0^{m,\frac{N}{m}}(\Omega), |\nabla^m u|_{\frac{N}{m}} \le 1} \int_{\Omega} e^{\beta_0 |u|^{\frac{N}{N-m}}} dx \le C_{m,N} |\Omega|,$$

where $W_0^{m,\frac{N}{m}}(\Omega)$ denotes the m^{th} -order Sobolev space, $\nabla^m u$ denotes the m^{th} -order gradient of u, namely

$$\nabla^{m} u := \begin{cases} \Delta^{\frac{m}{2}} u, & \text{if } m \text{ is even} \\ \\ \nabla \Delta^{\frac{m-1}{2}} u, & \text{if } m \text{ odd} \end{cases}$$

and

$$\beta_0 = \beta_0(m, N) := \frac{N}{\omega_{N-1}} \begin{cases} \left[\frac{\pi^{\frac{N}{2}} 2^m \Gamma(\frac{m}{2})}{\Gamma(\frac{N-m}{2})}\right]^{\frac{N}{N-m}}, & \text{if } m \text{ is even} \\ \\ \left[\frac{\pi^{\frac{N}{2}} 2^m \Gamma(\frac{m+1}{2})}{\Gamma(\frac{N-m+1}{2})}\right]^{\frac{N}{N-m}}, & \text{if } m \text{ odd.} \end{cases}$$

Lately, there has been an extension of work concerning Adams' inequalities into Sobolev spaces incorporating logarithmic weights. Specifically, Wang and Zhu [34] established the following result.

Theorem 1.2. [34] Let $\beta \in (0,1)$ and let $\omega_{\beta}(x) = (1 - \log |x|)^{\beta}$, then

$$\sup_{u \in W^{2,2}_{0,rad}(B_1,\omega_{\beta}), \|u\| \le 1} \int_{B_1} e^{\alpha |u|^{\frac{2}{1-\beta}}} dx < \infty \iff \alpha \le \alpha_{\beta} = 4[8\pi^2(1-\beta)]^{\frac{1}{1-\beta}}$$

where B_1 is the unit ball of \mathbb{R}^4 , $W^{2,2}_{0,rad}(B_1,\omega_\beta)$ denotes the weighted Sobolev space of radial functions given by

$$W_{0,rad}^{2,2}(B_1,\omega_\beta) = closure\Big\{u \in C_{0,rad}^\infty(B_1) \mid \int_B \omega_\beta(x) |\Delta u|^2 \ dx < \infty\Big\},$$

endowed with the norm $||u||_{W^{2,2}_{0,rad}(B_1,\omega_\beta)} = \left(\int_{B_1} \omega_\beta(x) |\Delta u|^2 dx\right)^{\frac{1}{2}}$.

As an application of Theorem 1.2, Dridi and Jaidane [16] considered the following problem

$$\begin{cases} \Delta(\omega_{\beta}(x)\Delta u) - \Delta u + V(x)u &= f(x,u) \text{ in } B_{1} \\ u &= \frac{\partial u}{\partial n} &= 0 \text{ on } \partial B_{1}, \end{cases}$$

where $B_1 = B(0,1)$ is the unit open ball in \mathbb{R}^4 , f(x,t) is continuous in $B_1 \times \mathbb{R}$ and behaves like $e^{\alpha t^{\frac{2}{1-\beta}}}$ as $t \to +\infty$, for some $\alpha > 0$, and the potential V is positive and continuous on $\overline{B_1}$ and bounded away from zero in B_1 . The authors demonstrated the existence of a nontrivial weak solution to the mentioned problem by employing the Mountain Pass Theorem in conjunction with the logarithmic Adams inequality. Similarly, Jaidane [20] applied these techniques to investigate the following Kirchhofftype biharmonic problem

$$\begin{cases} L(u) &= f(x, u) \text{ in } B_1\\ u = \frac{\partial u}{\partial n} &= 0 \text{ on } \partial B_1 \end{cases}$$

where

$$L(u) = m\Big(\int_{B_1} (\omega_\beta |\Delta u|^2 + |\nabla u|^2 + V(x)|u|^2) dx\Big) \Big[\Delta(\omega_\beta(x)|\Delta u|^2 - \Delta u + V(x)u\Big],$$

m is a Kirchhoff function satisfying some mild conditions and the nonlinearity has exponential critical growth in the sense of Theorem 1.2.

For g(t) = 1 and N = 4, Dridi et al. treated a similar problem [13]. The authors proved the existence of a solution using the Nehari method.

Now we'll introduce our workspace. We denotes by $W_{0,rad}^{2,\frac{N}{2}}(B,v_{\beta})$ the weighted Sobolev space of radial functions given by

$$\mathbf{W} := W_{0,rad}^{2,\frac{N}{2}}(B,\omega) = \text{closure}\Big\{ u \in C_{0,rad}^{\infty}(B) \mid \int_{B} v_{\beta}(x) |\Delta u|^{\frac{N}{2}} dx < \infty \Big\},$$

with respect to the norm

$$\|u\|_{W_0^{2,\frac{N}{2}}(B,w)} = \left(\int_B v_\beta(x) |\Delta u|^{\frac{N}{2}} dx + \int_B |\nabla u|^{\frac{N}{2}} + \int_B |u|^{\frac{N}{2}} dx\right)^{\frac{2}{N}}$$

The space \mathbf{W} is endowed with the norm

$$||u|| = \left(\int_B v_\beta(x) |\Delta u|^{\frac{N}{2}} dx\right)^{\frac{1}{2}}.$$

According to Drabek et al. and Kufner in [12, 24], W is a Banach and reflexive space.

Motivated by previous studies, we are investigating the existence of ground-state solutions. This exploration focuses in particular on scenarios where the non-linear terms exhibit critical exponential growth, as defined in the Adams inequalities [36].

Theorem 1.3. [36] Let $\beta \in (0,1)$ and w be given by (1.2), then

$$\sup_{\substack{u \in W_{0,rad}^{2,\frac{N}{2}}(B,w)}} \int_{B} e^{\alpha |u|^{\frac{N}{(N-2)(1-\beta)}}} dx < +\infty$$
$$\int_{B} v_{\beta}(x) |\Delta u|^{\frac{N}{2}} dx \le 1$$
$$\Leftrightarrow \alpha \le \alpha_{\beta} = N[(N-2)NV_{N}]^{\frac{2}{(N-2)(1-\beta)}} (1-\beta)^{\frac{1}{(1-\beta)}}, \qquad (1.4)$$

where V_N is the volume of the unit ball B in \mathbb{R}^N .

Let $\gamma := \frac{N}{(N-2)(1-\beta)}$. According to inequality (1.7), we will say that f has critical growth at infinity if there exists some $\alpha_0 > 0$,

$$\lim_{s \to +\infty} \frac{|f(x,s)|}{e^{\alpha s^{\gamma}}} = 0, \ \forall \ \alpha \text{ such that } \alpha_0 < \alpha \text{ and } \lim_{s \to +\infty} \frac{|f(x,s)|}{e^{\alpha s^{\gamma}}} = +\infty, \ \forall \ \alpha < \alpha_0.$$
(1.5)

Now we define the Kirchhoff function g and give the conditions on it . The function g is continuous in \mathbb{R}^+ and verifies :

 (G_1) : g is increasing with $g(0) = g_0 > 0$;

 (G_2) : $\frac{g(t)}{t}$ is nonincreasing for t > 0.

The assumption (G_2) implies that $\frac{g(t)}{t} \leq g(1)$ for all $t \geq 1$. From (G_1) and (G_2) , we can get

$$G(t+s) \ge G(t) + G(s) \ \forall \ s,t \ge 0 \text{ where } G(t) = \int_0^t g(s)ds \tag{1.6}$$

and

$$g(t) \le g(1) + g(1)t, \quad \forall \ t \ge 0.$$

$$(1.7)$$

4

As a consequence, we get

$$G(t) \le g(1)t + \frac{g(1)}{2}t^2, \quad \forall \ t \ge 0.$$
 (1.8)

Moreover, we have that

$$\frac{2}{N}G(t) - \frac{1}{N}g(t)t \text{ is nondecreasing and positive for } t > 0.$$
(1.9)

Consequently, one has for all $q \ge N$,

$$t \mapsto \frac{2}{N}G(t) - \frac{1}{q}g(t)t$$
, is nondecreasing and positive for $t > 0$. (1.10)

A typical example of a function g fulfilling the conditions (G_1) and (G_2) is given by

$$g(t) = g_0 + at, \ g_0, a > 0.$$

Another example is given by $g(t) = 1 + \ln(1+t)$.

Furthermore, we suppose that f(x, t) has critical growth and satisfies the following hypothesis:

 (A_1) $f: B \times \mathbb{R} \to \mathbb{R}$ is continuous and radial in x.

 (A_2) There exist $\theta > q > N$ such that we have

$$0 < \theta F(x,t) \le t f(x,t), \forall (x,t) \in B \times \mathbb{R} \setminus \{0\}$$

where

$$F(x,t) = \int_0^t f(x,s)ds.$$

 (A_3) For each $x \in B$, $t \mapsto \frac{f(x,t)}{|t|^{q-1}}$ is increasing for $t \in \mathbb{R} \setminus \{0\}$.

(A₄) $\lim_{t \to 0} \frac{|f(x,t)|}{|t|^{\frac{N}{2}-1}} = 0.$

 (A_5) There exist p such that p > q > N and $C_p > 1$ such that

$$sgn(t)f(x,t) \ge C_p|t|^{p-1}, \quad \text{for all } (x,t) \in B \times \mathbb{R},$$

where $sgn(t) = 1$ if $t > 0$, $sgn(t) = 0$ if $t = 0$, and $sgn(t) = -1$ if $t < 0$.

Remark 1.1. The conditions (A_2) and (A_3) imply that $t \mapsto \frac{f(x,t)}{t^{N-1}}$ is increasing for t > 0.

We give an example of such nonlinearity. The nonlinearity $f(x,t) = C_p |t|^{p-\frac{N}{2}} t + |t|^{p-\frac{N}{2}} t \exp(\alpha_0 |t|^{\gamma})$ satisfies the assumptions $(A_1), (A_2), (A_3), (A_4)$ and (A_5) .

We will consider the following definition of solutions.

Definition 1.1. We say that a function $u \in \mathbf{W}$ is a weak solution to problem (1.1) if $g(||u||^{\frac{N}{2}}) \left(\int_{B} \left(v_{\beta}(x) |\Delta u|^{\frac{N}{2}-2} \Delta u \Delta \varphi dx \right) = \int_{B} |u|^{q-2} u\varphi \, dx + \int_{B} f(x,u) \varphi \, dx, \, \forall \varphi \in \mathbf{W}.$

Let $\mathcal{J}:\mathbf{W}\rightarrow\mathbb{R}$ be the energy functional given by

$$\mathcal{J}(u) = \frac{2}{N} G(\|u\|^{\frac{N}{2}}) - \frac{1}{q} \int_{B} |u|^{q} \, dx - \int_{B} F(x, u) \, dx, \tag{1.11}$$

where

$$F(x,t) = \int_0^t f(x,s)ds.$$

Note that, by the hypothesis (A_4) , for any $\varepsilon > 0$, there exists $\delta_0 > 0$ such that

$$|f(x,t)| \le \varepsilon |t|^{\frac{N}{2}-1}, \ \forall \ 0 < |t| \le \delta_0, \text{ uniformly in } x \in B.$$
(1.12)

Moreover, since f is critical at infinity, for every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that

$$\forall t \ge C_{\varepsilon} |f(x,t)| \le \varepsilon \exp(\alpha |t|^{\gamma}) \text{ with } \alpha > \alpha_0 \text{ uniformly in } x \in B.$$
(1.13)

In particular, we obtain for r > 2,

$$|f(x,t)t| \le \frac{\varepsilon}{C_{\varepsilon}^{q-1}} |t|^r \exp(\alpha |t|^{\gamma}) \text{ with } \alpha > \alpha_0 \text{ uniformly in } x \in B.$$
(1.14)

Hence, using (1.12), (1.13), (1.14) and the continuity of f, for every $\varepsilon > 0$, for every r > 2, there exist positive constants C and c such that

$$|f(x,t)| \le \varepsilon |t|^{\frac{N}{2}-1} + C|t|^{r-1} e^{\alpha |t|^{\gamma}}, \ \forall \ (x,t) \in B \times \mathbb{R}, \ \alpha > \alpha_0.$$

$$(1.15)$$

It follows from (1.15) and (A_2), that for all $\varepsilon > 0$, there exists C > 0 such that

$$F(x,t) \le \frac{1}{N} \varepsilon |t|^{\frac{N}{2}} + C|t|^r e^{\alpha |t|^{\gamma}}, \text{ for all } t \in \mathbb{R}, \ \alpha > \alpha_0.$$
(1.16)

So, by (1.11) and (1.16) the functional \mathcal{J} given by (1.11), is well defined. Moreover, by standard arguments, $\mathcal{J} \in C^1(\mathbf{W}, \mathbb{R})$. It is standard to check that critical points of \mathcal{J} are precisely weak solutions of (1.1). Moreover, we have

$$\langle \mathcal{J}'(u), \varphi \rangle = \mathcal{J}'(u)\varphi = g(||u||^{\frac{N}{2}}) \Big(\int_B \left(v_\beta(x) |\Delta u|^{\frac{N}{2}-2} \Delta u \ \Delta \varphi dx \right) - \int_B |u|^{q-2} u\varphi \ dx - \int_B f(x,u) \ \varphi \ dx \ , \ \forall \ \varphi \in \mathbf{W}$$

where $\langle ., . \rangle$ denotes the duality between **W** and its dual space **W**^{*}.

Our objective is to find solutions that minimise the bound energy \mathcal{J} among all possible solutions to the problem (P). To achieve this goal, we define the Nehari set as follows

$$\mathcal{N} := \{ u \in \mathbf{W} : \langle \mathcal{J}'(u), u \rangle = 0, u \neq 0 \}$$

and we are looking for a minimization of the energy function \mathcal{J} through the following minimization problem:

$$m = \inf_{u \in \mathcal{N}} \mathcal{J}(u) \cdot$$

To our best knowledge, there are no results for solutions to the non local weighted p-biharmonic equation with critical exponential nonlinearity combined with a polynomial term on the weighted Sobolev space **W**.

Now, we give our main result as follows:

Theorem 1.4. Let f(x,t) be a function that has a critical growth at $+\infty$. Suppose that (A_1) , (A_2) , (A_3) , (A_4) , (A_5) , (G_1) and (G_2) are satisfied. There exists $\delta > 0$ such that problem (P) has a radial solution with minimal energy provided

$$C_{p} > \max\left\{1, \frac{N\tau}{2}\left((\tau - \frac{N}{2p})|w_{p}|_{p}^{p}\frac{pN}{g_{0}(q - N)}\left(\frac{2(\alpha_{0} + \delta)}{\alpha_{\beta}}\right)^{\frac{N}{2\gamma}}\right)^{\frac{2p - N}{N}}\right\}$$
(1.17)
where $\tau = \frac{2g(1)}{Ng_{0}} + \frac{g(1)}{Ng_{0}^{2}}\frac{pq}{p - q}m_{p}$ with $m_{p} = \inf_{u \in \mathcal{N}_{p}}J_{p}(u) > 0,$
 $J_{p}(u) := \frac{2}{N}G(||u||^{\frac{N}{2}}) - \frac{1}{p}\int_{B}|u|^{p}dx$

and

$$\mathcal{N}_p := \{ u \in \mathbf{W}, u \neq 0 \text{ and } \langle J'_p(u), u \rangle = 0 \}.$$
$$|w_p|_p \text{ denote the norm of } w_p \text{ in the Lebesgue space } L^p(B).$$

Generally, exploring fourth-order partial differential equations is regarded as an intriguing subject. The interest in examining these equations has been sparked by their applications in various fields such as micro-electro-mechanical systems, phase field models of multi-phase systems, thin film theory, surface diffusion on solids, interface dynamics, and flow in Hele-Shaw cells, as referenced in [10, 18, 27].

This work is structured as follows: Section 2 covers essential preliminary knowledge about functional space and preliminary results. In Section 3, we present some key technical lemmas. Section 4 delves into studying an auxiliary problem crucial for proving our main result. Section 5 is dedicated to proving Theorem 1.4.

Additionally, it's important to note that the constant C might vary from one line to another, and occasionally, we index the constants to demonstrate their variations. Furthermore, we'll use the notation $|u|_p$ to denote the norm in the Lebesgue space $L^p(B)$.

2. Weighted Sobolev Space setting and embedding results

The space \mathbf{W} is a Banach and reflexive space with the norm

I

$$|u|| = \left(\int_B v_\beta(x) |\Delta u|^{\frac{N}{2}} dx\right)^{\frac{1}{2}}.$$

We also have the continuous embedding

$$\mathbf{W} \hookrightarrow L^t(B) \text{ for all } t \ge \frac{N}{2}.$$

Moreover, **W** is compactly embedded in $L^t(B)$ for all $t \ge 1$. In fact, we have

Lemma 2.1.

(i) Let u be a radially symmetric function in C[∞]_{0,rad}(B). Then, we have
 (i) [36]

$$\begin{aligned} |u(x)| &\leq \left(\frac{N}{\alpha_{\beta}} \left(|\log(\frac{e}{|x|}| - 1)\right)^{\frac{1}{\gamma}} \left(\int_{B} w_{\beta}(x) |\Delta u|^{\frac{N}{2}} dx\right)^{\frac{2}{N}} \\ &\leq \left(\frac{N}{\alpha_{\beta}} \left(|\log(\frac{e}{|x|}| - 1)\right)^{\frac{1}{\gamma}} ||u|| \cdot \end{aligned}$$

- (*ii*) $\int_{B} e^{|u(x)|^{\gamma}} dx < +\infty, \ \forall \ u \in W^{2,\frac{N}{2}}_{0,rad}(B).$ (*iii*) The following embedding is continuous
 - $\mathbf{W} \hookrightarrow L^t(B) \text{ for all } t \ge \frac{N}{2}.$
- (vi) **W** is compactly embedded in $L^t(B)$ for all $t \ge 1$.

Proof. (i) see [36]. (ii) From (i) and using the identity $\log(\frac{e}{|x|}) - |\log(|x|)| = 1 \quad \forall x \in B$, we get

$$|u(x)|^{\gamma} \leq \frac{N}{\alpha_{\beta}} \left| \log(\frac{e}{|x|} - 1) \right| ||u||^{\gamma} \leq \frac{N}{\alpha_{\beta}} \left(1 + \left| \log(|x|) \right| \right) ||u||^{\gamma}.$$

Hence, using the fact that the function $r \mapsto r^{N-1} e^{\frac{\|u\|^{\gamma}(1+|\log r|)}{\alpha_{\beta}}}$ is increasing, we get

$$\int_{|x|<1} e^{|u|^{\gamma}} dx \le NV_N \int_0^1 r^{N-1} e^{\frac{N||u||^{\gamma}(1+|\log r|)}{\alpha_{\beta}}} dr \le NV_N e^{\frac{N||u||^{\gamma}}{\alpha_{\beta}}} < +\infty.$$

Then (ii) follows by density.

J

(*iii*) and (*iv*). Since $v_{\beta}(x) \ge 1$, then following embedding are continuous

$$\mathbf{W} \hookrightarrow W^{2,2}_{0,rad}(B,w) \hookrightarrow W^{2,2}_{0,rad}(B) \hookrightarrow L^t(B) \; \forall t \ge \frac{N}{2}$$

We also have, by Rellich-Kondrachov, the following compact injection

$$W^{2,\frac{N}{2}}_{0,rad}(B) \hookrightarrow L^t(B) \ \forall t \ge 1.$$

This concludes the lemma.

Remark 2.1. According to (ii), it will be said that f has subcritical growth at infinity if

$$\lim_{|s| \to +\infty} \frac{|f(x,s)|}{e^{\alpha s^{\gamma}}} = 0, \ \forall \ \alpha > 0.$$
(2.18)

3. Some technical lemmas

In the following we assume, unless otherwise stated, that the function f satisfies the conditions (A_1) to (A_4) and the function g satisfies (G_1) and (G_2) . Let $u \in \mathbf{W}$ with $u \neq 0$ a.e. in the ball B, and we define the function $\Upsilon_u : [0, \infty) \to \mathbb{R}$ as

$$\Upsilon_u(t) = \mathcal{J}(tu). \tag{3.19}$$

It's clear that $\Upsilon'_u(t) = 0$ is equivalent to $tu \in \mathcal{N}$.

In the next results, we show that \mathcal{N} is not empty and that \mathcal{J} , restricted to \mathcal{N} , is bounded from below.

- **Lemma 3.1.** (i) For each $u \in \mathbf{W}$ with $u \neq 0$, there exists an unique $t_u > 0$, such that $t_u u \in \mathcal{N}$. In particular, the set \mathcal{N} is nonempty and $\mathcal{J}(u) > 0$, for every $u \in \mathcal{N}$.
- (ii) For all $t \ge 0$ with $t \ne t_u$, we have

$$\mathcal{J}(tu) < \mathcal{J}(t_u u) \cdot$$

Proof. (i) Note that since $q \ge N$, we have

$$\lim_{\substack{|t|\to 0}} \frac{|t|^{q-1}}{|t|^{\frac{N}{2}-1}} = 0,$$
$$\lim_{|t|\to\infty} \frac{|t|^{q-1}}{|t|^{r-1}} = 0, \text{ for all } r \in (q,\infty),$$

Then for any $\epsilon > 0$, there exists a positive constant $C_1 = C_1(\varepsilon)$ such that

$$|t|^{q-1} \le \epsilon |t|^{\frac{N}{2}-1} + C_1 |t|^{r-1} \text{ for all } t \in \mathbb{R}.$$
(3.20)

From (1.15) and (1.16), for all $\epsilon > 0$, there exist positive constants $C'_1 = C_1(\epsilon)$ and $C_2 = C_2(\epsilon)$ such that

$$f(x,t)t \le \epsilon |t|^{\frac{N}{2}} + C_1'|t|^r \exp(\alpha |t|^{\gamma}) \text{ for all } \alpha > \alpha_0, r > q.$$

$$(3.21)$$

and

$$F(x,t) \le \frac{1}{N}\epsilon |t|^{\frac{N}{2}} + C_2|t|^r \exp(\alpha|t|^{\gamma}) \text{ for all } \alpha > \alpha_0, r > q.$$

$$(3.22)$$

Now, given $u\in {\bf W}$ fixed with $u\neq 0$. From (3.22), (3.20) and (1.9), for all $\varepsilon>0,$ we have

$$\begin{split} \Upsilon_{u}(t) &= \mathcal{J}(tu) = \frac{2}{N} G(|t|^{\frac{N}{2}} ||u||^{\frac{N}{2}}) - \frac{1}{q} \int_{B} |tu|^{q} dx - \int_{B} F(x, tu) dx \\ &\geq \frac{1}{N} g(|t|^{\frac{N}{2}} ||u||^{\frac{N}{2}}) |t|^{\frac{N}{2}} ||u||^{\frac{N}{2}} - \frac{\epsilon}{q} |t|^{\frac{N}{2}} \int_{B} |u|^{\frac{N}{2}} dx - C_{1} \frac{|t|^{r}}{q} \int_{B} |u|^{r} - \int_{B} F(x, tu) dx \\ &\geq \frac{g_{0}}{N} |t|^{\frac{N}{2}} ||u||^{\frac{N}{2}} - \frac{1}{N} \epsilon |t|^{\frac{N}{2}} \int_{B} |u|^{\frac{N}{2}} dx - \frac{\epsilon}{q} |t|^{\frac{N}{2}} \int_{B} |u|^{\frac{N}{2}} dx \\ &- C_{1} \frac{|t|^{r}}{q} \int_{B} |u|^{r} - C_{1}^{r} \int_{B} |tu|^{r} \exp(\alpha t |u|^{\gamma}) dx \end{split}$$
(3.23)

Using the Hölder inequality, with a, a' > 1 such that $\frac{1}{a} + \frac{1}{a'} = 1$, and Sobolev embedding Lemma 2.1, we get

$$\begin{split} \Upsilon_{u}(t) \geq & \frac{g_{0}}{N} |t|^{\frac{N}{2}} \|u\|^{\frac{N}{2}} - C_{4}' \frac{\epsilon}{q} |t|^{\frac{N}{2}} \|u\|^{\frac{N}{2}} - C_{5} \frac{|t|^{r}}{q} \|u\|^{r} - C_{3} \frac{1}{N} \epsilon |t|^{\frac{N}{2}} \|u\|^{\frac{N}{2}} \\ & - C_{1} \left(\int_{B} |tu|^{a'r} dx \right)^{\frac{1}{a'}} \left(\int_{B} \exp(\alpha ta|u|^{\gamma}) dx \right)^{\frac{1}{a}} \\ \geq & \left(\frac{g_{0}}{N} - \epsilon (\frac{1}{N}C_{3} + C_{4}' \frac{1}{q}) \right) \|tu\|^{\frac{N}{2}} - C_{4} \frac{|t|^{r}}{q} \|u\|^{r} \\ & - \left(\int_{B} \exp\left(\alpha a \|tu\|^{\gamma} (\frac{|u|}{\|u\|})^{\gamma} \right) dx \right)^{\frac{1}{a}} C_{5} \|tu\|^{r}. \end{split}$$

By (1.5), the last integral is finite provided t > 0 is chosen small enough such that $\alpha a \|tu\|^{\gamma} \leq \alpha_{\beta}$. Then,

$$\Upsilon_u(t) \ge \left(\frac{g_0}{N} - \epsilon(\frac{1}{N}C_3 + C_4'\frac{1}{q})\right) \|tu\|^{\frac{N}{2}} - C_6\|tu\|^r \text{ with } \alpha a\|tu\|^{\gamma} \le \alpha_{\beta} \text{ and } \alpha > \alpha_0$$

holds. Choosing $\epsilon > 0$ such that $\frac{g_0}{N} - \epsilon \left(\frac{1}{N}C_3 + C'_4 \frac{1}{q}\right) > 0$ and since r > N, we obtain, $\Upsilon_u(t) > 0$ for small t > 0. (3.24)

Now, from (A_2) , we can derive that there exist $C_5, C_6 > 0$ such that

$$F(x,t) \ge C_5 |t|^{\theta} - C_6.$$
(3.25)

Then, by using (1.7) and (3.25), we get

$$\Upsilon_u(t) = \mathcal{J}(tu) \le \frac{2g(1)}{N} |t|^{\frac{N}{2}} ||u||^{\frac{N}{2}} + \frac{g(1)}{N} |t|^N ||u||^N - C_5' |t|^{\theta} |u|_{\theta}^{\theta} - C_6 |B|.$$

Since $\theta > N$, we obtain

$$\Upsilon_u(t) \to -\infty \text{ as } t \to +\infty.$$
 (3.26)

Hence, from (3.24) and (3.25), there exists at least one $t_u > 0$ such that $\Upsilon'_u(t_u) = 0$, i.e. $t_u u \in \mathcal{N}$.

Now we will show the uniqueness of t_u . Let s > 0 such that $su \in \mathcal{N}$ and suppose that $s \neq t_u$. Without loss of generality, we can assume that $s > t_u$. So we have $\langle \mathcal{J}'(t_u u), t_u u \rangle = 0$ and $\langle \mathcal{J}'(su), su \rangle = 0$, then

$$\frac{g(\|su\|^{\frac{N}{2}})}{|s|^{\frac{N}{2}}\|u\|^{\frac{N}{2}}} = \frac{1}{\|u\|^{N}} \left(\int_{B} |su|^{q-N} |u|^{N} dx + \int_{B} \frac{f(x,su)}{(su)^{N-1}} |u|^{N} dx \right),$$
(3.27)

$$\frac{g(\|t_u u\|^{\frac{N}{2}})}{|t|_u^{\frac{N}{2}} \|u\|^{\frac{N}{2}}} = \frac{1}{\|u\|^N} \left(\int_B |t_u u|^{q-N} |u|^N dx + \int_B \frac{f(x, t_u u)}{(t_u u)^{N-1}} |u|^N dx \right)$$
(3.28)

Combining (3.27), (3.28), we get

$$\begin{split} &\frac{g(\|su\|^{\frac{N}{2}})}{|s|^{\frac{N}{2}}\|u\|^{\frac{N}{2}}} - \frac{g(\|t_uu\|^{\frac{N}{2}})}{|t_u|^{\frac{N}{2}}\|u\|^{\frac{N}{2}}} \ge \\ &= \frac{1}{\|u\|^N} \bigg(\int_B \big((|su|^{q-N} - |t_uu|^{q-N})|u|^N + (\frac{f(x,su)}{(su)^{N-1}} - \frac{f(x,t_uu)}{(t_uu)^{N-1}})|u|^N \big) dx \bigg) \cdot \end{split}$$

Clearly, according to (A_3) , Remark 1.1 and (G_2) , the left-hand side of the last equality is negative for $t_u > s$ while the right-hand side is positive, which is a contradiction. This contradict the fact that $s > t_u$. The case $t_u > s > 0$ is similar and we omit it. Then, $s = t_u$.

(*ii*) Follows from (*i*), since
$$\mathcal{J}(t_u u) = \max_{t \ge 0} \Upsilon_u(t)$$
.

Lemma 3.2. Assume that $(A_1) - (A_4)$ hold. Then for any $u \in \mathbf{W}$ with $u \neq 0$ such that $\langle \mathcal{J}'(u), u \rangle \leq 0$, the unique maximum point of Υ_u on \mathbb{R}_+ satisfies $0 < t_u \leq 1$.

Proof. Since $t_u u \in \mathcal{N}$, we have

$$\frac{g(\|t_u u\|^{\frac{N}{2}})}{|t|_u^{\frac{N}{2}} \|u\|^{\frac{N}{2}}} = \frac{1}{\|u\|^N} \left(\int_B |t_u u|^{q-\frac{N}{2}} |u|^{\frac{N}{2}} dx + \int_B \frac{f(x, t_u u)}{(t_u u)^{\frac{N}{2}-1}} |u|^N dx \right)$$
(3.29)

Furthermore, since $\langle \mathcal{J}'(u), u \rangle \leq 0$, we have

$$\frac{g(\|u\|^{\frac{N}{2}})}{\|u\|^{\frac{N}{2}}} \leq \frac{1}{\|u\|^{N}} \bigg(\int_{B} |u|^{q-\frac{N}{2}} |u|^{\frac{N}{2}} dx + \int_{B} \frac{f(x,u)}{(u)^{\frac{N}{2}-1}} |u|^{\frac{N}{2}} dx \bigg).$$

Then by (3.29), we have

$$\frac{g(\|t_u u\|^{\frac{N}{2}})}{|t|_u^{\frac{N}{2}} \|u\|^{\frac{N}{2}}} - \frac{g(\|u\|^{\frac{N}{2}})}{\|u\|^{\frac{N}{2}}} \ge \\
\ge \frac{1}{\|u\|^N} \int_B \left((|t_u u|^{q-\frac{N}{2}} - |u|^{q-\frac{N}{2}} + \frac{f(x, t_u u)}{(t_u u)^{\frac{N}{2}-1}} - \frac{f(x, u)}{(u)^{\frac{N}{2}-1}}) \right) |u|^{\frac{N}{2}} dx.$$
(3.30)

Obviously, from (G_2) the left hand side of (3.30) is negative for $t_u > 1$ whereas the right hand side is positive, which is a contradiction. Therefore $0 < t_u \leq 1$. \Box In the sequel, we prove that sequences in \mathcal{N} cannot converge to 0.

Lemma 3.3. For all $u \in \mathcal{N}$, (i) there exists $\kappa > 0$ such that $||u|| \ge \kappa$; (ii) $\mathcal{J}(u) \ge (\frac{1}{N} - \frac{1}{q})g_0||u||^{\frac{N}{2}}$.

Proof. (i) We argue by contradiction. Suppose that there exists a sequence $\{u_n\} \subset \mathcal{N}$ such that $u_n \to 0$ in **W**. Since $\{u_n\} \subset \mathcal{N}$, then $\langle \mathcal{J}'(u_n), u_n \rangle = 0$. Hence, it follows from (3.21), (3.22) and the radial Lemma 2.1 that

$$g_{0} \|u_{n}\|^{\frac{N}{2}} < g(\|u_{n}\|^{\frac{N}{2}}) \|u_{n}\|^{\frac{N}{2}} = \int_{B} |u|^{q} dx + \int_{B} f(x, u_{n}) u_{n} dx$$

$$\leq 2\epsilon \int_{B} |u_{n}|^{\frac{N}{2}} dx + C_{1} \int_{B} |u_{n}|^{r} dx + C_{1}' \int_{B} |u_{n}|^{r} \exp(\alpha |u_{n}|^{\gamma}) dx$$

$$\leq \epsilon C_{6} \|u_{n}\|^{\frac{N}{2}} + C_{7} \|u\|^{r} + C_{1} \int_{B} |u_{n}|^{r} \exp(\alpha |u_{n}|^{\gamma}) dx.$$
(3.31)

Let a > 1 with $\frac{1}{a} + \frac{1}{a'} = 1$. Since $u_n \to 0$ in **W**, for *n* large enough, we get $||u_n|| \leq (\frac{\alpha_\beta}{\alpha a})^{\frac{1}{\gamma}}$. From Hölder inequality, (1.11) and again the radial Lemma 2.1, we have

$$\begin{split} \int_{B} |u_n|^r \exp(\alpha |u_n|^{\gamma}) dx &\leq \left(\int_{B} |u_n|^{ra'} dx \right)^{\frac{1}{a'}} \left(\int_{B} \exp\left(\alpha a \|u\|^{\gamma} \left(\frac{|u|}{\|u\|}\right)^{\gamma}\right) dx \right)^{\frac{1}{a}} \\ &\leq C_7 \left(\int_{B} |u_n|^{ra'} dx \right)^{\frac{1}{a'}} \leq C_8 \|u_n\|^r. \end{split}$$

Combining (3.31) with the last inequality, for n large enough, we obtain

$$g_0 \|u_n\|^{\frac{N}{2}} \le \epsilon C_6 \|u_n\|^{\frac{N}{2}} + C_8 \|u_n\|^r.$$
(3.32)

Choose suitable $\epsilon > 0$ such that $g_0 - \epsilon C_6 > 0$. Since N < r, then (3.32) contradicts the fact that $u_n \to 0$ in **W**.

(*ii*) Given $u \in \mathcal{N}$, by the definition of \mathcal{N} , (1.9) and (A_3), we obtain

$$\begin{aligned} \mathcal{J}(u) &= \mathcal{J}(u) - \frac{1}{q} \langle \mathcal{J}'(u), u \rangle \\ &= \frac{2}{N} G(\|u\|^{\frac{N}{2}}) - \frac{1}{q} g(\|u\|^{\frac{N}{2}}) \|u\|^{\frac{N}{2}} + \left(\int_{B} \frac{1}{q} f(x, u) u - F(x, u) dx\right) + \frac{1}{q} |u|_{q}^{q} \\ &\geq \left(\frac{1}{N} - \frac{1}{q}\right) g_{0} \|u\|^{\frac{N}{2}}. \end{aligned}$$

Lemma 3.3 implies that $\mathcal{J}(u) > 0$ for all $u \in \mathcal{N}$. As a consequence, \mathcal{J} is bounded by below in \mathcal{N} , and therefore $m := \inf_{u \in \mathcal{N}} \mathcal{J}(u)$ is well-defined.

In the following lemma we prove that if the minimum of \mathcal{J} on \mathcal{N} is realized at some $u \in \mathcal{N}$, then u is a critical point of \mathcal{J} .

Lemma 3.4. If $u_0 \in \mathcal{N}$ satisfies $\mathcal{J}(u_0) = m$, then $\mathcal{J}'(u_0) = 0$.

Proof. We argue by contradiction. We assume that $\mathcal{J}'(u_0) \neq 0$. By the continuity of \mathcal{J}' , there exist $\iota, \delta \geq 0$ such that

$$\|\mathcal{J}'(v)\|_{\mathbf{W}^*} \ge \iota \text{ for all } v \text{ such that } \|v - u_0\| \le \delta.$$
(3.33)

Let $D = (1 - \tau, 1 + \tau) \subset \mathbb{R}$ with $\tau \in (0, \frac{\delta}{4 \|u_0\|})$ and define $h : D \to \mathbf{W}$, by $h(\rho) = \rho u_0, \rho \in D$.

By virtue of $u_0 \in \mathcal{N}$, $\mathcal{J}(u_0) = m$ and Lemma 3.1, it is clear that

$$\bar{m} := \max_{\partial D} \mathcal{J} \circ h < m \text{ and } \mathcal{J}(h(\rho)) < m, \ \forall \ \rho \neq 1.$$
(3.34)

Let $\epsilon := \min\{\frac{m-\bar{m}}{2}, \frac{\imath\delta}{16}\}, S_r := B(u_0, r), r \ge 0 \text{ and } \mathcal{J}^a := \mathcal{J}^{-1}(] - \infty, a])$. According to the quantitative deformation Lemma [[33], Lemma 2.3], there exists a deformation $\eta \in C(\mathbf{W}, \mathbf{W})$ such that:

- (1) $\eta(v) = v$, if $v \notin \mathcal{J}^{-1}([m \epsilon, m + \epsilon]) \cap S_{\delta}$
- (2) $\eta\left(\mathcal{J}^{m+\epsilon}\cap S_{\frac{\delta}{2}}\right)\subset \mathcal{J}^{m-\epsilon},$
- (3) $\mathcal{J}(\eta(v)) \leq \mathcal{J}(v)$, for all $v \in \mathbf{W}$.

By lemma 3.1 (*ii*), we have $\mathcal{J}(h(\rho)) \leq m$. In addition, we have,

$$||h(\rho) - u_0|| = ||(\rho - 1)u_0|| \le \frac{\delta}{4}, \ \forall \rho \in D$$

Then $h(\rho) \in S_{\frac{\delta}{2}}$ for $\rho \in \overline{D}$. Therefore, it follows from (2) that

$$\max_{\rho \in \bar{D}} \mathcal{J}(\eta(h(\rho)) \le m - \epsilon.$$
(3.35)

In the sequel, we will prove that $\eta(h(D)) \cap \mathcal{N}$ is nonempty. In such case, due to the definition of m, this contradicts (3.35). To do this, we first define

$$\begin{split} \bar{h}(\rho) &:= \eta(h(\rho)),\\ \Upsilon_0(\rho) &= \langle \mathcal{J}'(h(\rho)), u_0\rangle, \end{split}$$

and

$$\Upsilon_1(\rho) := \left(\frac{1}{\rho} \langle \mathcal{J}'(\bar{h}(\rho), (\bar{h}(\rho)) \rangle \right).$$

We have that for $\rho \in \overline{D}$,

$$\mathcal{J}(h(\rho)) \le \overline{m} < m - \varepsilon.$$

Indeed, for all $\rho \in D$, $\mathcal{J}(h(\rho)) \leq m + \varepsilon$. In addition, $||h(\rho) - u_0|| = ||(\rho - 1)u_0|| \leq \frac{\delta}{2}$, $\forall \rho \in D$. So $h(\overline{D}) \subset S_{\frac{\delta}{2}}$ and then by (2), we get

$$\mathcal{J}(\eta(h(\rho)) = \mathcal{J}(\overline{h}(\rho)) \le m - \varepsilon \,\,\forall \,\,\rho \in \overline{D}.$$

Therefore, $\bar{h}(\rho) = \eta(h(\rho)) = \rho u_0$. Hence,

$$\Upsilon_0(\rho) = \Upsilon_1(\rho), \forall \rho \in \overline{D}. \tag{3.36}$$

On one hand, we have that $\rho = 1$ is the unique critical point of Υ_0 . So by degree theory, we get that $d^0(\Upsilon_0, D, 0) = 1$. On the other hand, from (3.36), we deduce that $d^0(\Upsilon_1, D, 0) = 1$. Consequently, there exists $\overline{\rho} \in D$ such that $\overline{h}(\overline{\rho}) \in \mathcal{N}$. This implies that

$$m \leq \mathcal{J}(\overline{h}(\overline{\rho})) = \mathcal{J}(\eta(h(\overline{\rho})).$$

This contradicts (3.35) and finish the proof of the Lemma.

4. The auxiliary problem (P_a)

In this section, in order to prove our existence result , we consider the auxiliary problem

$$(P_a) \begin{cases} g\left(\int_B (v_\beta(x)|\Delta u|^{\frac{N}{2}})dx\right)\Delta(v_\beta(x)|\Delta u|^{\frac{N}{2}-2}\Delta u) &= |u|^{p-2}u \quad \text{in} \quad B \\ u &= \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \partial B, \end{cases}$$

$$(4.37)$$

where p is the constant that appear in the hypothesis (A_5) . The energy J_p associated to problem (4.37) is given by

$$J_p(u) := \frac{2}{N} G(\|u\|^{\frac{N}{2}}) - \frac{1}{p} \int_B |u|^p dx.$$

We introduce the Nehari manifold associated to J_p that is

$$\mathcal{N}_p := \{ u \in \mathbf{W}, u \neq 0 \text{ and } \langle J'_p(u), u \rangle = 0 \}.$$

Let $m_p = \inf_{\mathcal{N}_p} J_p(u) > 0$, we have the following results for J_p .

By following the proof in [13], we can easily see that we have the following results.

Lemma 4.1. Given $u \in \mathbf{W}, u \neq 0$, there exists a unique t > 0 such that $tu \in \mathcal{N}_p$. In addition, t satisfies

$$J_p(tu) = \max_{s \ge 0} J_p(su). \tag{4.38}$$

As a consequence, we have

Corollary 4.2. Let $u \in \mathbf{W}, u \neq 0$. Then $u \in \mathcal{N}_p$ if and only if $J_p(tu) = \max_{s>0} J_p(su)$.

Furthermore, proving the subsequent lemmas is quite straightforward.

Lemma 4.3. For all $u \in \mathcal{N}_p$, (i) there exists $\kappa_0 > 0$ such that $||u|| \ge \kappa_0$; (ii) $\mathcal{J}_p(u) \ge g_0(\frac{2}{N} - \frac{1}{p})|u|_p^p$.

Lemma 4.4. There exists $w_p \in \mathcal{N}_p$ such that $J_p(w_p) = m_p$.

162

Proof. Let sequence $(w_n) \subset \mathcal{N}_p$ satisfy $\lim_{n \to +\infty} J_p(w_n) = m_p$. It is clearly that (w_n) is bounded by Lemma 4.3. Then, up to a subsequence, there exists $w_p \in \mathbf{W}$ such that

$$\begin{array}{ll} w_n \to w_p & \text{in } \mathbf{W}, \\ w_n \to w_p & \text{in } L^t(B), \ \forall t \ge \frac{N}{2}, \\ w_n \to w_p & \text{a.e. in } B. \end{array}$$

$$(4.39)$$

We claim that $w_p \neq 0$. Suppose, by contradiction, $w_p = 0$. From the definition of \mathcal{N}_p and (4.39), we have that $\lim_{n \to +\infty} \|w_n\|^{\frac{N}{2}} = 0$, which contradicts Lemma 4.3. Hence, $w_p \neq 0$.

From the continuity of g, the lower semi continuity of norm and (4.39), it follows that

$$g(\|w_p\|^{\frac{N}{2}})\|w_p\|^{\frac{N}{2}} \le \liminf_{n \to +\infty} g(\|w_n\|^{\frac{N}{2}})\|w_n\|^{\frac{N}{2}}.$$
(4.40)

On the other hand, by using $\langle J'(w_n), w_n \rangle = 0$ and (4.39), we have

$$\liminf_{n \to +\infty} g(\|w_n\|^{\frac{N}{2}}) \|w_n\|^{\frac{N}{2}} = \liminf_{n \to +\infty} \int_B |w_n|^p dx = \int_B |w_p|^p dx.$$
(4.41)

From (4.40) and (4.41) we deduce that $\langle J'_p(w_p), w_p \rangle \leq 0$. Then, as in Lemma 3.2 this implies that there exists $s_u \in (0, 1]$ such that $s_u w_p \in \mathcal{N}_p$. Thus, by the lower semi continuity of norm, (1.9) and (4.39), we get that

$$\begin{split} m_p &\leq J_p(s_u w_p) = J(s_u w_p) - \frac{1}{N} \langle J'_p(s_u w_p), s_u w_p \rangle \\ &= \frac{2}{N} G(\|s_u w_p\|^{\frac{N}{2}}) - \frac{1}{N} g(\|s_u w_p\|^{\frac{N}{2}}) \|s_u w_p\|^{\frac{N}{2}} + \left(\frac{1}{N} - \frac{1}{p}\right) s_u^p \int_B |w_p|^p dx \\ &\leq J_p(w_p) - \frac{1}{N} \langle J'_p(w_p), w_p \rangle \\ &= \frac{2}{N} G(\|w_p\|^{\frac{N}{2}}) - \frac{1}{p} \int_B |w_p|^p dx - \frac{1}{N} g(\|w_p\|^{\frac{N}{2}}) \|w_p\|^{\frac{N}{2}} + \frac{1}{N} \int_B |w_p|^p dx \\ &\leq \liminf_{n \to +\infty} \left[\frac{2}{N} G(\|w_n\|^{\frac{N}{2}}) - \frac{1}{p} \int_B |w_p|^p dx \right] \\ &- \liminf_{n \to +\infty} \left[\frac{1}{N} g(\|w_n\|^{\frac{N}{2}}) \|w_p\|^{\frac{N}{2}} + \frac{1}{N} \int_B |w_n|^p dx \right] \\ &\leq \liminf_{n \to +\infty} \left[J_p(w_n) - \frac{1}{N} \langle J'_p(w_n), w_n \rangle \right] = m_p. \end{split}$$

Therefore, this leads us to the result: $J_p(w_p) = m_p$, fulfilling the intended conclusion.

5. Proof of Theorem 1.2

Next, we'll establish a fundamental estimate for level m. This will serve as a valuable tool in obtaining an appropriate bound on the norm of a minimizing sequence for m within \mathcal{N} .

Lemma 5.1. If $(u_n) \subset \mathcal{N}$ is a minimizing sequence for m, then

$$\limsup_{n \to +\infty} \|u_n\|^{\frac{N}{2}} \le m \frac{qN}{g_0(q-N)}.$$
(5.42)

Proof. Let $(u_n) \subset \mathcal{N}$ is a minimizing sequence for m. Using (A_2) and (1.10), we obtain that

$$\begin{split} m + o_n(1) &= \mathcal{J}(u_n) = \left(\mathcal{J}(u_n) - \frac{1}{q} \langle \mathcal{J}'(u_n), u_n \rangle \right) \\ &= \left(\frac{2}{N} G(\|u_n\|^{\frac{N}{2}}) - \frac{1}{q} g(\|u_n\|^{\frac{N}{2}}) \|u_n\|^{\frac{N}{2}} + \frac{1}{q} \int_B \left(f(x, u_n) u_n - qF(x, u_n) \right) dx \right) \\ &+ \frac{1}{q} \int_B |u_n|^q dx \\ &> \left(\frac{1}{N} - \frac{1}{q} \right) g(\|u_n\|^{\frac{N}{2}} \|) \|u_n\|^{\frac{N}{2}} \\ &> \frac{q - N}{qN} g_0 \|u_n\|^{\frac{N}{2}}. \end{split}$$

Therefore (5.42) holds.

Let α_0 be the real number that appears in the equation (1.5). Then there exists $\delta > 0$ such that $\alpha = \alpha_0 + \delta$. We arrive at the estimate for level m.

Lemma 5.2. Assume that $(A_1) - (A_5)$ and (1.17) are satisfied. It holds that

$$m \le g_0 \frac{q - N}{qN} \left(\frac{\alpha_\beta}{2(\alpha_0 + \delta)}\right)^{\frac{N}{2\gamma}}.$$
(5.43)

Proof. From Lemma 4.4, there exists $w_p \in \mathcal{N}_p$ such that $J_p(w_p) = m_p$ and $J'_p(w_p) = 0$. Consequently, using (1.9) we get

$$\frac{2}{N}G(\|w_p\|^{\frac{N}{2}}) - \frac{1}{p}\int_B |w_p|^p \, dx = m_p \tag{5.44}$$

and

$$g_0 \|w_p\|^{\frac{N}{2}} < g(\|w_p\|^{\frac{N}{2}}) \|w_p\|^{\frac{N}{2}} = \int_B |w_p|^p \, dx.$$
(5.45)

Note that by using (5.44), (5.45), (1.10) and the fact that p > q > N, we have

$$\left(\frac{1}{q} - \frac{1}{p}\right)|w_p|_p^p = \frac{1}{q}g(\|w_p\|^{\frac{N}{2}})\|w_p\|^{\frac{N}{2}} - \frac{2}{N}G(\|w_p\|^{\frac{N}{2}}) + m_p \le m_p.$$

So,

$$|w_p|_p^p < \frac{pq}{p-q}m_p.$$
(5.46)

According to (A_5) and (5.45), we have $\langle \mathcal{J}'(w_p), w_p \rangle \leq 0$ which, with lemma 3.2, gives that there exists a unique $s \in (0, 1)$ such that $sw_p \in \mathcal{N}$. Using (A_5) , (5.44), (5.45), (1.8) and (5.46), we obtain

$$\begin{split} m &\leq \mathcal{J}(sw_p) \leq \frac{2g(1)s^{\frac{N}{2}}}{N} \|w_p\|^{\frac{N}{2}} + \frac{g(1)s^N}{N} \|w_p\|^N - \frac{C_p s^p}{p} |w_p|_p^p \\ &\leq \frac{2g(1)s^{\frac{N}{2}}}{N} \|w_p\|^{\frac{N}{2}} + \frac{g(1)s^{\frac{N}{2}}}{N} \|w_p\|^N - \frac{C_p s^p}{p} |w_p|_p^p \\ &\leq \frac{2g(1)s^{\frac{N}{2}}}{Ng_0} |w_p|_p^p + \frac{g(1)s^{\frac{N}{2}}}{Ng_0^2} |w_p|_p^{2p} - \frac{C_p s^p}{p} |w_p|_p^p \\ &= \left((\frac{2g(1)}{Ng_0} + \frac{g(1)}{Ng_0^2} |w_p|_p^p) s^{\frac{N}{2}} - \frac{C_p s^p}{p} \right) |w_p|_p^p \end{split}$$

$$\leq \max_{\xi>0} \left(\left(\frac{2g(1)}{Ng_0} + \frac{g(1)}{Ng_0^2} |w_p|_p^p \right) \xi^{\frac{N}{2}} - \frac{C_p \xi^p}{p} \right) |w_p|_p^p \\ \leq \max_{\xi>0} \left(\left(\frac{2g(1)}{Ng_0} + \frac{g(1)}{Ng_0^2} \frac{pq}{p-q} m_p \right) \xi^{\frac{N}{2}} - \frac{C_p \xi^p}{p} \right) |w_p|_p^p.$$

By some simple algebraic calculations, we get

$$m \le \left(\frac{N\tau}{2C_p}\right)^{\frac{N}{p-\frac{N}{2}}} \left(\tau - \frac{N}{2p}\right) |w_p|_p^p.$$
(5.47)

Thus, by using (5.47), we obtain

$$m < \left(\frac{N\tau}{2C_p}\right)^{\frac{N}{p-\frac{N}{2}}} \left(\tau - \frac{N}{2p}\right) \left(\frac{pq}{p-q}\right) m_p.$$
(5.48)

Therefore, by (1.17) and (5.48), we get that (5.43) is valid.

The result below gives us some compactness properties of minimising sequences.

Lemma 5.3. If $(u_n) \subset \mathcal{N}$ is a minimizing sequence for m, then there exists $u \in \mathbf{W}$ such that

$$\int_B f(x, u_n) u_n dx \to \int_B f(x, u) u dx$$

and

$$\int_B F(x, u_n) dx \to \int_B F(x, u) dx.$$

Proof. We must prove the first limit, since the second one is analogous. For this, we use (1.15) and introduce the following function $k(u_n(x))$ given by

$$k(u_n(x)) := \varepsilon |u_n|^{\frac{N}{2}} dx + C|u_n|^q \exp(\alpha |u_n|^{\gamma}).$$

It's clear that is sufficient to prove that $k(u_n(x))$ is convergent in $L^1(B)$. We have

$$\int_{B} f(x, u_{n}) \ u_{n} dx \leq \varepsilon \int_{B} |u_{n}|^{\frac{N}{2}} dx + C \int_{B} |u_{n}|^{q} \exp(\alpha |u_{n}|^{\gamma}) dx$$
$$= \int_{B} k(u_{n}(x)) \ dx, \quad \text{for all } \alpha > \alpha_{0} \text{ and } q > N.$$
(5.49)

First note that

$$|u_n|^{\frac{N}{2}} \to |u|^{\frac{N}{2}} \text{ in } L^1(B).$$
 (5.50)

Considering s, s' > 1 such that $\frac{1}{s} + \frac{1}{s'} = 1$ and s close to 1, we get

$$|u_n|^q \to |u|^q \text{ in } L^{s'}(B).$$

$$(5.51)$$

On the other hand, by (5.42), we have

$$m > \frac{q - N}{qN} g_0 \limsup_{n \to +\infty} \|u_n\|^{\frac{N}{2}}$$
 (5.52)

which, together with Lemma 5.2 leads to the following estimation $\limsup_{n \to +\infty} ||u_n||^{\gamma} < \frac{\alpha_{\beta}}{2(\alpha_0 + \delta)}$.

165

Now choosing $\alpha = \alpha_0 + \delta$, $\delta > 0$, we have that

$$\int_{B} \exp(\alpha s |u_{n}|^{\gamma}) dx \leq \int_{B} \exp\left(s(\alpha_{0}+\delta) ||u_{n}||^{\gamma} \left(\frac{|u_{n}|}{||u_{n}||}\right)^{\gamma}\right) dx$$

$$\leq \int_{B} \exp\left(\frac{s}{2}\alpha_{\beta} \left(\frac{|u_{n}|}{||u_{n}||}\right)^{\gamma}\right) dx.$$
(5.53)

Since s > 1 and is sufficiently close to 1, we get $\frac{s}{2}\alpha_{\beta} \leq \alpha_{\beta}$. Then it follows by (1.4) that there is M > 0 such that

$$\int_{B} \exp(\alpha s |u_n|^{\gamma}) dx \le M.$$
(5.54)

Since

$$\exp(\alpha |u_n|^{\gamma}) \to \exp(\alpha |u|^{\gamma}) \text{ a.e in } B,$$
(5.55)

from (5.53) and [[32], Lemma 4.8], we get that

$$\exp(\alpha |u_n|^{\gamma}) \rightharpoonup \exp(\alpha |u|^{\gamma}) \text{ in } L^s(B).$$
(5.56)

Then, using (5.50), (5.51), (5.54), (5.56) and the Hölder inequality, we get

$$\begin{split} &\int_{B} \left(k(u_{n}(x)) - k(w(x))\right) dx = \varepsilon \int_{B} \left(|u_{n}|^{\frac{N}{2}} - |u|^{\frac{N}{2}}\right) dx \\ &+ C \int_{B} \left(|u_{n}|^{q} - |u|^{q}\right) \exp(\alpha |u_{n}|^{\gamma}) dx + C \int_{B} |u|^{q} \left(\exp(\alpha |u_{n}|^{\gamma}) - \exp(\alpha |u|^{\gamma})\right) dx \\ &\leq \varepsilon \int_{B} \left(|u_{n}|^{\frac{N}{2}} - |u|^{\frac{N}{2}}\right) dx + C \left(\int_{B} \left(|u_{n}|^{q} - |u|^{q}\right)^{s'} dx\right)^{\frac{1}{s'}} \left(\int_{B} \exp(s\alpha |u|^{\gamma}) dx\right)^{\frac{1}{s}} \\ &+ C \int_{B} |u|^{q} \left(\exp(\alpha |u_{n}|^{\gamma}) - \exp(\alpha |u|^{\gamma})\right) dx \\ &\leq \varepsilon \int_{B} \left(|u_{n}|^{\frac{N}{2}} - |u|^{\frac{N}{2}}\right) dx + CM \left(\int_{B} \left(|u_{n}|^{q} - |u|^{q}\right)^{s'} dx\right)^{\frac{1}{s'}} \\ &+ C \int_{B} |u|^{q} \left(\exp(\alpha |u_{n}|^{\gamma}) - \exp(\alpha |u|^{\gamma})\right) dx \\ &\to 0 \text{ as } n \to \infty. \end{split}$$

We conclude that

$$\int_{B} f(x, u_n) \ u_n dx \to \int_{B} f(x, u) \ u dx.$$
(5.57)

In the following, we give an additional important result that will be used to prove our main result.

Lemma 5.4. Assume that the conditions (A_1) , (A_2) and (A_3) are satisfied. Then, for each $x \in B$, we have

tf(x,t) - qF(x,t) is increasing for t > 0 and decreasing for t < 0.

In particular, tf(x,t) - qF(x,t) > 0 for all $(x,t) \in B \times \mathbb{R} \setminus \{0\}$.

Proof. Assume that 0 < t < s. For each $x \in B$, we have

$$\begin{split} tf(x,t) - qF(x,t) &= \frac{f(x,t)}{t^{q-1}}t^q - qF(x,s) + q\int_t^s f(x,\nu)d\nu \\ &< \frac{f(x,t)}{s^{q-1}}t^q - qF(x,s) + \frac{f(x,s)}{s^{q-1}}(s^q - t^q) \\ &= sf(x,s) - qF(x,s) \cdot \end{split}$$

The proof in the case t < s < 0 is similar. The assertion tf(x,t) - qF(x,t) > 0 for all $(x,t) \in B \times \mathbb{R} \setminus \{0\}$ comes from (A_2) . \Box

By the following lemma, we prove that the minimum of \mathcal{J} on \mathcal{N} is achieved in some $w_0 \in \mathcal{N}$.

Lemma 5.5. There exists $w_0 \in \mathcal{N}$ such that $\mathcal{J}(w_0) = m$.

Proof. Let sequence $(w_n) \subset \mathcal{N}$ satisfying $\lim_{n \to +\infty} \mathcal{J}(w_n) = m$. It is clearly that (w_n) is bounded by Lemma 4.3. Then, up to a subsequence, there exists $w_0 \in \mathbf{W}$ such that

$$\begin{array}{ll} w_n \rightharpoonup w_0 & \text{in } \mathbf{W}, \\ w_n \rightarrow w_0 & \text{in } L^t(B), \ \forall t \ge \frac{N}{2}, \\ w_n \rightarrow w_0 & \text{a.e. in } B. \end{array}$$

$$(5.58)$$

We claim that $w_0 \neq 0$. Suppose, by contradiction, $w_0 = 0$. From the definition of \mathcal{N} and (5.58), we have that $\lim_{n \to +\infty} ||w_n||^{\frac{N}{2}} = 0$, which contradicts Lemma 3.3. Hence, $w_0 \neq 0$.

From the lower semi continuity of norm, the continuity of g and (5.58), it follows that

$$g(\|w_0\|^{\frac{N}{2}})\|w_0\|^{\frac{N}{2}} - \lim_{n \to \infty} \int_B |w_0|^q \, dx \le \liminf_{n \to +\infty} \left(g(\|w_n\|^{\frac{N}{2}})\|w_n\|^{\frac{N}{2}} - \int_B |w_n|^q \, dx\right) \cdot \tag{5.59}$$

On the other hand, by using $\langle \mathcal{J}'(w_n), w_n \rangle = 0$ and (5.58), we have

$$\liminf_{n \to +\infty} g(\|w_n\|^{\frac{N}{2}}) \|w_n\|^{\frac{N}{2}} = \liminf_{n \to +\infty} \int_B (f(x, w_n) w_n + |w_n|^q) dx$$
$$= \int_B (f(x, w_0) w_0 + |w_0|^q) dx.$$
(5.60)

From (5.59) and (5.60) we deduce that $\langle \mathcal{J}'(w_0), w_0 \rangle \leq 0$. Then, as in Lemma 3.2 this implies that there exists $s \in (0, 1]$ such that $sw_0 \in \mathcal{N}$. Thus, by the lower semi continuity of norm, (1.8), Lemma 5.4 and Lemma 5.3, we get that

$$m \leq \mathcal{J}(sw_0) = \mathcal{J}(sw_0) - \frac{1}{q} \langle \mathcal{J}'(sw_0), sw_0 \rangle$$

= $\frac{2}{N} G(\|sw_0\|^{\frac{N}{2}}) - \frac{1}{q} g(\|sw_0\|^{\frac{N}{2}}) \|sw_0\|^{\frac{N}{2}}$
 $+ \frac{1}{q} \int_B (f(x, sw_0) sw_0 - qF(x, sw_0)) dx$

R. JAIDANE

$$< \frac{2}{N}G(\|w_{0}\|^{\frac{N}{2}}) - \frac{1}{q}g(\|w_{0}\|^{\frac{N}{2}})\|w_{0}\|^{\frac{N}{2}} + \frac{1}{q}\int_{B} (f(x,w_{0})w_{0} - qF(x,w_{0}))dx$$

$$\leq \liminf_{n \to +\infty} \left[\frac{2}{N}G(\|w_{n}\|^{\frac{N}{2}}) - \int_{B}F(x,w_{n})dx\right]$$

$$-\liminf_{n \to +\infty} \left[\frac{1}{q}g(\|w_{n}\|^{\frac{N}{2}})\|w_{n}\|^{\frac{N}{2}} - \frac{1}{q}\int_{B}f(x,w_{n})w_{n}dx\right]$$

$$\leq \liminf_{n \to +\infty} \left[\mathcal{J}(w_{n}) - \frac{1}{q}\langle \mathcal{J}'(w_{n}), w_{n}\rangle\right] = m.$$

Therefore, we get that $\mathcal{J}(sw_0) = m$, which is the desired conclusion.

Proof of Theorem 1.4. From Lemma 5.5 there exists w_0 such that $\mathcal{J}(w_0) = m$. Now, by Lemma 3.4, we deduce that $\mathcal{J}'(w_0) = 0$. So, w_0 is a solution to problem (P).

Remark 5.1. In the sub-critical case, our energy does not lose its compactness. In this case, we can have an analogous result only with the conditions (G_1) , (G_2) , (H_1) , (H_2) , (H_3) and (H_4) and without going through the auxiliary problem.

So, we can announce the following theorem

Theorem 5.6. Let f(x,t) be a function that verifies (2.18), (H_1) , (H_2) , (H_3) and (H_4) . Assume that the condition (G_1) and (G_1) hold. Then problem (P) has a radial solution with minimal energy.

References

- I. Abid, S. Baraket, R. Jaidane, On a weighted elliptic equation of N-Kirchhoff type, *Demonstratio Mathematica* 55 (2022) 634–657. DOI:10.1515/dema-2022-0156
- [2] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128 (1988), 385-398.
- [3] V. Alexiades, A.R. Elcrat, P.W. Schaefer, Existence theorems for some nonlinear fourthorder elliptic boundary value problems, *Nonlinear Anal.* 4 (1980), no. 4, 805-813.
- [4] C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, *Comput. Math. Appl.* 49 (2005), 85-93.
- [5] C.O. Alves, F.J.S.A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001), 43-56.
- [6] S. Baraket, R. Jaidane, Non-autonomous weighted elliptic equations with double exponential growth, An. St. Univ. Ovidius Constanța 29 (2021), no. 3, 33-66.
- M. Calanchi, B. Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension N, Nonlinear Analysis TMA 121 (2015), 403-411. DOI: 10.1016/j.na.2015.02.001
- [8] M. Calanchi, B. Ruf, F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDea Nonlinear Differ. Equ. Appl. 24 (2017), Art. 29.
- [9] R. Chetouane, R. Jaidane, Ground state solutions for weighted N-Laplacian problem with exponential nonlinear growth, Bull. Belg. Math. Soc. Simon Stevin 29 (2022), no. 1, 37-61.
- [10] C.P. Dănet, Two maximum principles for a nonlinear fourth order equation from thin plate theory, *Electron. J. Qual. Theory Differ. Equ.* **31** (2014), 1-9.
- [11] S. Deng, T. Hu, C. Tang, N-laplacian problems with critical double exponential nonlinearities, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 41 (2021), 987-1003.
- [12] P. Drabek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997. DOI:10.1515/9783110804775
- [13] B. Dridi, R. Jaidane, R. Chetouene, Existence of Signed and Sign-Changing Solutions for Weighted Kirchhoff Problems with Critical Exponential Growth, Acta Applicandae Mathematicae (2023).

- [14] D.G. de Figueiredo, O.H. Miyagaki, B. Ruf, Elliptic equations in ℝ² with nonlinearities in the critical growth range, *Calc. Var. Partial Differential Equations* **3** (1995), no. 2, 139-153. DOI: 10.1007/BF01205003.
- [15] B. Dridi, Elliptic problem involving logarithmic weight under exponential nonlinearities growth, Math. Nachr. 296 (2023), no. 12, 1–18.
- [16] B. Dridi, R. Jaidane, Existence Solutions for a Weighted Biharmonic Equation with Critical Exponential Growth, Mediterr. J. Math. 20 (2023), Art. 102.
- [17] D. E. Edmunds, D. Fortunato, E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), 269-289.
- [18] A. Ferrero, G. Warnault, On a solutions of second and fourth order elliptic with power type nonlinearities, *Nonlinear Anal. TMA* 70 (2009), 2889-2902.
- [19] R. Jaidane, Ground state solution for a weighted elliptic problem under double exponential non linear growth, Z. Anal. Anwend. 42 (2023), no. 3/4, 253-281. DOI:10.4171/ZAA/1737
- [20] R. Jaidane, Weighted fourth order equation of Kirchhoff type in dimension 4 with non-linear exponential growth, *Topological Methods in Nonlinear Analysis* 61 (2023), no. 2, 889-916. DOI:10.12775/TMNA.2023.005.
- [21] R. Jaidane, Weigthed elliptic equation of Kirchhoff type with exponential non linear growth, Annals of the University of Craiova, Mathematics and Computer Science Series 49 (2022), no. 2, 309-337, DOI: 10.52846/ami.v49i2.1572.
- [22] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1876.
- [23] M.K.-H. Kiessling, Statistical Mechanics of Classical Particles with Logarithmic Interactions, Communications on Pure and Applied Mathematics 46 (1993), 27-56. DOI:10.1002/cpa.3160460103
- [24] A. Kufner, Weighted Sobolev spaces, John Wiley and Sons Ltd, 1985.
- [25] J.-L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30, North-Holland, Amsterdam-New York, 1978.
- [26] P.L. Lions, The Concentration-compactness principle in the Calculus of Variations, Part 1, *Revista Iberoamericana* 11 (1985), 185-201.
- [27] T.G. Myers, Thin films with high surface tension, SIAM Rev. 40 (1998), no. 3, 441-462.
- [28] F. Meng, F. Zhang, Y. Zhang, Multiple positive solutions for biharmonic equation of Kirchhoff type involving concave-convexe nonlinearities, *Electronic Journal of Differential Equations* **2020** (2020), no. 44, 1-15.
- [29] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092.
- [30] B. Ruf, F. Sani, Sharp Adams-type inequalities in ℝ^N, Trans. Amer. Math. Soc. 365 (2013), 645-670. DOI:10.1090/S0002-9947-2012-05561-9
- [31] N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
- [32] M. Willem, Minimax methods, Handbook of nonconvex analysis and applications, International Press, Somerville, Massachusetts, 2010, pp. 597–632.
- [33] M. Willem, *Minimax Theorem*, Birkhäuser, Boston, 1996.
- [34] L. Wang, M. Zhu, Adams' inequality with logarithm weight in ℝ⁴, Proceedings of the AMS 149 (2021), no. 8, 3463–3472. DOI: org/10.1090/proc/15488
- [35] C. Zhang, Concentration-Compactness principle for Trudinger–Moser inequalities with logarithmic weights and their applications, *Nonlinear Anal.* 197 (2020), 1-22.
- [36] H. Zhao, M. Zhu, Critical and supercritical Adams' inequalities with logarithmic weights, Mediterr. J. Math. 20 (2023), Art. 313. https://doi.org/10.1007/s00009-023-02520-0

(Rached Jaidane) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF TUNIS EL MANAR, TUNISIA

E-mail address: rachedjaidane@gmail.com