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Ground State Solutions for a Kirchhoff Type Equation
Involving p-Biharmonic Operator with Exponential Growth
non-linearity

Rached Jaidane

Abstract. In this article, we study the following non local weighted problem

g
( ∫

B
(w(x)|∆u|

N
2 )dx

)
∆(w(x)|∆u|

N
2
−2∆u) = |u|q−2u+ f(x, u) in B, u =

∂u

∂n
= 0 on ∂B,

where B is the unit ball in RN and w(x) is a singular weight of logarithm type. The non-

linearity is a combination of a reaction source f(x, u) which is critical in view of exponential

inequality of Adams’ type and a polynomial function. The Kirchhoff function g is positive
and continuous. The energy function loses compactness in the critical case. To remedy this,

we introduce a new asymptotic condition for non-linearity and go through an intermediate

problem. Using the Nehari manifold method, the quantitative deformation lemma and results
from degree theory, we establish the existence of a ground-state solution.

2020 Mathematics Subject Classification. 35J20, 49J45, 35K57, 35J60, 46E35.

Key words and phrases. Weighted Sobolev space, Kirchhoff, p-biharmonic operator, Critical

exponential growth, Adams’ inequality.

1. Introduction and Main results

In this paper, we consider the non local fourth order weighted elliptic equation:

(P )


g
( ∫

B
(vβ(x)|∆u|N2 )dx

)
∆(vβ(x)|∆u|N2 −2∆u) = |u|q−2u+ f(x, u) in B

u =
∂u

∂n
= 0 on ∂B,

(1.1)
where B = B(0, 1) is the unit open ball in RN , q > N , f(x, t) is continuous in B ×R
and behaves like exp{αt

N
(N−2)(1−β) } as |t| → +∞, for some α > 0 uniformly with

respect to x ∈ B. The weight vβ(x) is given by

vβ(x) =

(
log

e

|x|

)β(N2 −1)

, β ∈ (0, 1)· (1.2)

The Kirchhoff function g is positive, continuous and verifies some mild conditions.
The study of Kirchhoff problems was initiated in 1883, when Kirchhoff [22] studied

the following equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= f(x, u), (1.3)
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where ρ, P0, h, E, L represent physical quantities. This model extends the classical
D’Alembert wave equation by considering the effects of the changes in the length of
the strings during the vibrations. We call (1.3) a nonlocal problem since the equation
contains an integral over [0, L] which makes the study of it interesting. After Lions in
his pioneering work [25] presented an abstract functional analysis framework to (1.3).
We mention that non-local problems also arise in other areas, for instance, biological
systems where the function u describes a process that depends on the average of itself
( for example, population density), see for instance [4, 5] and its references.

Recently, Trudinger-Moser inequalities [29, 31] have been extended to the Sobolev
space with logarithmic weight

W 1,N
0,rad(B, ρ) = closure{u ∈ C∞0,rad(B)|

∫
B

|∇u|N%(x)dx <∞}.

The result was established by Calanchi and Ruff, that is

Theorem 1.1. [7]

(i) Let β ∈ [0, 1) and let % given by %(x) =
(

log 1
|x|
)β(N−1)

, then∫
B

e|u|
γ

dx < +∞,∀u ∈W 1,N
0,rad(B, %), if and only if γ ≤ γN,β =

N

(N − 1)(1− β)
=

N ′

1− β

and

sup
u∈W 1,N

0,rad(B,%)∫
B
|∇u|Nw(x)dx≤1

∫
B

eα|u|
γN,β

dx < +∞ ⇔ α ≤ αN,β = N [ω
1

N−1

N−1(1− β)]
1

1−β

where ωN−1 is the area of the unit sphere SN−1 in RN and N ′ is the Hölder
conjugate of N .

(ii) Let % given by %(x) =
(

log e
|x|
)N−1

, then∫
B

exp{e|u|
N
N−1 }dx < +∞, ∀ u ∈W 1,N

0,rad(B, %)

and

sup
u∈W 1,N

0,rad(B,%)

‖u‖%≤1

∫
B

exp{βeω
1

N−1
N−1 |u|

N
N−1 }dx < +∞ ⇔ β ≤ N,

where ωN−1 is the area of the unit sphere SN−1 in RN and N ′ is the Hölder
conjugate of N and B is the unit ball in RN .

This result has allowed the study of elliptic problems with logarithmic weights
involving exponential growth nonlinearities in the sense of Theorem 1.1 ( see[1, 6, 8,
9, 11, 13, 15, 19, 21, 35]).

To give some motivation for our study, we give a brief overview of Adam’s inequal-
ities in a bounded domain of RN . We then proceed to discuss the extension of these
inequalities to second-order Sobolev spaces with logarithmic weights.

The notion of critical exponential growth was extended to higher order Sobolev
spaces by Adams’ [2]. More precisely, Adams’ proved the following result, for m ∈ N
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and Ω an open bounded set of RN such that m < N, there exists a positive constant
Cm,N such that

sup

u∈W
m,N

m
0 (Ω),|∇mu|N

m
≤1

∫
Ω

eβ0|u|
N

N−m
dx ≤ Cm,N |Ω|,

where W
m,Nm
0 (Ω) denotes the mth-order Sobolev space, ∇mu denotes the mth-order

gradient of u, namely

∇mu :=


∆

m
2 u, if m is even

∇∆
m−1

2 u, if m odd

and

β0 = β0(m,N) :=
N

ωN−1



[πN2 2mΓ(m2 )

Γ(N−m2 )

] N
N−m

, if m is even

[πN2 2mΓ(m+1
2 )

Γ(N−m+1
2 )

] N
N−m

, if m odd.

Lately, there has been an extension of work concerning Adams’ inequalities into
Sobolev spaces incorporating logarithmic weights. Specifically, Wang and Zhu [34]
established the following result.

Theorem 1.2. [34] Let β ∈ (0, 1) and let ωβ(x) = (1− log |x|)β , then

sup
u∈W 2,2

0,rad(B1,ωβ),‖u‖≤1

∫
B1

eα|u|
2

1−β
dx <∞ ⇔ α ≤ αβ = 4[8π2(1− β)]

1
1−β ,

where B1 is the unit ball of R4, W 2,2
0,rad(B1, ωβ) denotes the weighted Sobolev space of

radial functions given by

W 2,2
0,rad(B1, ωβ) = closure

{
u ∈ C∞0,rad(B1) |

∫
B

ωβ(x)|∆u|2 dx <∞
}
,

endowed with the norm ‖u‖W 2,2
0,rad(B1,ωβ) =

(∫
B1

ωβ(x)|∆u|2 dx
) 1

2

.

As an application of Theorem 1.2, Dridi and Jaidane [16] considered the following
problem {

∆(ωβ(x)∆u)−∆u+ V (x)u = f(x, u) in B1

u = ∂u
∂n = 0 on ∂B1,

where B1 = B(0, 1) is the unit open ball in R4, f(x, t) is continuous in B1 × R and

behaves like eαt
2

1−β
as t→ +∞, for some α > 0, and the potential V is positive and

continuous on B1 and bounded away from zero in B1. The authors demonstrated
the existence of a nontrivial weak solution to the mentioned problem by employing
the Mountain Pass Theorem in conjunction with the logarithmic Adams inequality.
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Similarly, Jaidane [20] applied these techniques to investigate the following Kirchhoff-
type biharmonic problem{

L(u) = f(x, u) in B1

u =
∂u

∂n
= 0 on ∂B1,

where

L(u) = m
( ∫

B1

(ωβ |∆u|2 + |∇u|2 + V (x)|u|2)dx
)[

∆(ωβ(x)|∆u|2 −∆u+ V (x)u
]
,

m is a Kirchhoff function satisfying some mild conditions and the nonlinearity has
exponential critical growth in the sense of Theorem 1.2.
For g(t) = 1 and N = 4, Dridi et al. treated a similar problem [13]. The authors
proved the existence of a solution using the Nehari method.

Now we’ll introduce our workspace. We denotes by W
2,N2
0,rad(B, vβ) the weighted

Sobolev space of radial functions given by

W := W
2,N2
0,rad(B,ω) = closure

{
u ∈ C∞0,rad(B) |

∫
B

vβ(x)|∆u|N2 dx <∞
}
,

with respect to the norm

‖u‖
W

2, N
2

0 (B,w)
=
( ∫

B

vβ(x)|∆u|N2 dx+

∫
B

|∇u|N2 +

∫
B

|u|N2 dx
) 2
N ·

The space W is endowed with the norm

‖u‖ =

(∫
B

vβ(x)|∆u|N2 dx
) 1

2

.

According to Drabek et al. and Kufner in [12, 24], W is a Banach and reflexive space.
Motivated by previous studies, we are investigating the existence of ground-state

solutions. This exploration focuses in particular on scenarios where the non-linear
terms exhibit critical exponential growth, as defined in the Adams inequalities [36].

Theorem 1.3. [36] Let β ∈ (0, 1) and w be given by (1.2), then

sup

u∈W
2, N

2
0,rad(B,w)∫

B
vβ(x)|∆u|

N
2 dx≤1

∫
B

eα|u|
N

(N−2)(1−β)
dx < +∞

⇔ α ≤ αβ = N [(N − 2)NVN ]
2

(N−2)(1−β) (1− β)
1

(1−β) , (1.4)

where VN is the volume of the unit ball B in RN .

Let γ :=
N

(N − 2)(1− β)
. According to inequality (1.7), we will say that f has

critical growth at infinity if there exists some α0 > 0,

lim
s→+∞

|f(x, s)|
eαsγ

= 0, ∀ α such that α0 < α and lim
s→+∞

|f(x, s)|
eαsγ

= +∞, ∀ α < α0.

(1.5)
Now we define the Kirchhoff function g and give the conditions on it . The function

g is continuous in R+ and verifies :
(G1): g is increasing with g(0) = g0 > 0;
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(G2):
g(t)

t
is nonincreasing for t > 0.

The assmption (G2) implies that
g(t)

t
≤ g(1) for all t ≥ 1.

From (G1) and (G2), we can get

G(t+ s) ≥ G(t) +G(s) ∀ s, t ≥ 0 where G(t) =

∫ t

0

g(s)ds (1.6)

and
g(t) ≤ g(1) + g(1)t, ∀ t ≥ 0· (1.7)

As a consequence, we get

G(t) ≤ g(1)t+
g(1)

2
t2, ∀ t ≥ 0· (1.8)

Moreover, we have that

2

N
G(t)− 1

N
g(t)t is nondecreasing and positive for t > 0. (1.9)

Consequently, one has for all q ≥ N ,

t 7→ 2

N
G(t)− 1

q
g(t)t, is nondecreasing and positive for t > 0. (1.10)

A typical example of a function g fulfilling the conditions (G1) and (G2) is given by

g(t) = g0 + at, g0, a > 0.

Another example is given by g(t) = 1 + ln(1 + t).
Furthermore, we suppose that f(x, t) has critical growth and satisfies the following

hypothesis:
(A1) f : B × R→ R is continuous and radial in x.
(A2) There exist θ > q > N such that we have

0 < θF (x, t) ≤ tf(x, t),∀(x, t) ∈ B × R \ {0}
where

F (x, t) =

∫ t

0

f(x, s)ds.

(A3) For each x ∈ B, t 7→ f(x, t)

|t|q−1
is increasing for t ∈ R \ {0}.

(A4) lim
t→0

|f(x, t)|
|t|N2 −1

= 0.

(A5) There exist p such that p > q > N and Cp > 1 such that

sgn(t)f(x, t) ≥ Cp|t|p−1, for all (x, t) ∈ B × R,
where sgn(t) = 1 if t > 0, sgn(t) = 0 if t = 0, and sgn(t) = −1 if t < 0.

Remark 1.1. The conditions (A2) and (A3) imply that t 7→ f(x, t)

tN−1
is increasing for

t > 0.

We give an example of such nonlinearity. The nonlinearity f(x, t) = Cp|t|p−
N
2 t +

|t|p−N2 t exp(α0|t|γ) satisfies the assumptions (A1), (A2), (A3) ,(A4) and (A5).

We will consider the following definition of solutions.
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Definition 1.1. We say that a function u ∈W is a weak solution to problem (1.1) if

g(‖u‖N2 )
( ∫

B

(
vβ(x) |∆u|N2 −2 ∆u∆ϕdx) =

∫
B

|u|q−2uϕ dx+

∫
B

f(x, u) ϕ dx, ∀ ϕ ∈W.

Let J : W→ R be the energy functional given by

J (u) =
2

N
G(‖u‖N2 )− 1

q

∫
B

|u|q dx−
∫
B

F (x, u) dx, (1.11)

where

F (x, t) =

∫ t

0

f(x, s)ds.

Note that, by the hypothesis (A4), for any ε > 0, there exists δ0 > 0 such that

|f(x, t)| ≤ ε|t|N2 −1, ∀ 0 < |t| ≤ δ0, uniformly in x ∈ B. (1.12)

Moreover, since f is critical at infinity, for every ε > 0, there exists Cε > 0 such that

∀t ≥ Cε |f(x, t)| ≤ ε exp( α|t|γ) with α > α0 uniformly in x ∈ B. (1.13)

In particular, we obtain for r > 2,

|f(x, t)t| ≤ ε

Cq−1
ε

|t|r exp(α |t|γ) with α > α0 uniformly in x ∈ B. (1.14)

Hence, using (1.12), (1.13), (1.14) and the continuity of f , for every ε > 0, for every
r > 2, there exist positive constants C and c such that

|f(x, t)| ≤ ε|t|N2 −1 + C|t|r−1eα |t|
γ

, ∀ (x, t) ∈ B × R, α > α0. (1.15)

It follows from (1.15) and (A2), that for all ε > 0, there exists C > 0 such that

F (x, t) ≤ 1

N
ε|t|N2 + C|t|reα |t|

γ

, for all t ∈ R, α > α0. (1.16)

So, by (1.11) and (1.16) the functional J given by (1.11), is well defined. Moreover,
by standard arguments, J ∈ C1(W,R). It is standard to check that critical points
of J are precisely weak solutions of (1.1). Moreover, we have

〈J ′(u), ϕ〉 = J ′(u)ϕ =g(‖u‖N2 )
( ∫

B

(
vβ(x) |∆u|N2 −2 ∆u ∆ϕdx)

−
∫
B

|u|q−2uϕ dx−
∫
B

f(x, u) ϕ dx , ∀ ϕ ∈W·

where 〈., .〉 denotes the duality between W and its dual space W∗.
Our objective is to find solutions that minimise the bound energy J among all

possible solutions to the problem (P ). To achieve this goal, we define the Nehari set
as follows

N := {u ∈W : 〈J ′(u), u〉 = 0, u 6= 0}
and we are looking for a minimization of the energy function J through the following
minimization problem:

m = inf
u∈N
J (u)·

To our best knowledge, there are no results for solutions to the non local weighted
p-biharmonic equation with critical exponential nonlinearity combined with a poly-
nomial term on the weighted Sobolev space W.

Now, we give our main result as follows:
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Theorem 1.4. Let f(x, t) be a function that has a critical growth at +∞. Suppose
that (A1), (A2), (A3), (A4) , (A5), (G1) and (G2) are satisfied. There exists δ > 0
such that problem (P ) has a radial solution with minimal energy provided

Cp > max

{
1,
Nτ

2

(
(τ − N

2p
)|wp|pp

pN

g0(q −N)

(2(α0 + δ)

αβ

) N
2γ

) 2p−N
N

}
(1.17)

where τ =
2g(1)

Ng0
+
g(1)

Ng2
0

pq

p− q
mp with mp = inf

u∈Np
Jp(u) > 0,

Jp(u) :=
2

N
G(‖u‖N2 )− 1

p

∫
B

|u|pdx

and
Np := {u ∈W, u 6= 0 and 〈J ′p(u), u〉 = 0}.

|wp|p denote the norm of wp in the Lebesgue space Lp(B).

Generally, exploring fourth-order partial differential equations is regarded as an in-
triguing subject. The interest in examining these equations has been sparked by their
applications in various fields such as micro-electro-mechanical systems, phase field
models of multi-phase systems, thin film theory, surface diffusion on solids, interface
dynamics, and flow in Hele-Shaw cells, as referenced in [10, 18, 27].

This work is structured as follows: Section 2 covers essential preliminary knowledge
about functional space and preliminary results. In Section 3, we present some key
technical lemmas. Section 4 delves into studying an auxiliary problem crucial for
proving our main result. Section 5 is dedicated to proving Theorem 1.4.

Additionally, it’s important to note that the constant C might vary from one line
to another, and occasionally, we index the constants to demonstrate their variations.
Furthermore, we’ll use the notation |u|p to denote the norm in the Lebesgue space
Lp(B).

2. Weighted Sobolev Space setting and embedding results

The space W is a Banach and reflexive space with the norm

‖u‖ =

(∫
B

vβ(x)|∆u|N2 dx
) 1

2

.

We also have the continuous embedding

W ↪→ Lt(B) for all t ≥ N

2
.

Moreover, W is compactly embedded in Lt(B) for all t ≥ 1 . In fact, we have

Lemma 2.1.
(i) Let u be a radially symmetric function in C∞0,rad(B). Then, we have

(i) [36]

|u(x)| ≤
(
N

αβ

(
| log(

e

|x|
| − 1

)) 1
γ ( ∫

B

wβ(x)|∆u|N2 dx
) 2
N

≤
(
N

αβ

(
| log(

e

|x|
| − 1

)) 1
γ

‖u‖·



GROUND STATE SOLUTIONS FOR A KIRCHHOFF TYPE EQUATION 157

(ii)

∫
B

e|u(x)|γdx < +∞, ∀ u ∈W 2,N2
0,rad(B).

(iii) The following embedding is continuous

W ↪→ Lt(B) for all t ≥ N

2
·

(vi) W is compactly embedded in Lt(B) for all t ≥ 1·

Proof. (i) see [36].
(ii) From (i) and using the identity log( e

|x| )− | log(|x|)| = 1 ∀x ∈ B, we get

|u(x)|γ ≤ N

αβ

∣∣∣∣| log(
e

|x|
− 1)

∣∣∣∣‖u‖γ ≤ N

αβ

(
1 +

∣∣ log(|x|)
∣∣) ‖u‖γ .

Hence, using the fact that the function r 7→ rN−1e
‖u‖γ (1+| log r|)

αβ is increasing, we get∫
|x|<1

e|u|
γ

dx ≤ NVN
∫ 1

0

rN−1e
N‖u‖γ (1+| log r|)

αβ dr ≤ NVNe
N‖u‖γ
αβ < +∞.

Then (ii) follows by density.
(iii) and (iv). Since vβ(x) ≥ 1, then following embedding are continuous

W ↪→W 2,2
0,rad(B,w) ↪→W 2,2

0,rad(B) ↪→ Lt(B) ∀t ≥ N

2
.

We also have, by Rellich-Kondrachov, the following compact injection

W
2,N2
0,rad(B) ↪→↪→ Lt(B) ∀t ≥ 1.

This concludes the lemma. 2

Remark 2.1. According to (ii), it will be said that f has subcritical growth at
infinity if

lim
|s|→+∞

|f(x, s)|
eαsγ

= 0, ∀ α > 0. (2.18)

3. Some technical lemmas

In the following we assume, unless otherwise stated, that the function f satisfies the
conditions (A1) to (A4) and the function g satisfies (G1) and (G2) . Let u ∈W with
u 6≡ 0 a.e. in the ball B, and we define the function Υu : [0,∞)→ R as

Υu(t) = J (tu). (3.19)

It’s clear that Υ′u(t) = 0 is equivalent to tu ∈ N .
In the next results, we show that N is not empty and that J , restricted to N , is
bounded from below.

Lemma 3.1. (i) For each u ∈W with u 6= 0 , there exists an unique tu > 0, such
that tuu ∈ N . In particular, the set N is nonempty and J (u) > 0, for every
u ∈ N .

(ii) For all t ≥ 0 with t 6= tu, we have

J (tu) < J (tuu)·
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Proof. (i) Note that since q ≥ N , we have

lim
|t|→0

|t|q−1

|t|N2 −1
= 0,

lim
|t|→∞

|t|q−1

|t|r−1
= 0, for all r ∈ (q,∞),

Then for any ε > 0, there exists a positive constant C1 = C1(ε) such that

|t|q−1 ≤ ε|t|N2 −1 + C1|t|r−1 for all t ∈ R. (3.20)

From (1.15) and (1.16), for all ε > 0, there exist positive constants C ′1 = C1(ε) and
C2 = C2(ε) such that

f(x, t)t ≤ ε|t|N2 + C ′1|t|r exp(α|t|γ) for all α > α0, r > q. (3.21)

and

F (x, t) ≤ 1

N
ε|t|N2 + C2|t|r exp(α|t|γ) for all α > α0, r > q. (3.22)

Now, given u ∈W fixed with u 6= 0 . From (3.22), (3.20) and (1.9), for all ε > 0,
we have

Υu(t) = J (tu) =
2

N
G(|t|N2 ‖u‖N2 )− 1

q

∫
B

|tu|q dx−
∫
B

F (x, tu) dx

≥ 1

N
g(|t|N2 ‖u‖N2 )|t|N2 ‖u‖N2 − ε

q
|t|N2

∫
B

|u|N2 dx− C1
|t|r

q

∫
B

|u|r −
∫
B

F (x, tu) dx

≥ g0

N
|t|N2 ‖u‖N2 − 1

N
ε|t|N2

∫
B

|u|N2 dx− ε

q
|t|N2

∫
B

|u|N2 dx

− C1
|t|r

q

∫
B

|u|r − C ′1
∫
B

|tu|r exp(αt|u|γ).dx (3.23)

Using the Hölder inequality, with a, a′ > 1 such that
1

a
+

1

a′
= 1, and Sobolev

embedding Lemma 2.1, we get

Υu(t) ≥g0

N
|t|N2 ‖u‖N2 − C ′4

ε

q
|t|N2 ‖u‖N2 − C5

|t|r

q
‖u‖r − C3

1

N
ε|t|N2 ‖u‖N2

− C1

(∫
B

|tu|a
′rdx

) 1
a′
(∫

B

exp(αta|u|γ)dx

) 1
a

≥
(
g0

N
− ε( 1

N
C3 + C ′4

1

q
)

)
‖tu‖N2 − C4

|t|r

q
‖u‖r

−
(∫

B

exp
(
αa‖tu‖γ

( |u|
‖u‖

)γ)
dx

) 1
a

C5‖tu‖r.

By (1.5), the last integral is finte provided t > 0 is chosen small enough such that
αa‖tu‖γ ≤ αβ . Then,

Υu(t) ≥
(
g0

N
− ε( 1

N
C3 + C ′4

1

q
)

)
‖tu‖N2 − C6‖tu‖r with αa‖tu‖γ ≤ αβ and α > α0

holds. Choosing ε > 0 such that
g0

N
− ε( 1

N
C3 +C ′4

1

q
) > 0 and since r > N , we obtain,

Υu(t) > 0 for small t > 0. (3.24)
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Now, from (A2), we can derive that there exist C5, C6 > 0 such that

F (x, t) ≥ C5|t|θ − C6. (3.25)

Then, by using (1.7) and (3.25), we get

Υu(t) = J (tu) ≤ 2g(1)

N
|t|N2 ‖u‖N2 +

g(1)

N
|t|N‖u‖N − C ′5|t|θ|u|θθ − C6|B|.

Since θ > N , we obtain

Υu(t)→ −∞ as t→ +∞. (3.26)

Hence, from (3.24) and (3.25), there exists at least one tu > 0 such that Υ′u(tu) = 0,
i.e. tuu ∈ N .

Now we will show the uniqueness of tu. Let s > 0 such that su ∈ N and suppose
that s 6= tu. Without loss of generality, we can assume that s > tu. So we have
〈J ′(tuu), tuu〉 = 0 and 〈J ′(su), su〉 = 0, then

g(‖su‖N2 )

|s|N2 ‖u‖N2
=

1

‖u‖N

(∫
B

|su|q−N |u|Ndx+

∫
B

f(x, su)

(su)N−1
|u|Ndx

)
, (3.27)

g(‖tuu‖
N
2 )

|t|
N
2
u ‖u‖

N
2

=
1

‖u‖N

(∫
B

|tuu|q−N |u|Ndx+

∫
B

f(x, tuu)

(tuu)N−1
|u|Ndx

)
· (3.28)

Combining (3.27), (3.28), we get

g(‖su‖N2 )

|s|N2 ‖u‖N2
− g(‖tuu‖

N
2 )

|tu|
N
2 ‖u‖N2

≥

=
1

‖u‖N

(∫
B

(
(|su|q−N − |tuu|q−N )|u|N + (

f(x, su)

(su)N−1
− f(x, tuu)

(tuu)N−1
)|u|N

)
dx

)
·

Clearly, according to (A3), Remark 1.1 and (G2), the left-hand side of the last equality
is negative for tu > s while the right-hand side is positive, which is a contradiction.
This contradict the fact that s > tu. The case tu > s > 0 is similar and we omit it.
Then, s = tu.
(ii) Follows from (i) , since J (tuu) = max

t≥0
Υu(t). 2

Lemma 3.2. Assume that (A1) − (A4) hold. Then for any u ∈W with u 6= 0 such
that 〈J ′(u), u〉 ≤ 0, the unique maximum point of Υu on R+ satisfies 0 < tu ≤ 1.

Proof. Since tuu ∈ N , we have

g(‖tuu‖
N
2 )

|t|
N
2
u ‖u‖

N
2

=
1

‖u‖N

(∫
B

|tuu|q−
N
2 |u|N2 dx+

∫
B

f(x, tuu)

(tuu)
N
2 −1
|u|Ndx

)
· (3.29)

Furthermore, since 〈J ′(u), u〉 ≤ 0, we have

g(‖u‖N2 )

‖u‖N2
≤ 1

‖u‖N

(∫
B

|u|q−N2 |u|N2 dx+

∫
B

f(x, u)

(u)
N
2 −1
|u|N2 dx

)
.
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Then by (3.29), we have

g(‖tuu‖
N
2 )

|t|
N
2
u ‖u‖

N
2

− g(‖u‖N2 )

‖u‖N2
≥

≥ 1

‖u‖N

∫
B

(
(|tuu|q−

N
2 − |u|q−N2 +

f(x, tuu)

(tuu)
N
2 −1

− f(x, u)

(u)
N
2 −1

)
)
|u|N2 dx. (3.30)

Obviously, from (G2) the left hand side of (3.30) is negative for tu > 1 whereas the
right hand side is positive, which is a contradiction. Therefore 0 < tu ≤ 1. 2

In the sequel, we prove that sequences in N cannot converge to 0.

Lemma 3.3. For all u ∈ N ,
(i) there exists κ > 0 such that ‖u‖ ≥ κ;

(ii) J (u) ≥ (
1

N
− 1

q
)g0‖u‖

N
2 .

Proof. (i) We argue by contradiction. Suppose that there exists a sequence {un} ⊂ N
such that un → 0 in W. Since {un} ⊂ N , then 〈J ′(un), un〉 = 0. Hence, it follows
from (3.21), (3.22) and the radial Lemma 2.1 that

g0‖un‖
N
2 < g(‖un‖

N
2 )‖un‖

N
2 =

∫
B

|u|qdx+

∫
B

f(x, un)undx

≤ 2ε

∫
B

|un|
N
2 dx+ C1

∫
B

|un|rdx+ C ′1

∫
B

|un|r exp(α|un|γ)dx

≤ εC6‖un‖
N
2 + C7‖u‖r + C1

∫
B

|un|r exp(α|un|γ)dx. (3.31)

Let a > 1 with 1
a + 1

a′ = 1. Since un → 0 in W, for n large enough, we get

‖un‖ ≤ (
αβ
αa

)
1
γ . From Hölder inequality, (1.11) and again the radial Lemma 2.1, we

have∫
B

|un|r exp(α|un|γ)dx ≤
(∫

B

|un|ra
′
dx

) 1
a′
(∫

B

exp
(
αa‖u‖γ

( |u|
‖u‖

)γ)
dx

) 1
a

≤ C7

(∫
B

|un|ra
′
dx

) 1
a′

≤ C8‖un‖r.

Combining (3.31) with the last inequality, for n large enough, we obtain

g0‖un‖
N
2 ≤ εC6‖un‖

N
2 + C8‖un‖r. (3.32)

Choose suitable ε > 0 such that g0 − εC6 > 0. Since N < r, then (3.32) contradicts
the fact that un → 0 in W.
(ii) Given u ∈ N , by the definition of N , (1.9) and (A3), we obtain

J (u) = J (u)− 1

q
〈J ′(u), u〉

=
2

N
G(‖u‖N2 )− 1

q
g(‖u‖N2 )‖u‖N2 +

( ∫
B

1

q
f(x, u)u− F (x, u)dx

)
+

1

q
|u|qq

≥ (
1

N
− 1

q
)g0‖u‖

N
2 .
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Lemma 3.3 implies that J (u) > 0 for all u ∈ N . 2

As a consequence, J is bounded by below in N , and therefore m := inf
u∈N
J (u) is

well-defined.
In the following lemma we prove that if the minimum of J on N is realized at

some u ∈ N , then u is a critical point of J .

Lemma 3.4. If u0 ∈ N satisfies J (u0) = m, then J ′(u0) = 0.

Proof. We argue by contradiction. We assume that J ′(u0) 6= 0. By the continuity of
J ′, there exist ι, δ ≥ 0 such that

‖J ′(v)‖W∗ ≥ ι for all v such that ‖v − u0‖ ≤ δ. (3.33)

Let D = (1− τ, 1 + τ) ⊂ R with τ ∈ (0,
δ

4‖u0‖
) and define h : D →W, by

h(ρ) = ρu0, ρ ∈ D·

By virtue of u0 ∈ N , J (u0) = m and Lemma 3.1, it is clear that

m̄ := max
∂D
J ◦ h < m and J (h(ρ)) < m, ∀ ρ 6= 1. (3.34)

Let ε := min{m−m̄2 , ιδ16}, Sr := B(u0, r), r ≥ 0 and J a := J−1(] −∞, a]). According
to the quantitative deformation Lemma [[33], Lemma 2.3], there exists a deformation
η ∈ C (W,W) such that:
(1) η(v) = v, if v 6∈ J−1([m− ε,m+ ε]) ∩ Sδ
(2) η

(
Jm+ε ∩ S δ

2

)
⊂ Jm−ε,

(3) J (η(v)) ≤ J (v), for all v ∈W.
By lemma 3.1 (ii), we have J (h(ρ)) ≤ m. In addition, we have,

‖h(ρ)− u0‖ = ‖(ρ− 1)u0‖ ≤
δ

4
, ∀ρ ∈ D·

Then h(ρ) ∈ S δ
2

for ρ ∈ D̄. Therefore, it follows from (2) that

max
ρ∈D̄
J (η(h(ρ)) ≤ m− ε. (3.35)

In the sequel, we will prove that η(h(D)) ∩ N is nonempty. In such case, due to the
definition of m, this contradicts (3.35). To do this, we first define

h̄(ρ) := η(h(ρ)),

Υ0(ρ) = 〈J ′(h(ρ)), u0〉,

and

Υ1(ρ) := (
1

ρ
〈J ′(h̄(ρ), (h̄(ρ))〉.

We have that for ρ ∈ D,

J (h(ρ)) ≤ m < m− ε.
Indeed, for all ρ ∈ D, J (h(ρ)) ≤ m + ε. In addition, ‖h(ρ) − u0‖ = ‖(ρ − 1)u0‖ ≤
δ
2 , ∀ ρ ∈ D. So h(D) ⊂ S δ

2
and then by (2), we get

J (η(h(ρ)) = J (h(ρ)) ≤ m− ε ∀ ρ ∈ D.
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Therefore, h̄(ρ) = η(h(ρ)) = ρu0. Hence,

Υ0(ρ) = Υ1(ρ),∀ρ ∈ D. (3.36)

On one hand, we have that ρ = 1 is the unique critical point of Υ0. So by degree
theory, we get that d0(Υ0, D, 0) = 1. On the other hand, from (3.36), we deduce that
d0(Υ1, D, 0) = 1. Consequently, there exists ρ ∈ D such that h(ρ) ∈ N . This implies
that

m ≤ J (h(ρ)) = J (η(h(ρ)).

This contradicts (3.35) and finish the proof of the Lemma. 2

4. The auxiliary problem (Pa)

In this section, in order to prove our existence result , we consider the auxiliary
problem

(Pa)


g
( ∫

B
(vβ(x)|∆u|N2 )dx

)
∆(vβ(x)|∆u|N2 −2∆u) = |u|p−2u in B

u =
∂u

∂n
= 0 on ∂B,

(4.37)
where p is the constant that appear in the hypothesis (A5). The energy Jp associated
to problem (4.37) is given by

Jp(u) :=
2

N
G(‖u‖N2 )− 1

p

∫
B

|u|pdx.

We introduce the Nehari manifold associeted to Jp that is

Np := {u ∈W, u 6= 0 and 〈J ′p(u), u〉 = 0}.

Let mp = inf
Np

Jp(u) > 0, we have the following results for Jp.

By following the proof in [13], we can easily see that we have the following results.

Lemma 4.1. Given u ∈W, u 6= 0, there exists a unique t > 0 such that tu ∈ Np. In
addition, t satisfies

Jp(tu) = max
s≥0

Jp(su). (4.38)

As a consequence, we have

Corollary 4.2. Let u ∈W, u 6= 0. Then u ∈ Np if and only if Jp(tu) = max
s≥0

Jp(su).

Furthermore, proving the subsequent lemmas is quite straightforward.

Lemma 4.3. For all u ∈ Np,
(i) there exists κ0 > 0 such that ‖u‖ ≥ κ0;

(ii) Jp(u) ≥ g0( 2
N −

1
p )|u|pp.

Lemma 4.4. There exists wp ∈ Np such that Jp(wp) = mp.
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Proof. Let sequence (wn) ⊂ Np satisfy lim
n→+∞

Jp(wn) = mp. It is clearly that (wn) is

bounded by Lemma 4.3. Then, up to a subsequence, there exists wp ∈W such that

wn ⇀ wp in W,
wn → wp in Lt(B), ∀t ≥ N

2 ,
wn → wp a.e. in B.

(4.39)

We claim that wp 6= 0. Suppose, by contradiction, wp = 0. From the definition of Np
and (4.39) , we have that lim

n→+∞
‖wn‖

N
2 = 0, which contradicts Lemma 4.3. Hence,

wp 6= 0 .
From the continuity of g, the lower semi continuity of norm and (4.39), it follows

that

g(‖wp‖
N
2 )‖wp‖

N
2 ≤ lim inf

n→+∞
g(‖wn‖

N
2 )‖wn‖

N
2 · (4.40)

On the other hand, by using 〈J ′(wn), wn〉 = 0 and (4.39), we have

lim inf
n→+∞

g(‖wn‖
N
2 )‖wn‖

N
2 = lim inf

n→+∞

∫
B

|wn|pdx =

∫
B

|wp|pdx. (4.41)

From (4.40) and (4.41) we deduce that 〈J ′p(wp), wp〉 ≤ 0. Then, as in Lemma 3.2 this
implies that there exists su ∈ (0, 1] such that suwp ∈ Np. Thus, by the lower semi
continuity of norm, (1.9) and (4.39), we get that

mp ≤ Jp(suwp) = J(suwp)−
1

N
〈J ′p(suwp), suwp〉

=
2

N
G(‖suwp‖

N
2 )− 1

N
g(‖suwp‖

N
2 )‖suwp‖

N
2 +

( 1

N
− 1

p

)
spu

∫
B

|wp|pdx

≤ Jp(wp)−
1

N
〈J ′p(wp), wp〉

=
2

N
G(‖wp‖

N
2 )− 1

p

∫
B

|wp|pdx−
1

N
g(‖wp‖

N
2 )‖wp‖

N
2 +

1

N

∫
B

|wp|pdx

≤ lim inf
n→+∞

[ 2

N
G(‖wn‖

N
2 )− 1

p

∫
B

|wn|pdx
]

− lim inf
n→+∞

[ 1

N
g(‖wn‖

N
2 )‖wp‖

N
2 +

1

N

∫
B

|wn|pdx
]

≤ lim inf
n→+∞

[
Jp(wn)− 1

N
〈J ′p(wn), wn〉

]
= mp.

Therefore, this leads us to the result: Jp(wp) = mp, fulfilling the intended conclu-
sion. 2

5. Proof of Theorem 1.2

Next, we’ll establish a fundamental estimate for level m. This will serve as a valuable
tool in obtaining an appropriate bound on the norm of a minimizing sequence for m
within N .

Lemma 5.1. If (un) ⊂ N is a minimizing sequence for m, then

lim sup
n→+∞

‖un‖
N
2 ≤ m qN

g0(q −N)
. (5.42)
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Proof. Let (un) ⊂ N is a minimizing sequence for m. Using (A2) and (1.10), we
obtain that

m+ on(1) = J (un) =
(
J (un)− 1

q
〈J ′(un), un〉

)
=
( 2

N
G(‖un‖

N
2 )− 1

q
g(‖un‖

N
2 )‖un‖

N
2 +

1

q

∫
B

(
f(x, un)un − qF (x, un)

)
dx
)

+
1

q

∫
B

|un|qdx

> (
1

N
− 1

q
)g(‖un‖

N
2 ‖)‖un‖

N
2

>
q −N
qN

g0‖un‖
N
2 .

Therefore (5.42) holds. 2

Let α0 be the real number that appears in the equation (1.5). Then there exists
δ > 0 such that α = α0 + δ. We arrive at the estimate for level m.

Lemma 5.2. Assume that (A1)− (A5) and (1.17) are satisfied. It holds that

m ≤ g0
q −N
qN

(
αβ

2(α0 + δ)

) N
2γ

. (5.43)

Proof. From Lemma 4.4, there exists wp ∈ Np such that Jp(wp) = mp and J ′p(wp) = 0.
Consequently, using (1.9) we get

2

N
G(‖wp‖

N
2 )− 1

p

∫
B

|wp|p dx = mp (5.44)

and

g0‖wp‖
N
2 < g(‖wp‖

N
2 )‖wp‖

N
2 =

∫
B

|wp|p dx. (5.45)

Note that by using (5.44), (5.45), (1.10) and the fact that p > q > N , we have

(
1

q
− 1

p
)|wp|pp =

1

q
g(‖wp‖

N
2 )‖wp‖

N
2 − 2

N
G(‖wp‖

N
2 ) +mp ≤ mp.

So,

|wp|pp <
pq

p− q
mp· (5.46)

According to (A5) and (5.45), we have 〈J ′(wp), wp〉 ≤ 0 which, with lemma 3.2, gives
that there exists a unique s ∈ (0, 1) such that swp ∈ N . Using (A5), (5.44), (5.45),
(1.8) and (5.46), we obtain

m ≤ J (swp) ≤
2g(1)s

N
2

N
‖wp‖

N
2 +

g(1)sN

N
‖wp‖N −

Cps
p

p
|wp|pp

≤ 2g(1)s
N
2

N
‖wp‖

N
2 +

g(1)s
N
2

N
‖wp‖N −

Cps
p

p
|wp|pp

≤ 2g(1)s
N
2

Ng0
|wp|pp +

g(1)s
N
2

Ng2
0

|wp|2pp −
Cps

p

p
|wp|pp

=

(
(
2g(1)

Ng0
+
g(1)

Ng2
0

|wp|pp)s
N
2 − Cps

p

p

)
|wp|pp
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≤ max
ξ>0

((2g(1)

Ng0
+
g(1)

Ng2
0

|wp|pp
)
ξ
N
2 − Cpξ

p

p

)
|wp|pp

≤ max
ξ>0

((2g(1)

Ng0
+
g(1)

Ng2
0

pq

p− q
mp

)
ξ
N
2 − Cpξ

p

p

)
|wp|pp.

By some simple algebraic calculations, we get

m ≤ (
Nτ

2Cp
)

N
2

p−N
2

(
τ − N

2p

)
|wp|pp. (5.47)

Thus, by using (5.47), we obtain

m < (
Nτ

2Cp
)

N
2

p−N
2

(
τ − N

2p

)( pq

p− q
)
mp. (5.48)

Therefore, by (1.17) and (5.48), we get that (5.43) is valid. 2

The result below gives us some compactness properties of minimising sequences.

Lemma 5.3. If (un) ⊂ N is a minimizing sequence for m, then there exists u ∈W
such that ∫

B

f(x, un)undx→
∫
B

f(x, u)udx

and ∫
B

F (x, un)dx→
∫
B

F (x, u)dx.

Proof. We must prove the first limit, since the second one is analogous. For this, we
use (1.15) and introduce the following function k(un(x)) given by

k(un(x)) := ε|un|
N
2 dx+ C|un|q exp(α|un|γ).

It’s clear that is sufficient to prove that k(un(x)) is convergent in L1(B). We have∫
B

f(x, un) undx ≤ ε
∫
B

|un|
N
2 dx+ C

∫
B

|un|q exp(α|un|γ)dx

=

∫
B

k(un(x)) dx, for all α > α0 and q > N. (5.49)

First note that

|un|
N
2 → |u|N2 in L1(B). (5.50)

Considering s, s′ > 1 such that 1
s + 1

s′ = 1 and s close to 1, we get

|un|q → |u|q in Ls
′
(B). (5.51)

On the other hand, by (5.42), we have

m >
q −N
qN

g0 lim sup
n→+∞

‖un‖
N
2 (5.52)

which, together with Lemma 5.2 leads to the following estimation lim sup
n→+∞

‖un‖γ <
αβ

2(α0 + δ)
·.
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Now choosing α = α0 + δ, δ > 0, we have that∫
B

exp(αs|un|γ)dx ≤
∫
B

exp
(
s(α0 + δ)‖un‖γ(

|un|
‖un‖

)γ
)
dx

≤
∫
B

exp
(s

2
αβ(
|un|
‖un‖

)γ
)
dx. (5.53)

Since s > 1 and is sufficiently close to 1, we get s
2αβ ≤ αβ . Then it follows by (1.4)

that there is M > 0 such that∫
B

exp(αs|un|γ)dx ≤M. (5.54)

Since

exp(α|un|γ)→ exp(α|u|γ) a.e in B, (5.55)

from (5.53) and [[32], Lemma 4.8], we get that

exp(α|un|γ) ⇀ exp(α|u|γ) in Ls(B). (5.56)

Then, using (5.50), (5.51), (5.54), (5.56) and the Hölder inequality, we get∫
B

(
k(un(x))− k(w(x))

)
dx = ε

∫
B

(
|un|

N
2 − |u|N2

)
dx

+ C

∫
B

(
|un|q − |u|q

)
exp(α|un|γ)dx+ C

∫
B

|u|q
(

exp(α|un|γ)− exp(α|u|γ)
)
dx

≤ ε
∫
B

(
|un|

N
2 − |u|N2

)
dx+ C

(∫
B

(
|un|q − |u|q

)s′
dx
) 1
s′
(∫

B

exp(sα|u|γ)dx
) 1
s

+ C

∫
B

|u|q
(

exp(α|un|γ)− exp(α|u|γ)
)
dx

≤ ε
∫
B

(
|un|

N
2 − |u|N2

)
dx+ CM

(∫
B

(
|un|q − |u|q

)s′
dx
) 1
s′

+ C

∫
B

|u|q
(

exp(α|un|γ)− exp(α|u|γ)
)
dx

→ 0 as n→∞.

We conclude that ∫
B

f(x, un) undx→
∫
B

f(x, u) udx. (5.57)

2

In the following, we give an additional important result that will be used to prove
our main result.

Lemma 5.4. Assume that the conditions (A1), (A2) and (A3) are satisfied. Then,
for each x ∈ B, we have

tf(x, t)− qF (x, t) is increasing for t > 0 and decreasing for t < 0.

In particular, tf(x, t)− qF (x, t) > 0 for all (x, t) ∈ B × R \ {0}.
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Proof. Assume that 0 < t < s. For each x ∈ B, we have

tf(x, t)− qF (x, t) =
f(x, t)

tq−1
tq − qF (x, s) + q

∫ s

t

f(x, ν)dν

<
f(x, t)

sq−1
tq − qF (x, s) +

f(x, s)

sq−1
(sq − tq)

= sf(x, s)− qF (x, s)·

The proof in the case t < s < 0 is similar.
The assertion tf(x, t)− qF (x, t) > 0 for all (x, t) ∈ B × R \ {0} comes from (A2). 2

By the following lemma, we prove that the minimum of J on N is achieved in
some w0 ∈ N .

Lemma 5.5. There exists w0 ∈ N such that J (w0) = m .

Proof. Let sequence (wn) ⊂ N satisfying lim
n→+∞

J (wn) = m. It is clearly that (wn) is

bounded by Lemma 4.3. Then, up to a subsequence, there exists w0 ∈W such that

wn ⇀ w0 in W,
wn → w0 in Lt(B), ∀t ≥ N

2 ,
wn → w0 a.e. in B.

(5.58)

We claim that w0 6= 0. Suppose, by contradiction, w0 = 0. From the definition of N
and (5.58) , we have that lim

n→+∞
‖wn‖

N
2 = 0, which contradicts Lemma 3.3. Hence,

w0 6= 0 .
From the lower semi continuity of norm, the continuity of g and (5.58), it follows

that

g(‖w0‖
N
2 )‖w0‖

N
2 − lim

n→∞

∫
B

|w0|q dx ≤ lim inf
n→+∞

(
g(‖wn‖

N
2 )‖wn‖

N
2 −

∫
B

|wn|q dx
)
·

(5.59)
On the other hand, by using 〈J ′(wn), wn〉 = 0 and (5.58), we have

lim inf
n→+∞

g(‖wn‖
N
2 )‖wn‖

N
2 = lim inf

n→+∞

∫
B

(f(x,wn)wn + |wn|q)dx

=

∫
B

(f(x,w0)w0 + |w0|q)dx. (5.60)

From (5.59) and (5.60) we deduce that 〈J ′(w0), w0〉 ≤ 0. Then, as in Lemma 3.2
this implies that there exists s ∈ (0, 1] such that sw0 ∈ N . Thus, by the lower semi
continuity of norm, (1.8), Lemma 5.4 and Lemma 5.3, we get that

m ≤ J (sw0) = J (sw0)− 1

q
〈J ′(sw0), sw0〉

=
2

N
G(‖sw0‖

N
2 )− 1

q
g(‖sw0‖

N
2 )‖sw0‖

N
2

+
1

q

∫
B

(
f(x, sw0)sw0 − qF (x, sw0)

)
dx
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<
2

N
G(‖w0‖

N
2 )− 1

q
g(‖w0‖

N
2 )‖w0‖

N
2 +

1

q

∫
B

(
f(x,w0)w0 − qF (x,w0)

)
dx

≤ lim inf
n→+∞

[ 2

N
G(‖wn‖

N
2 )−

∫
B

F (x,wn)dx
]

− lim inf
n→+∞

[1

q
g(‖wn‖

N
2 )‖wn‖

N
2 − 1

q

∫
B

f(x,wn)wndx
]

≤ lim inf
n→+∞

[
J (wn)− 1

q
〈J ′(wn), wn〉

]
= m.

Therefore, we get that J (sw0) = m, which is the desired conclusion. 2

Proof of Theorem 1.4. From Lemma 5.5 there exists w0 such that J (w0) = m.
Now, by Lemma 3.4, we deduce that J ′(w0) = 0. So, w0 is a solution to problem
(P ). 2

Remark 5.1. In the sub-critical case, our energy does not lose its compactness. In
this case, we can have an analogous result only with the conditions (G1), (G2), (H1),
(H2), (H3) and (H4) and without going through the auxiliary problem.

So, we can announce the following theorem

Theorem 5.6. Let f(x, t) be a function that verifies (2.18), (H1), (H2), (H3) and
(H4). Assume that the condition (G1) and (G1) hold. Then problem (P ) has a radial
solution with minimal energy.
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[4] C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of

Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
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