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Abstract. Consider a graph, Γ = (V,E), where V (Γ) and E(Γ) are referred to be its vertex

and edge sets respectively. Two vertices k1 and k2 in Γ are said to be resolved by a vertex
k, if d(k, k1) 6= d(k, k2) in Γ. Then, a subset R ⊆ V (Γ) with this property, i.e., every pair of

different vertices in Γ can be resolved by at least one member of R, is said to be a resolving

set (RS) for Γ. The smallest cardinality set R with resolving characteristic is called the metric
basis (MB) for Γ, and the MB set cardinality is the metric dimension (MD) for Γ, denoted

by dimv(Γ). A resolving set Rf for Γ is said to have the property of fault-tolerance or said

to be FTRS (fault-tolerant resolving set) if the property of resolving holds in Rf − {k} for
every k in Rf . The FTMD of Γ is the minimum cardinality of a FTRS, denoted dimf (Γ).

These are also known as the resolvability parameters for the Γ. We introduce the concept of
independence in FTRSs for graphs and derive several results and observations for the same in

this manuscript. We also consider three almost similar families of infinite convex polytopes

and investigate their FTRSs as well as FTMD.
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1. Introduction and Preliminaries

Throughout this article, all graphs taken under consideration are planar, connected,
non-trivial, undirected, and simple. In order to carry out the basic of graph theory,
we are following the book [23]. Consider a graph, denoted by Γ = (V,E), where
V (Γ) and E(Γ) are referred to be its vertex and edge sets respectively. The totality
of distinct edges in the shortest length path between two different vertices k1 and
k2 in V (Γ), is referred to as the distance (d(k1, k2)) between k1 and k2 in Γ. The
number of distinct edges touches a vertex k in Γ is called as the degree (valency) of a
vertex k (denoted by dk). We adopt the following symbols, i.e., Km, Pm, and Cm to
represent the complete graphs, path graphs, and cycle graphs of order m ≥ 3. Now,
suppose R = {c1, c2, c3, ..., ct} be a subset consisting of t number of vertices in V (Γ)
and k ∈ V . Then, the metric coordinate (metric code) ß(k|R) of k corresponding to
R is the t-tuple (d(k, c1), d(k, c2), d(k, c3), ..., d(k, ct)). Two vertices c1 and c2 in Γ are
said to resolved by a vertex k, if d(k, c1) 6= d(k, c2) in Γ. Then, a subset R in V (Γ)
with this property, i.e., every pair of different vertices in Γ can be resolved by at least
one member of R, is said to be a resolving set (RS) for Γ. The smallest cardinality
set R with resolving characteristic is called the metric basis (MB) for Γ, and the MB
set cardinality is the metric dimension (MD) for Γ, denoted by dimv(Γ).
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The concept of MD was introduced independently by Slater [19] and Harary &
Melter [5]. Since then, the problem of MD has received a lot of attention. The
notions of RS and MD have proven useful in various areas such as robotic navigation,
the structure of chemical compounds, combinatorial optimization, image processing &
pattern recognization, connected joins in networks, pharmaceutical chemistry, game
theory, etc. for these see [9, 13, 14, 17].

Hernando et al. [7] computed the MD of Fan graph Fn (n ≥ 7), and proved that
dim(Fn) = b 2n+2

5 c. In [2], Buczkowski et al. proved that for Wheel graph Wn (n ≥ 7),

the MD is b 2n+2
5 c. Tomescu and Javaid [21] proved that dim(J2n) = b 2n

3 c, for the
Jahangir graph J2n (n ≥ 4). After that, the MD for several well-known graphs have
been investigated such as prism graph, convex polytopes, antiprism graph, unicyclic
graph, Petersen graph, flower graph, some regular graphs, etc. see [11, 16, 17, 18] and
references therein.

Recent advancements in the definition of MD have paved the path for a new related
concept called fault tolerance. Assume that a network has n-processing elements
(or units). To create a self-stable fault-tolerant system, it is necessary that if any
single unit fails (or crashes), another chain of units (with the exception of the faulty
element) will replace the initial (or original) chain. As a result, the nature of this
fault tolerance enables the machine to keep operating, possibly at a reduced pace,
rather than crashing completely.

A RS Rf is called fault-tolerant (FT) if Rf \ ui is also a RS, for all ui ∈ Rf , and
therefore the minimum cardinality of such Rf is referred to as FTMD of Γ, denoted
by fdim(Γ). If |Rf | = fdim(Γ), then Rf is known as the fault-tolerant metric basis
(FTMB) for Γ. Fault-tolerant structures have been used successfully in engineering
and computer science [6]. Slater initiated the study of fault-tolerant sets in [20]. In
[8], Hernando et al. proposed the idea of FTMD. They investigated the fault tolerance
in trees and presented a significant result for FTMD in the form of an lower bound
using MD, independent of graph choice, which is dim(Γ)(1+2.5dim(Γ)−1) ≤ fdim(Γ).

The notion of FTMD is an interesting concept and has been studied by many
researchers. The FTMD for Pn, Cn, and Kn are as follows:

Proposition 1.1. [4] For n ≥ 3, we have fdim(Pn) = 2, fdim(Cn) = 3, and
fdim(Kn) = n.

In [15], Raza et al. computed the FTMD of some classes of convex polytopes.
Voronov in [22] investigated the FTMD of the king’s graph. For more work on the
FTMD, see references in [1, 6]. A subset Ri of V (Γ) is an independent set for Γ if no
two vertices in Ri are adjacent.

The independence in RSs was first introduced by Chartrand et al. [3]. They
characterize all connected non-trivial graphs Γ of order n with independent resolving
numbers 1, n− 2, and n− 1.

Likewise resolving sets, in this work, we study the independence in FTRSs, and
obtain it for some known graphs. We obtain the FTMD for three closely related
classes of convex polytopes, viz., double antiprism An, Sn, and Tn [10]. We locate
FTRS of minimum cardinality in them. We conclude the article with some open
problems regarding the independence of FTRSs. For the double antiprism An, Sn,
and Tn, Imran et al. in [10], proved the following:
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Proposition 1.2. dim(An) = dim(Sn) = dim(Tn) = 3, where n ≥ 6 is a positive
integer.

By the definition of FTRS and Proposition 1.2, we again have the following Propo-
sition.

Proposition 1.3. fdim(An) = fdim(Sn) = fdim(Tn) ≤ 4, where n ≥ 6 is a positive
integer.

2. Independent Fault-Tolerant Resolving Sets

Independent sets (or stable sets, ISs for short) in graphs are the most extensively
studied concepts in gralabelph theory. The maximum independent sets (MISs) are
ISs with maximum cardinality, and these ISs have received attention in the recent
past. The vertex independence number (or independence number) of a graph Γ,
denoted by β(Γ), is the cardinality of MIS in Γ. There are also several ISs of minimum
cardinality which are of interest with respect to theoretical and applied points of view.

A maximal independent set of vertices is an IS of vertices that are not properly
contained in any other IS of vertices. The minimum cardinality of a maximal inde-
pendent set is denoted by i(Γ). This parameter is also known as the independent
domination number because it has the smallest cardinality of an IS of vertices that
dominates all the vertices of Γ.

In [3], Chartrand et al. explored the independence in resolving sets and provided
some significant observations and results. We can see that some graphs consist of
ISs Ri

f with the property that Ri
f − {vi} is a RS for every vi in Ri

f . Therefore, this
paper aims to detect the existence of such ISs in graphs and, if they exist, to study
the minimum possible cardinality of such a set.

An independent fault-tolerant resolving set (IFTRS) Ri
f in a simple connected

graph, Γ is (1) independent and (2) FTRS. The cardinality of a minimum IFTRS in
Γ is the independent fault-tolerant resolving number, denoted by ifr(Γ). Suppose Γ
be a non-trivial connected graph with |V (Γ)| = n, containing an IFTRS. Since every
IFTRS is an FTRS, so it follows that

1 + dim(Γ) ≤ fdim(Γ) ≤ ifr(Γ) ≤ 1 + β(Γ) ≤ n (1)

Figure 1. Graph H.

To explain this concept, consider a graph H in Fig. 1(a). The set R = {v5, v8}
(with green vertices) is a basis for H and so dim(H) = 2. Next, the set Rf =
{v5, v6, v7, v8} (with yellow vertices) in Fig. 1(b) is the FTRS set for H and therefore
fdim(H) = 4. However, Rf is not an IFTRS for H. The set Ri

f = {v2, v5, v6, v8}
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(with orange vertices) in Fig. 1(c) is an IFTRS. Now, the co-ordinates of each vertex of
H with respect to Ri

f are ßf (v1|Ri
f ) = (1, 4, 4, 2), ßf (v2|Ri

f ) = (0, 3, 3, 2), ßf (v3|Ri
f ) =

(1, 2, 2, 2), ßf (v4|Ri
f ) = (2, 1, 1, 2), ßf (v5|Ri

f ) = (3, 0, 2, 3), ßf (v6|Ri
f ) = (3, 2, 0, 3),

ßf (v7|Ri
f ) = (3, 2, 2, 1), ßf (v8|Ri

f ) = (2, 3, 3, 0), ßf (v9|Ri
f ) = (1, 3, 3, 1). The codes

with respect to the FTRS Rf are called as the fault-tolerant metric codes (FTMC),
denoted by ßf (vj |Rf ). A case-by-case analysis shows that H contains no 3-element
IFTRS (or FTRS) and so ifr(H) = 4. The set {v1, v3, v5, v6, v7} is a MIS of H and
therefore β(H) = 5. Thus the graph H of Fig. 1 has β(H) = 5, dim(H) = 2,
fdim(H) = 4, and ifr(H) = 4.

Likewise independent resolving set (IRS), all graphs do not have IFTRS, as a result,
ifr(Γ) is not defined for all graphs Γ. For example, the only ISs of the complete graph
Kn; n ≥ 3 are the singleton sets. Hence, ifr(Kn) is not defined for n ≥ 1. In [3],
Chartrand et al. consider three regular graphs viz., the Petersen graph P , K3,3, and
Q3 (see Fig. 2). For these graphs they found that, ir(P )=ir(Q3) = 3 and for K3,3,
ir(K3,3) does not exist.

Figure 2. Regular graphs.

Similarly, for the IFTRS, we find that ifr(K3,3) does not exist and ifr(P )=ifr(Q3) = 4.
The green vertices in Fig. 2 represent the minimum IFTRS for both P and Q3. Now,
we have some results and observations regarding IRS and IFTRS.

Proposition 2.1. Γ = Pn; n ≥ 3 iff ifr(Pn) = 2.

Proof. The proof is the same as for the FTMD of paths in [8]. �

Suppose V (Cn) = {v1, v2, v3, ..., vn} denotes the set of vertices in the cycle graph
Cn. Then for IFTRS for Cn, we have:

Proposition 2.2. For cycle graph Cn; n ≥ 6, we have ifr(Cn) = 3.

Proof. Consider R1
f = {v1, v3, v5} and R2

f = {v1, v3, v6}. Then, from Lemma 2 in

[12], we find that, for n ≥ 6 and n 6= 8, R1
f is the IFTRS for Cn and R2

f is the IFTRS

of Cn for n = 8. Therefore, ifr(Cn) = 3 for n ≥ 6. �

Proposition 2.3. Every graph with IFTRS has IRS.

By the definition of IFTRS, we see that Proposition 2.3 is trivial. But the converse
of the Proposition 2.3 is not true. For example, suppose C5, A10, and B12 are three
graphs with 5, 10, and 12 vertices, as shown in Fig. 3. We find that ir(Γ) is defined
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Figure 3. Graphs with IRS.

for these three graphs (vertices in red color represent IRS), but ifr(Γ) is not, where
Γ = C5, A10, and B12.

If d(x, d) = d(x, c), ∀ x ∈ V (Γ) − {c, d}, then the vertices d and c are said to be
distance similar (or distance equivalent) in Γ. Let N(z) (open neighbourhood) be
the set of vertices adjacent to z in Γ, and let N [z] = N(z) ∪ {z} (closed neighbour-
hood). Then, in a non-trivial connected graph Γ, two vertices x and c are distance
equivalent iff (1) xc ∈ E(Γ) and N [x] = N [c] or (2) xc /∈ E(Γ) and N(x) = N(c).
Moreover, the distance similarity is an equivalence relation on V (Γ). Then we have
the following observation.

Observation 1. In a connected graph Γ, if D is a distance similar equivalence class
with |D| = w ≥ 2, then every FTRS of Γ contains all the vertices from D.

If D is a distance similar equivalence class of Γ, then either the subgraph 〈D〉 induced
by D is complete in Γ or D is an independent set in Γ. Thus, we observe the following:

Observation 2. Let Γ be a graph and let D with |D| ≥ 3 be a distance similar
equivalence class in Γ. Then ifr(Γ) is not defined if D is not independent in Γ.

For observation 2, we find that the converse is not true. For instance, suppose
Γ = K3,3 with partite sets A1 and A2 (see Fig. 2). Then, we find that ifr(Γ) is not
defined. On the other side, A1 and A2 are the only two independent distance similar
equivalence classes in Γ = K3,3.

Determining the FTRS for a complicated and large graph or we can say for every
graph, is always a challenging problem. However, several researchers have made efforts
to obtain FTRS as well as FTMD for certain graph families. There are numerous
graph families for which FTRS and FTMD have yet to be investigated. So, in this
direction, we in this paper consider three almost similar graph families of convex
polytopes and study their FTRS and FTMD.

3. Minimum Fault-Tolerant Number of An

In this section, we take a well-known graph, denoted by An and shown in Fig. 4, and
investigates its several properties including its FTMD.

The graph of An, which is also known as double antiprism graph, comprises of
4n + 2 faces, i.e., 4n triangular faces, one n sided face, and an outer face. The total
number of vertices present in An are 3n and total number of edges present are 7n.
We adopt two symbols to denote sets of edges and vertices, viz., E(An) and V (An).
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These two sets are shown as follows:

V (An) = {j q̄r : 1 ≤ r ≤ 3; 1 ≤ q̄ ≤ n}

E(An) = {j q̄r j q̄+1
r , j q̄1j

q̄
2 , j

q̄
2j

q̄
3 , j

q̄
2j

q̄+1
1 , j q̄3j

q̄+1
2 : 1 ≤ r ≤ 3; 1 ≤ q̄ ≤ n}

Figure 4. Double Antiprism An.

For the vertices present in {j q̄1 : 1 ≤ q̄ ≤ n}, we name them first cycle vertices in An;
for vertices in {j q̄2 : 1 ≤ q̄ ≤ n}, we name them second cycle vertices in An; and the
vertices in {j q̄3 : 1 ≤ q̄ ≤ n}, we name them third cycle vertices in An. In the following
result, we investigate the FTMD of An.

Theorem 3.1. fdim(An) = 4, where n ≥ 6 is a positive integer.

Proof. To complete the proof, we need to show that the FTMD is 4, for the graph of
convex polytope An. This can be achieved by considering two cases directly depend-
ing upon the even (n ≡ 0(mod 2)) and odd (n ≡ 1(mod 2)) nature of the integer n.
For n, we first consider the even case and then later the odd case.

Case(I) n ≡ 0(mod 2)
For this, we set n = 2c̄, c̄ ∈ N and c̄ ≥ 3. Assuming the set Rf = {j1

1 , j
2
1 , j

c̄+1
1 , j c̄+2

1 } ⊆
V (An).

Claim: The set Rf is a FTRS for An.
In order to get this, we give FTMC to every vertex of An with respect to Rf .

The FTMCs for members in the set J1 = {j q̄1 : 1 ≤ q̄ ≤ n}, are presented below in
Table 1 and the collection of FTMCs for these vertices are denoted by the set JC1.
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Table 1. FTMCs for J1 set vertices.

ßf (j q̄1 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄1 |Rf ):(q̄ = 1) q̄ − 1 1 c̄− q̄ + 1 c̄− 1
ßf (j q̄1 |Rf ):(2 ≤ q̄ ≤ c̄+ 1) q̄ − 1 q̄ − 2 c̄− q̄ + 1 c̄− q̄ + 2

ßf (j q̄1 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 1 q̄ − 2 q̄ − c̄− 1 c̄− q̄ + 2
ßf (j q̄1 |Rf ):(c̄+ 3 ≤ q̄ ≤ 2c̄) 2c̄− q̄ + 1 2c̄− q̄ + 2 q̄ − c̄− 1 q̄ − c̄− 2

The FTMCs for members in the set J2 = {j q̄2 : 1 ≤ q̄ ≤ n}, are presented below in
Table 2 and the collection of FTMCs for these vertices are denoted by the set JC2.

Table 2. FTMCs for J2 set vertices.

ßf (j q̄2 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄2 |Rf ):(q̄ = 1) q̄ 1 c̄− q̄ + 1 c̄
ßf (j q̄2 |Rf ):(2 ≤ q̄ ≤ c̄) q̄ q̄ − 1 c̄− q̄ + 1 c̄− q̄ + 2
ßf (j q̄2 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 1 q̄ − 1 q̄ − c̄ c̄− q̄ + 2

ßf (j q̄2 |Rf ):(c̄+ 2 ≤ q̄ ≤ 2c̄) 2c̄− q̄ + 1 2c̄− q̄ + 2 q̄ − c̄ q̄ − c̄− 1

Lastly, the FTMCs for members in the set J3 = {j q̄3 : 1 ≤ q̄ ≤ n}, are presented below
in Table 3 and the collection of FTMCs for these vertices are denoted by the set JC3.

Table 3. FTMCs for J3 set vertices.

ßf (j q̄3 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄3 |Rf ):(q̄ = 1) q̄ + 1 2 c̄− q̄ + 1 c̄− q̄ + 2
ßf (j q̄3 |Rf ):(2 ≤ q̄ ≤ c̄− 1) q̄ + 1 q̄ c̄− q̄ + 1 c̄− q̄ + 2

ßf (j q̄3 |Rf ):(q̄ = c̄) q̄ + 1 q̄ 2 c̄− q̄ + 2
ßf (j q̄3 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 1 q̄ + 1 q̄ − c̄+ 1 2

ßf (j q̄3 |Rf ):(c̄+ 2 ≤ q̄ ≤ 2c̄− 1) 2c̄− q̄ + 1 2c̄− q̄ + 2 q̄ − c̄+ 1 q̄ − c̄
ßf (j q̄3 |Rf ):(q̄ = 2c̄) 2 2c̄− q̄ + 2 q̄ − c̄+ 1 q̄ − c̄

The total number of FTMCs listed above are equal to |JC1 ∪ JC2 ∪ JC3| = 3n. To
prove that the set Rf is a FTRS for An, it is first compulsory to show that, it is also
a resolving set for An. From all the codes presented above in JC1, JC2, and JC3, one
can clearly verify that all are different from one an other in at least one coordinate
and are also unique. Therefore, from this fact, now it is clear that the set Rf is a
resolving set for An. Next, to finish the proof, we only need to show that the set Rf

possesses the fault-tolerance property in it. For this, we simply adopt the definition
of FTRS and prove the following four sets R1 = {j1

1 , j
2
1 , j

c̄+1
1 }, R2 = {j1

1 , j
2
1 , j

c̄+2
1 },

R3 = {j1
1 , j

c̄+1
1 , j c̄+2

1 }, and R4 = {j2
1 , j

c̄+1
1 , j c̄+2

1 } (i.e., by using Rf r{j}, ∀ j ∈ Rf ) to
be resolving in An. But on verifying manually the FTMCs with respect to the set Rf

in An, we find that the respective metric codes with respect to the sets R1, R2, R3,
and R4 are unique and distinct for every vertex present in An. From this particular
fact, we find that the set Rf is the FTRS for An. Therefore, we have fdim(An) ≤ 4.
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Now, from this and Proposition 1.3, we find that fdim(An) = 4, which completes the
proof.

Case(II) n ≡ 1(mod 2)
For this, we set n = 2c̄+ 1, c̄ ∈ N and c̄ ≥ 3. Assuming the set
Rf = {j1

1 , j
2
1 , j

c̄+1
1 , j c̄+3

1 } ⊆ V (An).

Claim: The set Rf is a FTRS for An.
In order to get this, we give FTMC to every vertex of An with respect to Rf . The

FTMCs for members in the set J1 = {j q̄1 : 1 ≤ q̄ ≤ n}, are presented below in Table
4 and the collection of FTMCs for these vertices are denoted by the set JC1.

Table 4. FTMCs for J1 set vertices.

ßf (j q̄1 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+3

1

ßf (j q̄1 |Rf ):(q̄ = 1) q̄ − 1 1 c̄− q̄ + 1 c̄− 1
ßf (j q̄1 |Rf ):(q̄ = 2) q̄ − 1 q̄ − 2 c̄− q̄ + 1 c̄

ßf (j q̄1 |Rf ):(3 ≤ q̄ ≤ c̄+ 1) q̄ − 1 q̄ − 2 c̄− q̄ + 1 c̄− q̄ + 3
ßf (j q̄1 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 2 q̄ − 2 q̄ − c̄− 1 c̄− q̄ + 3
ßf (j q̄1 |Rf ):(q̄ = c̄+ 3) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄− 1 c̄− q̄ + 3

ßf (j q̄1 |Rf ):(c̄+ 4 ≤ q̄ ≤ 2c̄+ 1) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄− 1 q̄ − c̄− 3

The FTMCs for members in the set J2 = {j q̄2 : 1 ≤ q̄ ≤ n}, are presented below in
Table 5 and the collection of FTMCs for these vertices are denoted by the set JC2.

Table 5. FTMCs for J2 set vertices.

ßf (j q̄2 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+3

1

ßf (j q̄2 |Rf ):(q̄ = 1) q̄ 1 c̄− q̄ + 1 c̄
ßf (j q̄2 |Rf ):(2 ≤ q̄ ≤ c̄) q̄ q̄ − 1 c̄− q̄ + 1 c̄− q̄ + 3
ßf (j q̄2 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 2 q̄ − 1 q̄ − c̄ c̄− q̄ + 3
ßf (j q̄2 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄ c̄− q̄ + 3

ßf (j q̄2 |Rf ):(c̄+ 3 ≤ q̄ ≤ 2c̄+ 1) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄ q̄ − c̄− 2

Lastly, the FTMCs for members in the set J3 = {j q̄3 : 1 ≤ q̄ ≤ n}, are presented below
in Table 6 and the collection of FTMCs for these vertices are denoted by the set JC3.
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Table 6. FTMCs for J3 set vertices.

ßf (j q̄3 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+3

1

ßf (j q̄3 |Rf ):(q̄ = 1) q̄ + 1 2 c̄− q̄ + 1 c̄+ 1
ßf (j q̄3 |Rf ):(2 ≤ q̄ ≤ c̄− 1) q̄ + 1 q̄ c̄− q̄ + 1 c̄− q̄ + 3

ßf (j q̄3 |Rf ):(q̄ = c̄) q̄ + 1 q̄ 2 c̄− q̄ + 3
ßf (j q̄3 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 2 q̄ q̄ − c̄+ 1 c̄− q̄ + 3
ßf (j q̄3 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄+ 1 2

ßf (j q̄3 |Rf ):(c̄+ 3 ≤ q̄ ≤ 2c̄) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄+ 1 q̄ − c̄− 1
ßf (j q̄3 |Rf ):(q̄ = 2c̄+ 1) 2 2c̄− q̄ + 3 c̄+ 1 q̄ − c̄− 1

The total number of FTMCs listed above are equal to |JC1 ∪ JC2 ∪ JC3| = 3n. To
prove that the set Rf is a FTRS for An, it is first compulsory to show that, it is also
a resolving set for An. From all the codes presented above in JC1, JC2, and JC3, one
can clearly verify that all are different from one an other in at least one coordinate
and are also unique. Therefore, from this fact, now it is clear that the set Rf is a
resolving set for An. Next, to finish the proof, we only need to show that the set Rf

possesses the fault-tolerance property in it. For this, we simply adopt the definition
of FTRS and prove the following four sets R1 = {j1

1 , j
2
1 , j

c̄+1
1 }, R2 = {j1

1 , j
2
1 , j

c̄+3
1 },

R3 = {j1
1 , j

c̄+1
1 , j c̄+3

1 }, and R4 = {j2
1 , j

c̄+1
1 , j c̄+3

1 } (i.e., by using Rf r{j}, ∀ j ∈ Rf ) to
be resolving in An. But on verifying manually the FTMCs with respect to the set Rf

in An, we find that the respective metric codes with respect to the sets R1, R2, R3,
and R4 are unique and distinct for every vertex present in An. From this particular
fact, we find that the set Rf is the FTRS for An. Therefore, we have fdim(An) ≤ 4.
Now, from this and Proposition 1.3, we find that fdim(An) = 4, which completes the
proof for this case. �

Corollary 3.2. The FTMD for the double antiprism An is constant.

4. Minimum Fault-Tolerant Number of Sn

In this section, we take a graph, denoted by Sn and shown in Fig. 5, and investigates
its several properties including its FTMD.

The graph of Sn, comprises of 4n+2 faces, i.e., 2n triangular faces, 2n square faces,
one n sided face, and an outer face. The total number of vertices present in Sn are
4n and total number of edges present are 8n. We adopt two symbols to denote sets
of edges and vertices, viz., E(Sn) and V (Sn). These two sets are shown as follows:

V (Sn) = {j q̄r : 1 ≤ r ≤ 4; 1 ≤ q̄ ≤ n}

E(Sn) = {j q̄r j q̄+1
r , j q̄1j

q̄
2 , j

q̄
2j

q̄
3 , j

q̄
3j

q̄
4 , j

q̄
3j

q̄+1
2 : 1 ≤ r ≤ 4; 1 ≤ q̄ ≤ n}

For the vertices present in {j q̄1 : 1 ≤ q̄ ≤ n}, we name them first cycle vertices in Sn;
for vertices in {j q̄2 : 1 ≤ q̄ ≤ n}, we name them second cycle vertices in Sn; for vertices
in {j q̄3 : 1 ≤ q̄ ≤ n}, we name them third cycle vertices in Sn; and the vertices in
{j q̄4 : 1 ≤ q̄ ≤ n}, we name them fourth cycle vertices in Sn. In the following result,
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Figure 5. The Graph Sn.

we investigate the FTMD of Sn. In the following result, we investigate the FTMD of
Sn.

Theorem 4.1. fdim(Sn) = 4, where n ≥ 6 is a positive integer.

Proof. To complete the proof, we need to show that the FTMD is 4, for the graph of
convex polytope Sn. This can be achieved by considering two cases directly depend-
ing upon the even (n ≡ 0(mod 2)) and odd (n ≡ 1(mod 2)) nature of the integer n.
For n, we first consider the even case and then later the odd case.

Case(I) n ≡ 0(mod 2)
For this, we set n = 2c̄, c̄ ∈ N and c̄ ≥ 3. Assuming the set Rf = {j1

1 , j
2
1 , j

c̄+1
1 , j c̄+2

1 } ⊆
V (Sn).

Claim: The set Rf is a FTRS for Sn.
In order to get this, we give FTMC to every vertex of Sn with respect to Rf .

The FTMCs for members in the set J1 = {j q̄1 : 1 ≤ q̄ ≤ n}, are presented below in
Table 7 and the collection of FTMCs for these vertices are denoted by the set JC1.

Table 7. FTMCs for J1 set vertices.

ßf (j q̄1 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄1 |Rf ):(q̄ = 1) q̄ − 1 1 c̄− q̄ + 1 c̄− 1
ßf (j q̄1 |Rf ):(2 ≤ q̄ ≤ c̄+ 1) q̄ − 1 q̄ − 2 c̄− q̄ + 1 c̄− q̄ + 2

ßf (j q̄1 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 1 q̄ − 2 q̄ − c̄− 1 c̄− q̄ + 2
ßf (j q̄1 |Rf ):(c̄+ 3 ≤ q̄ ≤ 2c̄) 2c̄− q̄ + 1 2c̄− q̄ + 2 q̄ − c̄− 1 q̄ − c̄− 2
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The FTMCs for members in the set J2 = {j q̄2 : 1 ≤ q̄ ≤ n} are as follows ßf (j q̄2 |Rf ) =

ßf (j q̄1 |Rf ) + (1, 1, 1, 1), for 1 ≤ q̄ ≤ n and the collection of FTMCs for these vertices

are denoted by the set JC2. Next, the FTMCs for members in the set J3 = {j q̄3 : 1 ≤
q̄ ≤ n}, are presented below in Table 8 and the collection of FTMCs for these vertices
are denoted by the set JC3.

Table 8. FTMCs for J3 set vertices.

ßf (j q̄3 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄3 |Rf ):(q̄ = 1) q̄ + 1 2 c̄− q̄ + 2 c̄+ 1
ßf (j q̄3 |Rf ):(2 ≤ q̄ ≤ c̄) q̄ + 1 q̄ c̄− q̄ + 2 c̄− q̄ + 3
ßf (j q̄3 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 2 q̄ q̄ − c̄+ 1 c̄− q̄ + 3

ßf (j q̄3 |Rf ):(c̄+ 2 ≤ q̄ ≤ 2c̄) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄+ 1 q̄ − c̄

Lastly, the FTMCs for members in the set J4{j q̄4 : 1 ≤ q̄ ≤ n} are as follows
ßf (j q̄4 |Rf ) = ßf (j q̄3 |Rf ) + (1, 1, 1, 1), for 1 ≤ q̄ ≤ n and the collection of FTMCs
for these vertices are denoted by the set JC4. The total number of FTMCs listed
above are equal to |JC1∪JC2∪JC3∪JC4| = 4n. To prove that the set Rf is a FTRS
for Sn, it is first compulsory to show that, it is also a resolving set for Sn. From all
the codes presented above in JC1, JC2, JC3, and JC4, one can clearly verify that
all are different from one an other in at least one coordinate and are also unique.
Therefore, from this fact, now it is clear that the set Rf is a resolving set for Sn.
Next, to finish the proof, we only need to show that the set Rf possesses the fault-
tolerance property in it. For this, we simply adopt the definition of FTRS and prove
the following four sets R1 = {j1

1 , j
2
1 , j

c̄+1
1 }, R2 = {j1

1 , j
2
1 , j

c̄+2
1 }, R3 = {j1

1 , j
c̄+1
1 , j c̄+2

1 },
and R4 = {j2

1 , j
c̄+1
1 , j c̄+2

1 } (i.e., by using Rf r {j}, ∀ j ∈ Rf ) to be resolving in Sn.
But on verifying manually the FTMCs with respect to the set Rf in Sn, we find that
the respective metric codes with respect to the sets R1, R2, R3, and R4 are unique
and distinct for every vertex present in Sn. From this particular fact, we find that
the set Rf is the FTRS for Sn. Therefore, we have fdim(Sn) ≤ 4. Now, from this
and Proposition 1.3, we find that fdim(Sn) = 4, which completes the proof.

Case(II) n ≡ 1(mod 2)
For this, we set n = 2c̄+ 1, c̄ ∈ N and c̄ ≥ 3. Assuming the set
Rf = {j1

1 , j
2
1 , j

c̄+1
1 , j c̄+2

1 } ⊆ V (Tn).

Claim: The set Rf is a FTRS for Tn.
In order to get this, we give FTMC to every vertex of Sn with respect to Rf .

The FTMCs for members in the set J1 = {j q̄1 : 1 ≤ q̄ ≤ n}, are presented below in
Table 9 and the collection of FTMCs for these vertices are denoted by the set JC1.
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Table 9. FTMCs for J1 set vertices.

ßf (j q̄1 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄1 |Rf ):(q̄ = 1) q̄ − 1 1 c̄− q̄ + 1 c̄
ßf (j q̄1 |Rf ):(2 ≤ q̄ ≤ c̄+ 1) q̄ − 1 q̄ − 2 c̄− q̄ + 1 c̄− q̄ + 2

ßf (j q̄1 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 2 q̄ − 2 q̄ − c̄− 1 c̄− q̄ + 2
ßf (j q̄1 |Rf ):(c̄+ 3 ≤ q̄ ≤ 2c̄+ 1) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄− 1 q̄ − c̄− 2

The FTMCs for members in the set J2 = {j q̄2 : 1 ≤ q̄ ≤ n} are as follows ßf (j q̄2 |Rf ) =

ßf (j q̄1 |Rf )+(1, 1, 1, 1), for 1 ≤ q̄ ≤ n and the collection of FTMCs for these vertices are

denoted by the set JC2. Next, the FTMCs for members in the sets {j q̄3 : 1 ≤ q̄ ≤ n}
are shown presented below in Table 10 and the collection of FTMCs for these vertices
are denoted by the set JC3.

Table 10. FTMCs for J3 set vertices.

ßf (j q̄3 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄3 |Rf ):(q̄ = 1) q̄ + 1 2 c̄− q̄ + 2 c̄− q̄ + 3
ßf (j q̄3 |Rf ):(2 ≤ q̄ ≤ c̄) q̄ + 1 q̄ c̄− q̄ + 2 c̄− q̄ + 3
ßf (j q̄3 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 3 q̄ q̄ − c̄+ 1 c̄− q̄ + 3

ßf (j q̄3 |Rf ):(c̄+ 2 ≤ q̄ ≤ 2c̄+ 1) 2c̄− q̄ + 3 2c̄− q̄ + 4 q̄ − c̄+ 1 q̄ − c̄

Lastly, the FTMCs for members in the set J4{j q̄4 : 1 ≤ q̄ ≤ n} are as follows
ßf (j q̄4 |Rf ) = ßf (j q̄3 |Rf ) + (1, 1, 1, 1), for 1 ≤ q̄ ≤ n and the collection of FTMCs
for these vertices are denoted by the set JC4. The total number of FTMCs listed
above are equal to |JC1∪JC2∪JC3∪JC4| = 4n. To prove that the set Rf is a FTRS
for Sn, it is first compulsory to show that, it is also a resolving set for Sn. From all
the codes presented above in JC1, JC2, JC3, and JC4, one can clearly verify that
all are different from one an other in at least one coordinate and are also unique.
Therefore, from this fact, now it is clear that the set Rf is a resolving set for Sn.
Next, to finish the proof, we only need to show that the set Rf possesses the fault-
tolerance property in it. For this, we simply adopt the definition of FTRS and prove
the following four sets R1 = {j1

1 , j
2
1 , j

c̄+1
1 }, R2 = {j1

1 , j
2
1 , j

c̄+2
1 }, R3 = {j1

1 , j
c̄+1
1 , j c̄+2

1 },
and R4 = {j2

1 , j
c̄+1
1 , j c̄+2

1 } (i.e., by using Rf r {j}, ∀ j ∈ Rf ) to be resolving in Sn.
But on verifying manually the FTMCs with respect to the set Rf in Sn, we find that
the respective metric codes with respect to the sets R1, R2, R3, and R4 are unique
and distinct for every vertex present in Sn. From this particular fact, we find that
the set Rf is the FTRS for Sn. Therefore, we have fdim(Sn) ≤ 4. Now, from this
and Proposition 1.3, we find that fdim(Sn) = 4, which completes the proof. �

Corollary 4.2. The FTMD for Sn is constant.

5. Minimum Fault-Tolerant Number of Tn

In this section, we take a graph, denoted by Tn and shown in Fig. 6, and also
investigates its several properties including its FTMD.
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The graph of Tn, comprises of 4n + 2 faces, i.e., 3n triangular faces, n pentagonal
faces, one n sided face, and an outer face. The total number of vertices present in Tn
are 4n and total number of edges present are 8n. We adopt two symbols to denote
sets of edges and vertices, viz., E(Tn) and V (Tn). These two sets are shown as follows:

V (Tn) = {j q̄r : 1 ≤ r ≤ 4; 1 ≤ q̄ ≤ n}

E(Tn) = {j q̄r j q̄+1
r , j q̄1j

q̄
2 , j

q̄
2j

q̄
3 , j

q̄
3j

q̄
4 , j

q̄
2j

q̄+1
1 , j q̄3j

q̄+1
2 : r = 1, 2, 4; 1 ≤ q̄ ≤ n}

Figure 6. The Graph Tn

For the vertices present in {j q̄1 : 1 ≤ q̄ ≤ n}, we name them first cycle vertices in
Tn; for vertices in {j q̄2 : 1 ≤ q̄ ≤ n}, we name them second cycle vertices in Tn; for
vertices in {j q̄3 : 1 ≤ q̄ ≤ n}, we name them third cycle vertices in Tn; and the vertices
in {j q̄4 : 1 ≤ q̄ ≤ n}, we name them fourth cycle vertices in Tn. In the following result,
we investigate the FTMD of Tn. In the following result, we investigate the FTMD of
Tn.

Theorem 5.1. fdim(Tn) = 4, where n ≥ 6 is a positive integer.

Proof. To complete the proof, we need to show that the FTMD is 4, for the graph of
convex polytope Tn. This can be achieved by considering two cases directly depending
upon the even (n ≡ 0(mod 2)) and odd (n ≡ 1(mod 2)) nature of the integer n. For
n, we first consider the even case and then later the odd case.

Case(I) n ≡ 0(mod 2)
For this, we set n = 2c̄, c̄ ∈ N and c̄ ≥ 3. Assuming the set Rf = {j1

1 , j
2
1 , j

c̄+1
1 , j c̄+2

1 } ⊆
V (Tn).

Claim: The set Rf is a FTRS for Tn.
In order to get this, we give FTMC to every vertex of Tn with respect to Rf .
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The FTMCs for members in the sets J1 = {j q̄1 : 1 ≤ q̄ ≤ n} are presented below in
Table 11 and the collection of FTMCs for these vertices are denoted by the set JC1.

Table 11. FTMCs for J1 set vertices.

ßf (j q̄1 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄1 |Rf ):(q̄ = 1) q̄ − 1 1 c̄− q̄ + 1 c̄− 1
ßf (j q̄1 |Rf ):(2 ≤ q̄ ≤ c̄+ 1) q̄ − 1 q̄ − 2 c̄− q̄ + 1 c̄− q̄ + 2

ßf (j q̄1 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 1 q̄ − 2 q̄ − c̄− 1 c̄− q̄ + 2
ßf (j q̄1 |Rf ):(c̄+ 3 ≤ q̄ ≤ 2c̄) 2c̄− q̄ + 1 2c̄− q̄ + 2 q̄ − c̄− 1 q̄ − c̄− 2

The FTMCs for members in the sets J2 = {j q̄2 : 1 ≤ q̄ ≤ n} are presented below in
Table 12 and the collection of FTMCs for these vertices are denoted by the set JC2.

Table 12. FTMCs for J2 set vertices.

ßf (j q̄2 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄2 |Rf ):(q̄ = 1) q̄ 1 c̄− q̄ + 1 c̄
ßf (j q̄2 |Rf ):(2 ≤ q̄ ≤ c̄) q̄ q̄ − 1 c̄− q̄ + 1 c̄− q̄ + 2
ßf (j q̄2 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 1 q̄ − 1 q̄ − c̄ c̄− q̄ + 2

ßf (j q̄2 |Rf ):(c̄+ 2 ≤ q̄ ≤ 2c̄) 2c̄− q̄ + 1 2c̄− q̄ + 2 q̄ − c̄ q̄ − c̄− 1

The FTMCs for members in the sets J3 = {j q̄3 : 1 ≤ q̄ ≤ n} are presented below in
Table 13 below and the collection of FTMCs for these vertices are denoted by the set
JC3.

Table 13. FTMCs for J3 set vertices.

ßf (j q̄3 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+2

1

ßf (j q̄3 |Rf ):(q̄ = 1) q̄ + 1 2 c̄− q̄ + 1 c̄− q̄ + 2
ßf (j q̄3 |Rf ):(2 ≤ q̄ ≤ c̄− 1) q̄ + 1 q̄ c̄− q̄ + 1 c̄− q̄ + 2

ßf (j q̄3 |Rf ):(q̄ = c̄) q̄ + 1 q̄ 2 c̄− q̄ + 2
ßf (j q̄3 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 1 2c̄− q̄ + 2 q̄ − c̄+ 1 2

ßf (j q̄3 |Rf ):(c̄+ 2 ≤ q̄ ≤ 2c̄− 1) 2c̄− q̄ + 1 2c̄− q̄ + 2 q̄ − c̄+ 1 q̄ − c̄
ßf (j q̄3 |Rf ):(q̄ = 2c̄) 2 2c̄− q̄ + 2 q̄ − c̄+ 1 q̄ − c̄

Lastly, the FTMCs for members in the set J4 = {j q̄4 : 1 ≤ q̄ ≤ n} are as follows
ßf (j q̄4 |Rf ) = ßf (j q̄3 |Rf ) + (1, 1, 1, 1), for 1 ≤ q̄ ≤ n and the collection of FTMCs for
these vertices are denoted by the set JC4. The total number of FTMCs listed above
are equal to |JC1 ∪ JC2 ∪ JC3 ∪ JC4| = 4n. To prove that the set Rf is a FTRS
for Tn, it is first compulsory to show that, it is also a resolving set for Tn. From all
the codes presented above in JC1, JC2, JC3, and JC4, one can clearly verify that
all are different from one an other in at least one coordinate and are also unique.
Therefore, from this fact, now it is clear that the set Rf is a resolving set for Tn.
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Next, to finish the proof, we only need to show that the set Rf possesses the fault-
tolerance property in it. For this, we simply adopt the definition of FTRS and prove
the following four sets R1 = {j1

1 , j
2
1 , j

c̄+1
1 }, R2 = {j1

1 , j
2
1 , j

c̄+2
1 }, R3 = {j1

1 , j
c̄+1
1 , j c̄+2

1 },
and R4 = {j2

1 , j
c̄+1
1 , j c̄+2

1 } (i.e., by using Rf r {j}, ∀ j ∈ Rf ) to be resolving in Tn.
But on verifying manually the FTMCs with respect to the set Rf in Tn, we find that
the respective metric codes with respect to the sets R1, R2, R3, and R4 are unique
and distinct for every vertex present in Tn. From this particular fact, we find that
the set Rf is the FTRS for Tn. Therefore, we have fdim(Tn) ≤ 4. Now, from this
and Proposition 1.3, we find that fdim(Tn) = 4, which completes the proof.

Case(II) n ≡ 1(mod 2)
For this, we set n = 2c̄+ 1, c̄ ∈ N and c̄ ≥ 3. Assuming the set
Rf = {j1

1 , j
2
1 , j

c̄+1
1 , j c̄+3

1 } ⊆ V (Tn).

Claim: The set Rf is a FTRS for Tn.
In order to get this, we give FTMC to every vertex of Tn with respect to Rf .

The FTMCs for members in the sets J1 = {j q̄1 : 1 ≤ q̄ ≤ n} are presented below in
Table 14 and the collection of FTMCs for these vertices are denoted by the set JC1.

Table 14. FTMCs for J1 set vertices.

ßf (j q̄1 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+3

1

ßf (j q̄1 |Rf ):(q̄ = 1) q̄ − 1 1 c̄− q̄ + 1 q̄ + c̄− 2
ßf (j q̄1 |Rf ):(q̄ = 2) q̄ − 1 q̄ − 2 c̄− q̄ + 1 q̄ + c̄− 2

ßf (j q̄1 |Rf ):(2 ≤ q̄ ≤ c̄+ 1) q̄ − 1 q̄ − 2 c̄− q̄ + 1 c̄− q̄ + 3
ßf (j q̄1 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 2 q̄ − 2 q̄ − c̄− 1 c̄− q̄ + 3

ßf (j q̄1 |Rf ):(c̄+ 3 ≤ q̄ ≤ 2c̄+ 1) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄− 1 q̄ − c̄− 3

The FTMCs for members in the sets J2 = {j q̄2 : 1 ≤ q̄ ≤ n} are presented below in
Table 15 and the collection of FTMCs for these vertices are denoted by the set JC2.

Table 15. FTMCs for J2 set vertices.

ßf (j q̄2 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+3

1

ßf (j q̄2 |Rf ):(q̄ = 1) q̄ 1 c̄− q̄ + 1 c̄
ßf (j q̄2 |Rf ):(2 ≤ q̄ ≤ c̄) q̄ q̄ − 1 c̄− q̄ + 1 c̄− q̄ + 3
ßf (j q̄2 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 2 q̄ − 1 q̄ − c̄ c̄− q̄ + 3
ßf (j q̄2 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄ c̄− q̄ + 3

ßf (j q̄2 |Rf ):(c̄+ 3 ≤ q̄ ≤ 2c̄+ 1) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄ q̄ − c̄− 2

The FTMCs for members in the sets J3 = {j q̄3 : 1 ≤ q̄ ≤ n} are presented below in
Table 16 and the collection of FTMCs for these vertices are denoted by the set JC3.
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Table 16. FTMCs for J3 set vertices.

ßf (j q̄3 |Rf ) j1
1 j2

1 j c̄+1
1 j c̄+3

1

ßf (j q̄3 |Rf ):(q̄ = 1) q̄ + 1 2 c̄− q̄ + 1 c̄− q̄ + 2
ßf (j q̄3 |Rf ):(2 ≤ q̄ ≤ c̄− 1) q̄ + 1 q̄ c̄− q̄ + 1 c̄− q̄ + 3

ßf (j q̄3 |Rf ):(q̄ = c̄) q̄ + 1 q̄ 2 c̄− q̄ + 3
ßf (j q̄3 |Rf ):(q̄ = c̄+ 1) 2c̄− q̄ + 2 q̄ q̄ − c̄+ 1 c̄− q̄ + 3
ßf (j q̄3 |Rf ):(q̄ = c̄+ 2) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄+ 1 2

ßf (j q̄3 |Rf ):(c̄+ 2 ≤ q̄ ≤ 2c̄) 2c̄− q̄ + 2 2c̄− q̄ + 3 q̄ − c̄+ 1 q̄ − c̄
ßf (j q̄3 |Rf ):(q̄ = 2c̄+ 1) 2 2c̄− q̄ + 3 q̄ − c̄ q̄ − c̄− 1

Lastly, the FTMCs for members in the set J4 = {j q̄4 : 1 ≤ q̄ ≤ n} are as follows
ßf (j q̄4 |Rf ) = ßf (j q̄3 |Rf ) + (1, 1, 1, 1), for 1 ≤ q̄ ≤ n and the collection of FTMCs for
these vertices are denoted by the set JC4. The total number of FTMCs listed above
are equal to |JC1 ∪ JC2 ∪ JC3 ∪ JC4| = 4n. To prove that the set Rf is a FTRS
for Tn, it is first compulsory to show that, it is also a resolving set for Tn. From all
the codes presented above in JC1, JC2, JC3, and JC4, one can clearly verify that
all are different from one an other in at least one coordinate and are also unique.
Therefore, from this fact, now it is clear that the set Rf is a resolving set for Tn.
Next, to finish the proof, we only need to show that the set Rf possesses the fault-
tolerance property in it. For this, we simply adopt the definition of FTRS and prove
the following four sets R1 = {j1

1 , j
2
1 , j

c̄+1
1 }, R2 = {j1

1 , j
2
1 , j

c̄+3
1 }, R3 = {j1

1 , j
c̄+1
1 , j c̄+3

1 },
and R4 = {j2

1 , j
c̄+1
1 , j c̄+3

1 } (i.e., by using Rf r {j}, ∀ j ∈ Rf ) to be resolving in Tn.
But on verifying manually the FTMCs with respect to the set Rf in Tn, we find that
the respective metric codes with respect to the sets R1, R2, R3, and R4 are unique
and distinct for every vertex present in Tn. From this particular fact, we find that
the set Rf is the FTRS for Tn. Therefore, we have fdim(Tn) ≤ 4. Now, from this
and Proposition 3, we find that fdim(Tn) = 4, which completes the proof. �

Corollary 5.2. The FTMD for Tn is constant.

6. Conclusion

We investigated the presence of independent fault-tolerant resolving sets in graphs
and obtained some basic results comparing the independence of the resolving sets in
this paper. We proved that fdim(An) = fdim(Sn) = fdim(Tn) = 4, for the double
antiprism An, two convex polytopes Sn, and Tn. We end this section by posing a
question as an open problem regarding IFTRS that derives naturally from the article.

Open Problem: Is ifr(An) =ifr(Sn) =ifr(Tn) = 4 ?
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