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On Schur inequality and Schur functions

Marius Rădulescu, Sorin Rădulescu, and Petrus Alexandrescu

Abstract. The statement of the Schur’s inequality is the following:
Theorem. Let x, y, z be nonnegative real numbers. Then for every r > 0 the following

inequality holds:
xr (x− y) (x− z) + yr (y − z) (y − x) + zr (z − x) (z − y) ≥ 0.

In case the exponent r is an even number the above inequality holds for every x, y, z real
numbers.

The goal of the paper is to introduce the notion of Schur function and to prove some
properties of Schur functions. Our results represent generalizations of the Schur’s inequality.
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1. Introduction

The following inequality is known as the Schur inequality.
Theorem. Let x, y, z be nonnegative real numbers. Then for every r > 0 the

following inequality holds:

xr (x− y) (x− z) + yr (y − z) (y − x) + zr (z − x) (z − y) ≥ 0 (1.1)

Equality holds if and only if x = y = z or if two of x, y, z are equal and the third
is zero.

In case the exponent r is an even number then inequality (1.1) holds for every
x, y, z real numbers.

One of the reasons for which Schur’s inequality is studied is its applications
to geometric programming.

Geometric programming is a part of nonlinear programming where both the objec-
tive function and constraints are polynomials with positive coefficients (posinomials),
that is

P (x1, x2, ..., xn) =
∑

|α|≤m

aαxα1
1 xα2

2 ...xαn
n

where α = (α1, α2, ..., αn) is a n-dimensional vector with components natural num-
bers, |α| = α1 + α2 + .... + αn and all coefficients aα are nonnegative numbers.

Expanding terms in (1) we get

∑
xr+2 + xyz

(∑
xr−1

)
≥

∑
xr+1y +

∑
xr+1z

Therefore Schur’s inequality is equivalent to an inequality between two posinomials.
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In the next paragraph we define the notion of Schur function and we study various
properties of Schur functions.

2. Properties of Schur functions

In the present paragraph we shall denote by D a subset of R containing at
least two elements. For every map f : D → R we shall denote by S(f, x, y, z) the sum∑

f (x) (x− y) (x− z) that is

S(f, x, y, z) = f (x) (x− y) (x− z) + f (y) (y − z) (y − x) + f (z) (z − x) (z − y)

Definition 2.1. Let D be a subset of R containing at least two elements and
f : D → R be a map. We say that f is a Schur function on D if

∑
f (x) (x− y) (x− z) ≥ 0 for every x, y, z ∈ D (2.1)

We denote by S(D) the set of all Schur functions defined on D.
Proposition 2.2. The following assertions hold:
10. If f ∈ S(D) then f ≥ 0 .
20 If f ∈ S(D) and for some a, b ∈ D, a < b, we have f (a) = f (b) = 0 then

f (x) = 0 for every x ∈ [a, b] ∩D.
30. If there exists a, b ∈ D, a < b, such that a+b

2 ∈ D and

f

(
a + b

2

)
> 2f (a) + 2f (b) (2.2)

then f /∈ S(D).
Proof. Note that the map S(f, x, y, z) is a symmetric map. In order to prove

10 consider f ∈ S(D) and take two distinct elements of D, x, y ∈ D . Then 0 ≤
S (f, x, y, y) = f (x) (x− y)2, hence .f ≥ 0

To prove 20. let f ∈ S(D), a, b ∈ D, a < b, f (a) = f (b) = 0. Then
0 ≤ S (f, x, a, b) = f (x) (x− a) (x− b) for every x ∈ [a, b] ∩ D. Suppose that

there exists x0 ∈ [a, b] ∩ D such that f (x0) > 0. This implies (x0 − a) (x0 − b) < 0,
hence S (f, x0, a, b) < 0. We have obtained a contradiction. It follows that f = 0 on
[a, b] ∩D.

If f satisfies (2.2) then

S

(
f,

a + b

2
, a, b

)
=

(a− b)2

4

(
2f (a) + 2f (b)− f

(
a + b

2

))
< 0 (2.3)

hence f /∈ S(D). Thus we proved assertion 30 .
Theorem 2.3. Let f : D → R be a map. Then the following assertions are

equivalent:
10. f is a Schur map on D.
20. f (αx + βy) ≤ f(x)

α + f(y)
β , for every x, y ∈ D,and α, β ∈ (0, 1), α + β = 1,such

that αx + βy ∈ D.
Proof. Let S be the map defined in the beginning of the section, x, y, z ∈ D,

x < z < y, α, β ∈ (0, 1), α + β = 1, z = αx + βy. Then one can easily see that the
following equality holds:
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S(f, x, y, z) = αβ (x− y)2
[
f (x)

α
+

f (y)
β

− f (z)
]

(2.4)

Then the equivalence of the assertions from the statement of the above theorem
follows at once from identity (2.4).

Corollary 2.4. Let f : D → R be a map. Suppose that there exist two positive
constants m,M such that:

0 < m ≤ f (x) ≤ M ≤ 4m for every x ∈ D

Then f is a Schur map on D.
Proof. Let x, y ∈ D, α, β ∈ (0, 1), α + β = 1 such that αx + βy ∈ D Then

f (αx + βy) ≤ M ≤ 4m ≤ m

αβ
=

m

α
+

m

β
≤ f (x)

α
+

f (y)
β

By the preceding theorem it follows that f is a Schur map on D.
Corollary 2.5. Let f : D → R, be a map. Suppose that there exist two positive

constants m,M such that:

0 < m ≤ f (x) ≤ M for every x ∈ D

For every a ≥ 0 consider the map fa : D → R, fa (x) = f (x) + a, x ∈ D.
Then for every a ≥ max

(
M−4m

3 , 0
)

the map fa is a Schur map on D.
Proof. Note that a ≥ max

(
M−4m

3 , 0
)

implies that

0 < m + a ≤ fa (x) ≤ M + a ≤ 4 (m + a) for every x ∈ D

By the preceding corollary fa is a Schur map on D.
In the following we shall give a definition of a quasiconvex map which is a slight

more general than the classical one.
Definition 2.6. A map f : D → R is quasiconvex if

f (αx + βy) ≤ max (f (x) , f (y)) for every x, y ∈ D,

α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D

Recall that in the classical definition of a quasiconvex map one supposes that the
set D is convex.

Corollary 2.7. The following assertions hold:
10. Every nonnegative quasiconvex map is a Schur map.
20. Every nonnegative map which is a sum of two nonnegative monotone maps is

a Schur map.
Proof. Let x, y ∈ D, α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D. If f is a

nonnegative quasiconvex map then

f (αx + βy) ≤ max (f (x) , f (y)) ≤ f (x)
α

+
f (y)

β

By theorem 2.3., it follows that f is a Schur map on D.
Suppose that f = u1 + u2, ui ≥ 0, ui monotone i = 1,2. Then one can easily see

that

ui (αx + βy) ≤ max (ui (x) , ui (y)) ≤ ui (x) + ui (y) ≤ ui (x)
α

+
ui (y)

β
i = 1, 2.
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By theorem 2.3., f is a Schur map on D.
Theorem 2.8. Let f : D → R+ be a map with the property

f (αx + βy) ≤
(√

f (x) +
√

f (y)
)2

for every x, y ∈ D,

α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D

Then f is a Schur map on D.
Proof. The assertion of the theorem follows at once from the inequalities:

f (αx + βy) ≤
(√

f (x) +
√

f (y)
)2

≤ f (x)
α

+
f (y)

β

for every x, y ∈ D, α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D.
Theorem 2.9. Let f : D → R+ be a map and M a positive constant. Suppose

that he following inequality holds:

f (αx + βy)− f (x)
α

− f (y)
β

≤ M for every x, y ∈ D,

α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D

For every a ≥ 0 consider the map fa : D → R, fa (x) = f (x) + a, x ∈ D.
Then for every a ≥ M

3 we have fa ∈ S(D).
Proof. Let a ≥ M

3 . Then for every x, y ∈ D,α, β ∈ (0, 1) , α + β = 1 such that
αx + βy ∈ D, we have

fa (αx + βy)− fa (x)
α

− fa (y)
β

=

= f (αx + βy)− f (x)
α

− f (y)
β

+ a

(
1− 1

αβ

)
≤ M + a(1− 4) = M − 3a ≤ 0

By theorem 2.3., it follows that fa is a Schur map on D.
Theorem 2.10. Let f : D → R+ be a map. For every a ≥ 0 consider the map

fa : D → R, fa (x) = f (x) + a, x ∈ D. If f /∈ S(D), then there exists a0 > 0 such
that for every a ∈ (0, a0) we have fa /∈ S(D).

Proof. Suppose that f /∈ S(D). Then by theorem 2.3., there exist x0, y0 ∈
D, α0, β0 ∈ (0, 1) , α0 + β0 = 1, such that α0x0 + β0y0 ∈ D and

A (f) = f (α0x0 + β0y0)− f (x0)
α0

− f (y0)
β0

> 0

Take a0 = A(f)
1

α0β0
−1

. Note that if a ∈ [0, a0) then

A (fa) = fa (α0x0 + β0y0)− fa (x0)
α0

− fa (y0)
β0

=

= A (f) + a

(
1− 1

α0β0

)
> A (f) + a0

(
1− 1

α0β0

)
= 0

Consequently fa /∈ S(D).
Proposition 2.11. Let f (x) =

(
x2 − 1

)2
, x ∈ R,ψ: [0, 1] → R, ψ (t) = (1−t)(1+t)2

1+t+t2+t3+t4 , t ∈
[0, 1] . Denote
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Q =
{
(α, β) ∈ R2 : α, β ∈ (0, 1) , α + β = 1

}
, γ0 = max

(α,β)∈Q
[ψ (α) + ψ (β)]. For

every x, y ∈ R, (α, β) ∈ Q define
g (x, y, α, β) = f (αx + βy)− f(x)

α − f(y)
β

Then the following inequalities hold:

36
31
≤ γ0 < 2

g (x, y, α, β) ≤ γ0 + 1 ≤ 3

Proof. Note that f is decreasing on (−∞,−1] and increasing on [−1, 0] . Hence the
restriction of f to (−∞, 0] is quasiconvex. Thus if x, y ≤ 0 and (α, β) ∈ Q then

g (x, y, α, β) = f (αx + βy)− f (x)
α

− f (y)
β

≤

≤ max (f (x) , f (y))− f (x)
α

+
f (y)

β
≤ 0

Since f is decreasing on [0, 1] and increasing on (1,∞] it follows that the restriction
of f to [0,∞) is quasiconvex. Thus if x, y ≥ 0 and (α, β) ∈ Q then g (x, y, α, β) ≤ 0.

Now we shall consider the case x ≥ 0, y ≤ 0. Let z = −y. We shall prove that

g (x,−z, α, β) ≤ 1 + γ0 < 3

Consider the maps: φ1 (t, x) = t5−1
t x4 +

2(1−t3)
t x2 − 1

t , t ∈ (0, 1) , x ∈ R,

φ2 (x) = ax4 + bx2 + c, x ∈ R. Note that a < 0 and b > 0 implies that

φ2 (x) ≤ φ2

(√
− b

2a

)
=

4ac− b2

4a
for every x ∈ R

If in the preceding inequality we take a = t5−1
t , b =

2(1−t3)
t , t ∈ (0, 1) , we obtain

φ1 (t, x) ≤ φ2

(√
− b

2a

)
=

4ac− b2

4a
=

t2
(
2− t2 − t3

)

t5 − 1
= ψ (t)− 1 (2.5)

Let x, z ≥ 0. Then

g (x,−z, α, β) = f (αx− βz)− f (x)
α

− f (−z)
β

=

= (αx− βz)4 − x4

α
− z4

β
− 2 (αx− βz)2 +

2x2

α
+

2z2

β
+ 1− 1

α
− 1

β
=

=
(

α4 − 1
α

)
x4 +

(
2
α
− 2α2

)
x2 − 1

α
+

(
β4 − 1

β

)
z4 +

(
2
β
− 2β2

)
z2 − 1

β
+

+8α2β2x2z2 − 4α3βx3z − 4αβ3xz3 − 2α2β2x2z2 + 4αβxz + 1 =

= φ1 (α, x) + φ1 (β, z)− 4αβxz (αx− βz)2 − 2α2β2x2z2 + 4αβxz + 1 ≤
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≤ φ1 (α, x) + φ1 (β, z) + 3 ≤ ψ (α)− 1 + ψ (β)− 1 + 3 =
= ψ (α) + ψ (β) + 1 ≤ γ0 + 1

Thus we proved that x ≥ 0, y ≤ 0 implies g (x, y, α, β) ≤ γ0 + 1 ≤ 3. Analogously
one can prove the same inequality for x ≤ 0, y ≥ 0.

Proposition 2.12.Let f (x) =
(
x2 − 1

)2
, x ∈ R. For every a ≥ 0 consider the

map fa : R → R,
fa (x) = f (x) + a, x ∈ R. Then the following assertions hold:
10. For every a ∈ [0, 1

3 ), fa /∈ S(R).
20 For every a ∈ [1,∞), fa ∈ S(R)
30 For every a ∈ R, fa is not quasiconvex and is not the sum of two positive

monotone functions.
Proof. To prove 10 take α0 = β0 = 1

2 , x0 = −1, y0 = 1.Then α0x0 + β0y0 = 0,

A (f) = f (α0x0 + β0y0) − f(x0)
α0

− f(y0)
β0

= f (0) − 2f (−1) − 2f (1) = 1 > 0 and

a0 = A(f)
1

α0β0
−1

= 1
3 .

By theorem 2.10. fa /∈ S(R) for every a ∈ [0, 1
3 ).The assertion from 20 follows at

once from theorem 2.9. and proposition 2.11.
Note that fa is not monotone and there does not exist u0 ∈ R such that fa is

decreasing on (−∞, u0] and increasing on [u0,∞). Therefore fa is not quasiconvex.
Proposition 2.13. Let φ : R → R be a map with the property that f ◦φ ∈ S(R)

for every f ∈ S(R). Then φ is monotone.
Proof. Suppose contrary that φ is not a monotone map. Then there exist x < y < z

such that
max (φ (x) , φ (z)) < φ (y) . Let λ ∈ (max (φ (x) , φ (z)) , φ (y)) . For every a, b > 0

consider the map

fa,b (t) =
{

a if t ∈ (−∞, λ]
b if t ∈ (λ, +∞)

Note that all maps fa,b are monotone, hence they are Schur maps. Since y ∈ (x, z)
it follows that there exist α, β ∈ (0, 1) , α+β = 1 such that y = αx+βz. By hypothesis
fa,b ◦ φ ∈ S(R).Therefore

b = (fa,b ◦ φ) (y) = fa,b (φ (αx + βz)) ≤ fa,b (φ (x))
α

+
fa,b (φ (z))

β
=

a

α
+

a

β
=

a

αβ

By the preceding inequality it follows that αβ ≤ a
b for every a, b > 0. The contra-

diction we have obtained proves that the map φ must be monotone.
Proposition 2.14. Let f :

[
0, 2

3

] → R, f (x) = x − x2, x ∈ [
0, 2

3

]
. Then f ∈

S ([
0, 2

3

])
.

Proof. Let α, β ∈ (0, 1) , α + β = 1, g (x, y, α, β) = f (αx + βy)− f(x)
α − f(y)

β , x, y ∈[
0, 2

3

]
.

Note that

−αβg (x, y, α, β) =
(
α3β − β

)
x2 +

(
β − α2β

)
x +

+
(
αβ3 − α

)
y2 +

(
α− αβ2

)
y + 2α2β2xy
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Note that the coefficients of x2 and y2 from the right hand side of the above identity,
that is α3β − β and αβ3 − α are strictly negative. Moreover, the matrix

(
α3β − β α2β2

α2β2 αβ3 − α

)

is negative definite. Consequently the map hα,β (x, y) = −αβg (x, y, α, β) is con-
cave. Hence

−αβg (x, y, α, β) ≥ min
(

hα,β (0, 0) , hα,β

(
0,

2
3

)
, hα,β

(
2
3
, 0

)
, hα,β

(
2
3
,
2
3

))

Since all the arguments of min are nonnegative it follows that g (x, y, α, β) ≤ 0.
This implies that f ∈ S ([

0, 2
3

])
.

Proposition 2.15. Let D be a subset of R with more than three elements and
f : D → R be an increasing Schur map. Consider x, y, z ∈ D distinct elements. Then
S (f, x, y, z) = 0 if and only if one of the following situations occurs:

10. All x, y, z are equal, that is x = y = z.
20. Two of x, y, z are equal and the third is a zero of f.
30. All three x, y, z are zeros of f.
Proof. Without any loss of generality we may suppose that x ≥ y ≥ z. Denote

A (f, x, y, z) = (x− y) [f (x) (x− y) + (f (x)− f (y)) (y − z)]

B (f, x, y, z) = f (z) (x− z) (y − z)
Note that S (f, x, y, z) = A (f, x, y, z) + B (f, x, y, z) . and A (f, x, y, z) ≥ 0 and

B (f, x, y, z) ≥ 0.
Consequently S (f, x, y, z) = 0 implies that A (f, x, y, z) = B (f, x, y, z) = 0.We

shall study two cases.
Case 1. x = y. in this case we have A (f, x, y, z) = 0.From B (f, x, y, z) = 0 it

follows that y = z or f (z) = 0.
Thus case 1. reduces to situation 10 or 20.
Case 2. x > y. From A (f, x, y, z) = 0 it follows that f (x) = 0 and (f (x)− f (y)) (y − z) =

0.
Hence f (y) = 0 or y = z. From B (f, x, y, z) = 0 it follows that f (z) = 0 or y = z.
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