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On Location of Zeros of a Quaternionic Polynomial with
Restricted Coefficients Using Matrix Method
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ABSTRACT. In this paper, we consider the connection between zeros of a quaternionic polyno-
mial and left eigen values of its corresponding companion matrix. As an application of which,
we determine the region containing the zeros of some special quaternionic polynomials with
restricted coefficients. Our result generalizes some previously proved results in this direction.
Furthermore, we provide numerical examples and graphical representation to demonstrate the
superior precision of our result and its corollary to some previously established results.
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1. Introduction

The study of the distribution of zeros of a polynomial in a circular or annular re-
gion has a long and illustrious history in mathematics. This study has been the
inspiration for much theoretical research occupying its own place both within and
outside of mathematics. Various authors have extensively studied problems involv-
ing polynomials and the location of their zeros over the past few decades including
their applications. There are various research papers concerning an upper bound for
the moduli of all the zeros of a polynomial when its coefficients are restricted with
special conditions. The first contribution to this subject was made by Gauss and
Cauchy. One of the classical results concerning the zeros and their regional location
of a polynomial with restricted coefficients is known as Enestrom-Kakeya theorem.

In 1829, Cauchy [8] proved that if P(z) = Zavz” is a polynomial of degree n,

v=0
then all the zeros of P(z) lie in
2] <1+ M, (1)
whereMzmax{fZ':Il:v:OJ,Q, ..... n—1

In 1890, Gustav Enestrom [8] proved the following result by considering a polynomial
with real, positive, monotone coefficients.

Theorem 1.1. If P(z) = Z%ZU is a polynomial of degree m with real coefficients
v=0

satisfying
Ap > A1 > ... > a1 > ag > 0, (2)
then P(z) has all its zeros in |z| < 1.
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Further, Aziz and Zargar [1] proved the following result which is an extension of
Theorem 1.1 by relaxing the hypothesis.

Theorem 1.2. If P(z Zav Y 1s a polynomial of degree n with real coefficients

such that for some positive numbers kandn withk >1and0<n <1, kap, > ap—1 >
.. >ay >nag > 0, then all the zeros of P(z) lie in

ka, + 2ao(1 —n)

2+ k-1 < 3)
QA
Also, Nwaeze [13] proved the following result which is a generalization of Theorem
1.2.
Theorem 1.3. If P(z Z a,z" s a polynomial of degree n such that for some real

numbers A and p, A+ a, 2 anfl > p_g..... > a1 > ag — p, then all the zeros of P(z)
lie in
A

zZ+ —

a <7{an+/\ ao +p+ |pl + laol} - (4)

|an]

Recently, Zargar et al. [16] proved the following result which generalizes as well as
extends Theorem 1.3 by considering a polynomial with complex coefficients.

Theorem 1.4. If P(z Zav Y is a polynomial of degree n with complex coeffi-

cients, a, = oy, + if, for U = 0 1,...,n such that for some real numbers k,\,7, and

p
Adap > a1 2> ... a2 ap—p

and
K+ﬂn Z/Bn—l > ... 2/81 ZBO_T7
then all the zeros of P(z) lie in

At ik 1
’Z—F a §|a|{an+ﬁn+/\+1€—(ao+ﬁo)
+T+p+|f|+p+|ao+lﬁo|}- (5)

2. Preliminary knowledge

In order to introduce the framework in which we will work, let us introduce some

preliminaries on quaternions and regular functions of a quaternionic variable which
will have useful and interesting consequences. Quaternions are essentially a gen-
eralization of complex numbers to four dimensions(one real and three imaginary
parts) which was first studied and developed by Sir Rowan William Hamilton in
1843. This number system is denoted by H in honor of Hamilton. We use the
notation H = {a+ Bi +~vj + 6k :a,B,v,0 € R} where i, j, k satisfy i? = j2 =
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k? = ijk = —1,4j = —ji = k, jk = —kj = i, ki = —ik = j. It is a non-
commutative division ring. Every element ¢ = o + §i + vj + 6k € H is com-
posed of real part Re(q) = « and imaginary part Im(q) = pi + vj + dk. The
conjugate of q is denoted by ¢ and is defined as § = a — i — vj — dk and the
norm of ¢ is |¢| = /g7 = /a2 + 32 +~2 + 2. The inverse of each non zero ele-
ment g of H is given by ¢~ = |¢|72q. For r > 0, we define the ball B(0,r) =
{g€eH:|q| <r}. By B we denote the open unit ball in H centered at the origin,
ie, B={qg=a+pBi+7j+dk:a®>+%>+~+*+6> <1} and by S the unit sphere
of purely imaginary quaternions, i.e., S = {g=8i+~vj+6:82++*+*=1}. We
represent the indeterminate for a quaternionic polynomial as ¢. Since H being a non-
commutative division ring, aq¢™ and agqaiq.....qa,, where a = agas....a, are different.
Hence, we adopt the standard that polynomials have the indeterminate on the left
and coefficients on the right. That is, a quaternionic polynomial P of degree n in the

variable ¢ and coefficients a, for v =0,1,...n — 1,n, is given by P(q Z q ay.

is known that these are the only polynomials in the quaternion-valued functlons of
a quaternionic variable to satisfy the regularity conditions, and hence their behav-
ior resembles very closely to that of regular functions of a complex variable. Two
quaternionic polynomials of this kind can be multiplied accordlng to the convolutlon

product (Cauchy multiplication rule), i.e., for P;(gq Z q'a; and Ps(q Z q b],
=0

we define (P * Py)(q) = Z g ab;.

The quaternion Companion Matrix: The n X n companion matrix of a monic
quaternionic polynomial of the form f(q) = ¢" + ¢" tai + .... + qan_1 + a,, is given
by

000 .. 0 =—ay
1 00 ... 0 —ap_
0 10 0 —ay
000 .. 1 —-a

whereas, the n X n companion matrix for a monic quaternion polynomial of the form
9(q) = ¢" + a1¢"" + ... + an_1q + an is given by

0 1 0 ... 0 0
0 0 1 ... 0 0
—Aanp —Aap_1 —Qp—2 .. . —aq

Right Eigenvalue: Given an n x n matrix A = (a,,) of quaternions, A € H is
called the right eigen value of A, if Az = z) for some non zero eigenvector x =
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[T1, T2y e xn]T of quaternions.
Left Eigenvalue: Given an nxn matrix A = (a,,) of quaternions, A € H is called the
left eigen value of A, if Ax = Az for some non zero eigenvector z = [x1, T2, ....... x,T

of quaternions.
For complex case, concerning the location of the eigenvalues, the famous Gersgorin
theorem due to Marden [8] which can be stated as;

Theorem 2.1. All the eigenvalues of a nxn complex matriz A = (a,,) are contained
n
in the union of n Gersgorin discs defined by D, =< z € C: |z — a,,| < Z lau.|
v=1v#p

Recently, Dar et al. [3] proved the following quaternion version of GerSgorin The-
orem.

Theorem 2.2. All the left eigenvalues of a nxn matric A = (a,,) of quaternions lie
in the union of the n Gersgorin balls defined by B, = {g€ H: |qg —a,,| < p.(4)},

where p#(A) = Z::l,u;ﬁp |al“’|'

In the same paper, they considered the quaternionic polynomial with coefficients
on left side and gave connection between its zeros and the left eigenvalues of its
corresponding companion matrix by proving the following result.

Theorem 2.3. Let f(q) = ¢"+a,_1¢" "' +....4+a1q+ag be a quaternionic polynomial
with quaternion coefficients and q be quaternionic variable, then for any diagonal ma-
trix D = diag(dy,ds,ds, ....,dn_1,dy,), where dy,ds, ....,d, are positive real numbers,
the left eigenvalues of D~'C,D and the zeros of f(q) are same.

And very recently Rather et al. [14] proved that the above relation holds true for
quaternionic polynomials with coefficients on right side. From this, it was concluded
that the zeros of quaternionic polynomial and left eigenvalues of its corresponding
companion matrix are same irrespective of the position of its coefficients.

In the past few years, a series of papers related to regular functions of a quater-
nionic variable has been published (see for example, [9], [15], [1]). Many remarkable
advancements have been made by using the structure of the zeros of polynomials, for
example, a topological proof of the Fundamental Theorem of Algebra was established
in ([5]-[7]). We point out that the Fundamental Theorem of Algebra for regular poly-
nomials with coefficients in H was already proved by Niven (see [11], [12]), by using
different techniques. This leads to the complete identification of the zeros of polyno-
mials in terms of their factorization and hence it becomes an interesting perspective
to think about the regions containing some or all the zeros of a regular polynomial
of quaternionic variable. The proof of Enestrom-Kakeya Theorem is done using the
Triangle inequality and Maximum Modulus Theorem. It is clear that both the above
mentioned facts hold true for the functions of a quaternionic variable. Therefore, Car-
ney et al. [2] extended the Enestém-Kakeya Theorem to a function of a quaternion
variable. More precisely, they proved

n
Theorem 2.4. If P(q) = Zq”av s a quaternionic polynomial of degree n with real
=
coeficients such that ’
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then all the zeros of P(q) lie in |q| < 1.

Further, they [2] also proved the following result by considering a quaternionic
polynomial with monotone increasing real parts and imaginary parts.
n
Theorem 2.5. If P(q) = Zq”av s a quaternionic polynomial of degree n with real

v=0
coefficients such that

Gp 2 Ap—1 2 ... 2 a1 2 g,
then all the zeros of P(q) lie in

(lao| — ao + an)

ql <
lq] o]

(6)

Milovanovié¢ et al. [10] generalized Theorem 2.4 and Theorem 2.5 by proving the
following result.
Theorem 2.6. If P(q) = Zq”av s a quaternionic polynomial of degree n with real

v=0
coefficients such that

ap < ap—1 < ... <ax > ... 2 a1 2 ao,
then all the zeros of P(q) lie in

lq] <

(2ax + |ag| — ag — an)
|an |

(7)

Because of the restriction on the coefficients that they should be real and mono-
tonic, the results discussed above are applicable to a small class of polynomials, so
it is interesting to look for the results without any restriction on the coefficients
and applicable to every quaternionic polynomial with quaternion or complex or real
coefficients. In this direction, Dar et al. [3] proved various results concerning the
location of the zeros of quaterionic polynomials with quaternion coefficients without
any restriction on the coefficients and besides, Cauchy’s theorem is also extended to
quaternion setting by proving the following result.

Theorem 2.7. If f(q) = ¢" + ¢" ‘ay + ....qan_1 + a, is a quaternion polynomial
with quaternion coefficients and q is quaternionic variable, then all the zeros of f(q)
lie inside the ball

< .
gl <1+ max fay| (8)

Now, in view of Theorem 2.1 and the fact that the zeros of a quaternion poly-
nomial and the left eigenvalues of corresponding companion matrix are same, very
recently, Rather et al. [14] proved some results concerning the location of the zeros
of quaternion polynomials which is a refinement of Theorem 2.7.

Theorem 2.8. Let f(q) = q" +q" taj +....qan_1 + a, be a quaternionic polynomial
with quaternion coefficients and q is quaternionic variable. If as > a3 > ... > a, are
ordered positive numbers,

_ lay

/rl/

, v=2,3..n (9)

Ay
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where 1 is a positive real number, then all the zeros of f(q) lie in the union of balls

{geH :|q| <r(1+ a9} (10)

and
{¢eH: |g+a| <r}. (11)
In the same paper, as an application of Theorem 2.8, Rather et al. [14] proved the

following result concerning the location of the zeros of the quaternionic polynomials
with quaternion coefficients.

Theorem 2.9. Let f(q) = ¢" +q" taj +....qan_1 + a, be a quaternionic polynomial
with quaternion coefficients and q is quaternionic variable. If as > ag > ... > ay, are
ordered positived numbers,

v = |aZ‘ , v=2,3..n (12)
r
where 1 is a positive real number, then all the zeros of f(q) lie in the union of balls
{feeH: ¢ <r(1+p)} (13)
and
{eeH:jg+a|<r} (14)
where 5 5 5
2 3 n
=g — — —————— 15
p=a IL+as  (1+a)? (14 ag)n—1 (15)

0y =y —Qyy1, V=2,3,..n and apqq = 0.
3. Main Results

The main goal of this paper is to determine the regions containing all the zeros of
a quaternionic polynomial with some restrictions on its coefficients which produces
various generalizations of some previously established results by using the relation
between zeros of a quaternionic polynomial and left eigen values of its corresponding
companion matrix. More precisely, we prove the following result which generalizes
Theorem 2.8 by considering a quaternionic polynomial.

Theorem 3.1. Let f(q) = q" +q¢" taj +....qan_1 + a, be a quaternionic polynomial

with quaternion coefficients and q be a quaternionic variable. If as < ag < ... <

ay > .. > o, are positive numbers with
o la, |

v’

v=23.n (16)

174

where 1 is a positive real number, then all the zeros of f(q) lie in the union of balls
{geH: ¢l <r(1+an)} (17)

and
{geH  jg+a| <7} (18)

Remark 3.1. If we set A = 2, Theorem 3.1 becomes Theorem 2.8.

Remark 3.2. Taking A = n, Theorem 3.1 yields following interesting result which is
applicable to a special class of quaternionic polynomial.
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Corollary 3.2. Let f(q) = ¢" +q¢" tay +....qan_1 +ay, be a quaternionic polynomial
with quaternion coefficients and q be a quaternionic variable. If ag < ag < ... <a,
are positive numbers with

ay = |:fj|, v=23.n (19)
where 1 is a positive real number, then all the zeros of f(q) lie in the union of balls
{geH: gl <r(1+an)} (20)
and
{geH g+ a1| <r}. (21)

Remark 3.3. If we consider a complex polynomial, Theorem 3.1 reduces to

Corollary 3.3. Let f(z) = 2" a1 2" . a1 24ay be a complex polynomial with
complex coefficients and z be a complex variable. If as < az < ... <ayx>.>aqa,
are positive numbers with

ay = |§f§|, v=12,3.n (22)
where 1 is a positive real number, then all the zeros of f(z) lie in the union of discs
{zeC:|z] <r(1+an)} (23)

and
{zeC:lz+a| <r}. (24)

4. Proof of the Theorem

Proof of Theorem 3.1. Let f(q) = ¢" +q¢" ‘aj + ....qa,_1 + a, be a quaternionic
polynomial with quaternion coefficients and q be a quaternionic variable. Then, by
definition, the companion matrix of the quaternion polynomial f(q) is given by

0 00 ... 0 =—ay
1 00 0 —ap_1
01 0 0 —ay,
Cr =
000 ... 1 —-a
We take a diagonal matrix T' = diag(r"~',7"~2,....,7, 1), where r is a positive real
number, then
0 0 0 ==
r 0 0 0 —=5
0 r O 0 —n
T7'CT =
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Applying Theorem 2.2 to T~ CyT, it follows that all the left eigenvalues of T71C¢T
lie in the union of balls

a |an| |an|
lgl < rn: :rr—z<r+rr—z,
Ap—1 |CL _1|
ol < 4| S| <
ag as
lgf < T+’Tn1 <7’—|—r|r—1|
and
lg +a1] <.

_ lau]

Using the relation a,, = 7%, v = 2,3...n, given by (16) to the above inequalities, all
the left eigenvalues of T-'C}T lie in the union of balls

(14 an),
r(l+ ap_1),

lq|

<
lgl <

lgl < r(1+ag)

and
lg 4+ a1] <.

Applying the fact as < ag < ... < ay > .. > ay, it follows that all left eigenvalues
of T7'CyT lie in the union of balls

lg) <7(1+ay) and |g+ a1| < 7.
Then, by Theorem 2.3, all the zeros of f(g) lie in the union of balls

lgl <r(1+ ) and g+ a1| <,
and this completes the proof of Theorem 3.1. O
Example 4.1. Let f(q) = ¢* +¢%0.5j +q(3 + 2i+ 3+ £k) + (3 + +=k) be a monic
quaternionic polynomial where a9 =1, a3 =0, a2 = 0.55 and a3 = % + %i + %j + ék

and a4:%+1—?’6k.
1

For r = 35, and using the relation «,, = ‘f;", v =2,3...n, we have ap = 2, a3 = /30 =
5.47722558 and a4 = v/13 = 3.6055128 such that as < as > ay. It is vividly seen
that Theorem 2.8 and Theorem 2.6 are not applicable to this quaternionic polynomial
and hence our result (Theorem 3.1) is applicable to a larger class of polynomials with
quaternionic coefficients.

Using Theorem 3.1, the zeros of f(q) will lie in the union of the balls
{aeH:|g| <0.5(1+a3)}
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and
{geH:|¢g+a1] <05},
which implies that the zeros of f(g) wil lie in the union of the balls

{geH:|q| < 3.23861279}

and
{geH: |q| <0.5}.

Example 4.2. Let f1(q) = ¢*+¢?5j+¢2i+ 15k be a monic quaternionic polynomial
which holds Theorem 3.1.

For r = 2, using Theorem 3.1, all the zeros of f1(g) lie in union of the balls |¢| < 2.35
and |q| < 2. Whereas, using Theorem 2.7, the zeros of f1(q) will lie in the ball

{ge H: || < (1+]as]) = 3}.

This shows that our result (Theorem 3.1) gives more accurate zero region of the
polynomial fi(g) than that of Theorem 2.7.

Moreover, we are interested to notice that Corollary 3.3 significantly improves
zero bound than its counterparts given by inequality (22) of Corollary 3.3, inequality
(8)(Theorem 2.7) due to Dar et al., and (7)(Theorem 2.6) due to Milovanovié¢ et al.
by making use of WOLFRAM MATHEMATICA.

Example 4.3. We consider the complex polynomial p(z) = 2% + 23 + 322 + %z + %

_ lau]

For r = 2, and using the relation o, = -3+, v = 2,3...n, we have, as = 0.3, az =
0.03125 and a4 = 0.0104166667 such that as > a3 > a4. Hence, using Corollary 3.3,
all zeros of p(z) lie in union of |z| < 2.6 and |z + 1] < 2.
Using Theorems 2.6 and 2.7, it is concluded that all the zeros of p(z) lie respectively
in and |z| <5 and |z| < 4 showing that the bound given by Corollary 3.3 improves
most and the respective sizes of zero regions are depicted in the figure below.

It is of interest to examine the area-percentage of improvements of the bound of
Corollary 3.3 over Theorem 2.7 due to Dar et al. and Theorem 2.6 due to Milovanovié
et al. are respectively 55.53% and 71.54%.

5. Conclusion

The regular functions of a quaternionic variable have been introduced and intensively
studied in the past few years and it has been proven to be fertile topic in analysis and
its rapid development has been largely driven by the applications to operator theory.
Thus, it becomes an interesting perspective to think about the regions containing all
the zeros of a quaternionic polynomial. In this paper, we prove a result which gives an
improved the bound of the zeros of a special quaternionic polynomial whose moduli
of the coefficients satisfy a suitable inequality.
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