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On Location of Zeros of a Quaternionic Polynomial with
Restricted Coefficients Using Matrix Method
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Abstract. In this paper, we consider the connection between zeros of a quaternionic polyno-
mial and left eigen values of its corresponding companion matrix. As an application of which,

we determine the region containing the zeros of some special quaternionic polynomials with

restricted coefficients. Our result generalizes some previously proved results in this direction.
Furthermore, we provide numerical examples and graphical representation to demonstrate the

superior precision of our result and its corollary to some previously established results.
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1. Introduction

The study of the distribution of zeros of a polynomial in a circular or annular re-
gion has a long and illustrious history in mathematics. This study has been the
inspiration for much theoretical research occupying its own place both within and
outside of mathematics. Various authors have extensively studied problems involv-
ing polynomials and the location of their zeros over the past few decades including
their applications. There are various research papers concerning an upper bound for
the moduli of all the zeros of a polynomial when its coefficients are restricted with
special conditions. The first contribution to this subject was made by Gauss and
Cauchy. One of the classical results concerning the zeros and their regional location
of a polynomial with restricted coefficients is known as Eneström-Kakeya theorem.

In 1829, Cauchy [8] proved that if P (z) =

n∑
v=0

avz
v is a polynomial of degree n,

then all the zeros of P (z) lie in
|z| < 1 +M, (1)

where M = max
{
|av|
|an| : v = 0, 1, 2, .....n− 1

}
.

In 1890, Gustav Eneström [8] proved the following result by considering a polynomial
with real, positive, monotone coefficients.

Theorem 1.1. If P (z) =

n∑
v=0

avz
v is a polynomial of degree n with real coefficients

satisfying
an ≥ an−1 ≥ .... ≥ a1 ≥ a0 ≥ 0, (2)

then P (z) has all its zeros in |z| ≤ 1.
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Further, Aziz and Zargar [1] proved the following result which is an extension of
Theorem 1.1 by relaxing the hypothesis.

Theorem 1.2. If P (z) =

n∑
v=0

avz
v is a polynomial of degree n with real coefficients

such that for some positive numbers k and η with k ≥ 1 and 0 < η ≤ 1, kan ≥ an−1 ≥
.... ≥ a1 ≥ ηa0 ≥ 0, then all the zeros of P (z) lie in

|z + k − 1| ≤ kan + 2a0(1− η)

an
. (3)

Also, Nwaeze [13] proved the following result which is a generalization of Theorem
1.2.

Theorem 1.3. If P (z) =

n∑
v=0

avz
v is a polynomial of degree n such that for some real

numbers λ and ρ, λ+ an ≥ an−1 ≥ an−2..... ≥ a1 ≥ a0 − ρ, then all the zeros of P (z)
lie in ∣∣∣∣z +

λ

an

∣∣∣∣ ≤ 1

|an|
{an + λ− a0 + ρ+ |ρ|+ |a0|} . (4)

Recently, Zargar et al. [16] proved the following result which generalizes as well as
extends Theorem 1.3 by considering a polynomial with complex coefficients.

Theorem 1.4. If P (z) =

n∑
v=0

avz
v is a polynomial of degree n with complex coeffi-

cients, av = αv + iβv for v = 0, 1, ..., n such that for some real numbers κ,λ,τ, and
ρ

λ+ αn ≥ αn−1 ≥ ...... ≥ α1 ≥ α0 − ρ
and

κ+ βn ≥ βn−1 ≥ .... ≥ β1 ≥ β0 − τ,
then all the zeros of P (z) lie in∣∣∣∣z +

λ+ iκ

an

∣∣∣∣ ≤ 1

|an|

{
αn + βn + λ+ κ− (α0 + β0)

+ τ + ρ+ |τ |+ |ρ|+ |α0|+ |β0|

}
. (5)

2. Preliminary knowledge

In order to introduce the framework in which we will work, let us introduce some
preliminaries on quaternions and regular functions of a quaternionic variable which
will have useful and interesting consequences. Quaternions are essentially a gen-
eralization of complex numbers to four dimensions(one real and three imaginary
parts) which was first studied and developed by Sir Rowan William Hamilton in
1843. This number system is denoted by H in honor of Hamilton. We use the
notation H = {α+ βi+ γj + δk : α, β, γ, δ ∈ R} where i, j, k satisfy i2 = j2 =
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k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. It is a non-
commutative division ring. Every element q = α + βi + γj + δk ∈ H is com-
posed of real part Re(q) = α and imaginary part Im(q) = βi + γj + δk. The
conjugate of q is denoted by q̄ and is defined as q̄ = α − βi − γj − δk and the

norm of q is |q| =
√
qq̄ =

√
α2 + β2 + γ2 + δ2. The inverse of each non zero ele-

ment q of H is given by q−1 = |q|−2q̄. For r > 0, we define the ball B(0, r) =
{q ∈ H : |q| < r}. By B we denote the open unit ball in H centered at the origin,
i.e., B =

{
q = α+ βi+ γj + δk : α2 + β2 + γ2 + δ2 < 1

}
and by S the unit sphere

of purely imaginary quaternions, i.e., S =
{
q = βi+ γj + δ : β2 + γ2 + δ2 = 1

}
. We

represent the indeterminate for a quaternionic polynomial as q. Since H being a non-
commutative division ring, aqn and a0qa1q.....qan, where a = a0a1....an are different.
Hence, we adopt the standard that polynomials have the indeterminate on the left
and coefficients on the right. That is, a quaternionic polynomial P of degree n in the

variable q and coefficients av for v = 0, 1, ....n− 1, n, is given by P (q) =

n∑
v=0

qvav. It

is known that these are the only polynomials in the quaternion-valued functions of
a quaternionic variable to satisfy the regularity conditions, and hence their behav-
ior resembles very closely to that of regular functions of a complex variable. Two
quaternionic polynomials of this kind can be multiplied according to the convolution

product (Cauchy multiplication rule), i.e., for P1(q) =

n∑
i=0

qiai and P2(q) =

m∑
j=0

qjbj ,

we define (P1 ∗ P2)(q) =
∑

i=0,1,2,,,n
j=0,1,2...m

qi+jaibj .

The quaternion Companion Matrix: The n × n companion matrix of a monic
quaternionic polynomial of the form f(q) = qn + qn−1a1 + ....+ qan−1 + an, is given
by 

0 0 0 ... 0 −an
1 0 0 ... 0 −an−1
0 1 0 ... 0 −an
.
.
.
0 0 0 ... 1 −a1


,

whereas, the n× n companion matrix for a monic quaternion polynomial of the form
g(q) = qn + a1q

n−1 + ....+ an−1q + an is given by

0 1 0 ... 0 0
0 0 1 ... 0 0
.
.
.
.
−an −an−1 −an−2 .. . −a1


.

Right Eigenvalue: Given an n × n matrix A = (aµν) of quaternions, λ ∈ H is
called the right eigen value of A, if Ax = xλ for some non zero eigenvector x =
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[x1, x2, .......xn]T of quaternions.
Left Eigenvalue: Given an n×nmatrix A = (aµν) of quaternions, λ ∈ H is called the
left eigen value of A, if Ax = λx for some non zero eigenvector x = [x1, x2, .......xn]T

of quaternions.
For complex case, concerning the location of the eigenvalues, the famous Gers̃gorin

theorem due to Marden [8] which can be stated as;

Theorem 2.1. All the eigenvalues of a n×n complex matrix A = (aµν) are contained

in the union of n Gers̃gorin discs defined by Dµ =

z ∈ C : |z − aµµ| ≤
n∑

ν=1,ν 6=µ

|aµν |

.

Recently, Dar et al. [3] proved the following quaternion version of Gers̃gorin The-
orem.

Theorem 2.2. All the left eigenvalues of a n×n matrix A = (aµν) of quaternions lie
in the union of the n Gers̃gorin balls defined by Bµ = {q ∈ H : |q − aµµ| ≤ ρµ(A)} ,
where ρµ(A) =

∑n
ν=1,ν 6=µ |aµν |.

In the same paper, they considered the quaternionic polynomial with coefficients
on left side and gave connection between its zeros and the left eigenvalues of its
corresponding companion matrix by proving the following result.

Theorem 2.3. Let f(q) = qn+an−1q
n−1+....+a1q+a0 be a quaternionic polynomial

with quaternion coefficients and q be quaternionic variable, then for any diagonal ma-
trix D = diag(d1, d2, d3, ...., dn−1, dn), where d1, d2, ...., dn are positive real numbers,
the left eigenvalues of D−1CpD and the zeros of f(q) are same.

And very recently Rather et al. [14] proved that the above relation holds true for
quaternionic polynomials with coefficients on right side. From this, it was concluded
that the zeros of quaternionic polynomial and left eigenvalues of its corresponding
companion matrix are same irrespective of the position of its coefficients.

In the past few years, a series of papers related to regular functions of a quater-
nionic variable has been published (see for example, [9], [15], [4]). Many remarkable
advancements have been made by using the structure of the zeros of polynomials, for
example, a topological proof of the Fundamental Theorem of Algebra was established
in ([5]-[7]). We point out that the Fundamental Theorem of Algebra for regular poly-
nomials with coefficients in H was already proved by Niven (see [11], [12]), by using
different techniques. This leads to the complete identification of the zeros of polyno-
mials in terms of their factorization and hence it becomes an interesting perspective
to think about the regions containing some or all the zeros of a regular polynomial
of quaternionic variable. The proof of Eneström-Kakeya Theorem is done using the
Triangle inequality and Maximum Modulus Theorem. It is clear that both the above
mentioned facts hold true for the functions of a quaternionic variable. Therefore, Car-
ney et al. [2] extended the Enestöm-Kakeya Theorem to a function of a quaternion
variable. More precisely, they proved

Theorem 2.4. If P (q) =

n∑
v=0

qvav is a quaternionic polynomial of degree n with real

coeficients such that
an ≥ an−1 ≥ ... ≥ a1 ≥ a0 ≥ 0,
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then all the zeros of P (q) lie in |q| ≤ 1.

Further, they [2] also proved the following result by considering a quaternionic
polynomial with monotone increasing real parts and imaginary parts.

Theorem 2.5. If P (q) =

n∑
v=0

qvav is a quaternionic polynomial of degree n with real

coefficients such that

an ≥ an−1 ≥ ... ≥ a1 ≥ a0,
then all the zeros of P (q) lie in

|q| ≤ (|a0| − a0 + an)

|an|
. (6)

Milovanović et al. [10] generalized Theorem 2.4 and Theorem 2.5 by proving the
following result.

Theorem 2.6. If P (q) =

n∑
v=0

qvav is a quaternionic polynomial of degree n with real

coefficients such that

an ≤ an−1 ≤ .... ≤ aλ ≥ ... ≥ a1 ≥ a0,

then all the zeros of P (q) lie in

|q| ≤ (2aλ + |a0| − a0 − an)

|an|
. (7)

Because of the restriction on the coefficients that they should be real and mono-
tonic, the results discussed above are applicable to a small class of polynomials, so
it is interesting to look for the results without any restriction on the coefficients
and applicable to every quaternionic polynomial with quaternion or complex or real
coefficients. In this direction, Dar et al. [3] proved various results concerning the
location of the zeros of quaterionic polynomials with quaternion coefficients without
any restriction on the coefficients and besides, Cauchy’s theorem is also extended to
quaternion setting by proving the following result.

Theorem 2.7. If f(q) = qn + qn−1a1 + ....qan−1 + an is a quaternion polynomial
with quaternion coefficients and q is quaternionic variable, then all the zeros of f(q)
lie inside the ball

|q| ≤ 1 + max
1≤ν≤n

|aν |. (8)

Now, in view of Theorem 2.1 and the fact that the zeros of a quaternion poly-
nomial and the left eigenvalues of corresponding companion matrix are same, very
recently, Rather et al. [14] proved some results concerning the location of the zeros
of quaternion polynomials which is a refinement of Theorem 2.7.

Theorem 2.8. Let f(q) = qn + qn−1a1 + ....qan−1 + an be a quaternionic polynomial
with quaternion coefficients and q is quaternionic variable. If α2 ≥ α3 ≥ ... ≥ αn are
ordered positive numbers,

αν =
|aν|
rν

, ν = 2, 3...n (9)
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where r is a positive real number, then all the zeros of f(q) lie in the union of balls

{q ∈ H : |q| ≤ r(1 + α2)} (10)

and

{q ∈ H : |q + a1| ≤ r} . (11)

In the same paper, as an application of Theorem 2.8, Rather et al. [14] proved the
following result concerning the location of the zeros of the quaternionic polynomials
with quaternion coefficients.

Theorem 2.9. Let f(q) = qn + qn−1a1 + ....qan−1 + an be a quaternionic polynomial
with quaternion coefficients and q is quaternionic variable. If α2 ≥ α3 ≥ ... ≥ αn are
ordered positived numbers,

αν =
|aν|
rν

, ν = 2, 3...n (12)

where r is a positive real number, then all the zeros of f(q) lie in the union of balls

{q ∈ H : |q| ≤ r(1 + β)} (13)

and

{q ∈ H : |q + a1| ≤ r} (14)

where

β = α2 −
δ2

1 + α2
− δ3

(1 + α2)2
− ....− δn

(1 + α2)n−1
, (15)

δν = αν − αν+1, ν = 2, 3, ...n and αn+1 = 0.

3. Main Results

The main goal of this paper is to determine the regions containing all the zeros of
a quaternionic polynomial with some restrictions on its coefficients which produces
various generalizations of some previously established results by using the relation
between zeros of a quaternionic polynomial and left eigen values of its corresponding
companion matrix. More precisely, we prove the following result which generalizes
Theorem 2.8 by considering a quaternionic polynomial.

Theorem 3.1. Let f(q) = qn + qn−1a1 + ....qan−1 + an be a quaternionic polynomial
with quaternion coefficients and q be a quaternionic variable. If α2 ≤ α3 ≤ ..... ≤
αλ ≥ .. ≥ αn are positive numbers with

αν =
|aν |
rν

, ν = 2, 3...n (16)

where r is a positive real number, then all the zeros of f(q) lie in the union of balls

{q ∈ H : |q| ≤ r(1 + αλ)} (17)

and

{q ∈ H : |q + a1| ≤ r} . (18)

Remark 3.1. If we set λ = 2, Theorem 3.1 becomes Theorem 2.8.

Remark 3.2. Taking λ = n, Theorem 3.1 yields following interesting result which is
applicable to a special class of quaternionic polynomial.
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Corollary 3.2. Let f(q) = qn+ qn−1a1 + ....qan−1 +an be a quaternionic polynomial
with quaternion coefficients and q be a quaternionic variable. If α2 ≤ α3 ≤ ..... ≤ αn
are positive numbers with

αν =
|aν |
rν

, v = 2, 3...n (19)

where r is a positive real number, then all the zeros of f(q) lie in the union of balls

{q ∈ H : |q| ≤ r(1 + αn)} (20)

and

{q ∈ H : |q + a1| ≤ r} . (21)

Remark 3.3. If we consider a complex polynomial, Theorem 3.1 reduces to

Corollary 3.3. Let f(z) = zn+a1z
n−1+....+an−1z+an be a complex polynomial with

complex coefficients and z be a complex variable. If α2 ≤ α3 ≤ ..... ≤ αλ ≥ .. ≥ αn
are positive numbers with

αν =
|aν |
rν

, v = 2, 3...n (22)

where r is a positive real number, then all the zeros of f(z) lie in the union of discs

{z ∈ C : |z| ≤ r(1 + αλ)} (23)

and

{z ∈ C : |z + a1| ≤ r} . (24)

4. Proof of the Theorem

Proof of Theorem 3.1. Let f(q) = qn + qn−1a1 + ....qan−1 + an be a quaternionic
polynomial with quaternion coefficients and q be a quaternionic variable. Then, by
definition, the companion matrix of the quaternion polynomial f(q) is given by

Cf =



0 0 0 ... 0 −an
1 0 0 ... 0 −an−1
0 1 0 ... 0 −an
.
.
.
0 0 0 ... 1 −a1


.

We take a diagonal matrix T = diag(rn−1, rn−2, ...., r, 1), where r is a positive real
number, then

T−1CfT =



0 0 0 ... 0 −an
rn−1

r 0 0 ... 0 −an−1

rn−2

0 r 0 ... 0 −an−2

rn−3

.

.

.
0 0 0 ... r −a1


.
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Applying Theorem 2.2 to T−1CfT , it follows that all the left eigenvalues of T−1CfT
lie in the union of balls

|q| ≤
∣∣∣∣ anrn−1

∣∣∣∣ = r
|an|
rn

< r + r
|an|
rn

,

|q| ≤ r +

∣∣∣∣an−1rn−2

∣∣∣∣ < r + r
|an−1|
rn−1

,

.

.

.

|q| ≤ r +

∣∣∣∣ a2rn−1

∣∣∣∣ < r + r
|a2|
r1

and

|q + a1| ≤ r.

Using the relation αν = |aν |
rν , ν = 2, 3...n, given by (16) to the above inequalities, all

the left eigenvalues of T−1CfT lie in the union of balls

|q| ≤ r(1 + αn),

|q| ≤ r(1 + αn−1),

.

.

.

|q| ≤ r(1 + α2)

and

|q + a1| ≤ r.
Applying the fact α2 ≤ α3 ≤ ..... ≤ αλ ≥ .. ≥ αn, it follows that all left eigenvalues
of T−1CfT lie in the union of balls

|q| ≤ r(1 + αλ) and |q + a1| ≤ r.

Then, by Theorem 2.3, all the zeros of f(q) lie in the union of balls

|q| ≤ r(1 + αλ) and |q + a1| ≤ r,

and this completes the proof of Theorem 3.1. �

Example 4.1. Let f(q) = q4 + q20.5j + q( 2
8 + 3

8 i+ 1
2j + 1

8k) + ( 1
8 + 3

16k) be a monic

quaternionic polynomial where a0 = 1, a1 = 0, a2 = 0.5j and a3 = 2
8 + 3

8 i+ 1
2j + 1

8k

and a4 = 1
8 + 3

16k.

For r = 1
2 , and using the relation αν = |aν |

rν , v = 2, 3...n, we have α2 = 2, α3 =
√

30 =

5.47722558 and a4 =
√

13 = 3.6055128 such that α2 ≤ α3 ≥ α4. It is vividly seen
that Theorem 2.8 and Theorem 2.6 are not applicable to this quaternionic polynomial
and hence our result (Theorem 3.1) is applicable to a larger class of polynomials with
quaternionic coefficients.
Using Theorem 3.1, the zeros of f(q) will lie in the union of the balls

{q ∈ H : |q| ≤ 0.5(1 + α3)}
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and

{q ∈ H : |q + a1| ≤ 0.5} ,
which implies that the zeros of f(q) wil lie in the union of the balls

{q ∈ H : |q| ≤ 3.23861279}
and

{q ∈ H : |q| ≤ 0.5} .

Example 4.2. Let f1(q) = q4+q2 1
11j+q2i+ 1

10k be a monic quaternionic polynomial
which holds Theorem 3.1.
For r = 2, using Theorem 3.1, all the zeros of f1(q) lie in union of the balls |q| ≤ 2.35
and |q| ≤ 2. Whereas, using Theorem 2.7, the zeros of f1(q) will lie in the ball

{q ∈ H : |q| ≤ (1 + |a3|) = 3} .
This shows that our result (Theorem 3.1) gives more accurate zero region of the
polynomial f1(q) than that of Theorem 2.7.

Moreover, we are interested to notice that Corollary 3.3 significantly improves
zero bound than its counterparts given by inequality (22) of Corollary 3.3, inequality
(8)(Theorem 2.7) due to Dar et al., and (7)(Theorem 2.6) due to Milovanović et al.
by making use of WOLFRAM MATHEMATICA.

Example 4.3. We consider the complex polynomial p(z) = z4 + z3 + 3z2 + 1
2z + 1

3 .

For r = 2, and using the relation αν = |aν |
rν , v = 2, 3...n, we have, α2 = 0.3, α3 =

0.03125 and α4 = 0.0104166667 such that α2 ≥ α3 ≥ α4. Hence, using Corollary 3.3,
all zeros of p(z) lie in union of |z| ≤ 2.6 and |z + 1| ≤ 2.
Using Theorems 2.6 and 2.7, it is concluded that all the zeros of p(z) lie respectively
in and |z| ≤ 5 and |z| ≤ 4 showing that the bound given by Corollary 3.3 improves
most and the respective sizes of zero regions are depicted in the figure below.

It is of interest to examine the area-percentage of improvements of the bound of
Corollary 3.3 over Theorem 2.7 due to Dar et al. and Theorem 2.6 due to Milovanović
et al. are respectively 55.53% and 71.54%.

5. Conclusion

The regular functions of a quaternionic variable have been introduced and intensively
studied in the past few years and it has been proven to be fertile topic in analysis and
its rapid development has been largely driven by the applications to operator theory.
Thus, it becomes an interesting perspective to think about the regions containing all
the zeros of a quaternionic polynomial. In this paper, we prove a result which gives an
improved the bound of the zeros of a special quaternionic polynomial whose moduli
of the coefficients satisfy a suitable inequality.
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[9] G. V. Milovanović, A. Mir, Zeros of one class of quaternionic polynomials, Filomat 36 (2022),
6655–6667.
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