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Abstract. In this paper we introduce the hypo-q-norms on a Cartesian product of normed

linear spaces. A representation of these norms in terms of bounded linear functionals of norm
one, the equivalence with the q-norms on a Cartesian product and some reverse inequalities

obtained via the scalar Shisha-Mond, Birnacki et al. and other Grüss type inequalities are

also given.
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1. Introduction

Let (E, ‖·‖) be a normed linear space over the real or complex number field K. On
Kn endowed with the canonical linear structure we consider a norm ‖·‖n and the unit
sphere

S (‖·‖n) := {λ = (λ1, . . . , λn) ∈ Kn| ‖λ‖n = 1} .
As an example of such norms we should mention the usual p-norms

‖λ‖n,p :=


max {|λ1| , . . . , |λn|} if p =∞;

(
∑n
k=1 |λk|

p
)

1
p if p ∈ [1,∞).

(1)

The Euclidean norm is obtained for p = 2, i.e.,

‖λ‖n,2 =

(
n∑
k=1

|λk|2
) 1

2

.

It is well known that on En := E×· · ·×E endowed with the canonical linear structure
we can define the following p-norms:

‖x‖n,p :=


max {‖x1‖ , . . . , ‖xn‖} if p =∞;

(
∑n
k=1 ‖xk‖

p
)

1
p if p ∈ [1,∞);

(2)

where x = (x1, . . . , xn) ∈ En.
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Following [6], for a given norm ‖·‖n on Kn, we define the functional ‖·‖h,n : En →
[0,∞) given by

‖x‖h,n := sup
λ∈S(‖·‖n)

∥∥∥∥∥∥
n∑
j=1

λjxj

∥∥∥∥∥∥ , (3)

where x = (x1, . . . , xn) ∈ En.
It is easy to see, by the properties of the norm ‖·‖ , that:

(i) ‖x‖h,n ≥ 0 for any x ∈ En;

(ii) ‖x + y‖h,n ≤ ‖x‖h,n + ‖y‖h,n for any x, y ∈ En;

(iii) ‖αx‖h,n = |α| ‖x‖h,n for each α ∈ K and x ∈ En;

and therefore ‖·‖h,n is a semi-norm on En. This will be called the hypo-semi-norm

generated by the norm ‖·‖n on En.
If by Sn,p with p ∈ [1,∞] we denote the spheres generated by the p-norms ‖·‖n,p

on Kn, then we can obtain the following hypo-q-norms on En :

‖x‖h,n,q := sup
λ∈Sn,p

∥∥∥∥∥∥
n∑
j=1

λjxj

∥∥∥∥∥∥ , (4)

with q > 1 and 1
q + 1

p = 1 if p > 1, q = 1 if p =∞ and q =∞ if p = 1.

For p = 2, we have the Euclidean sphere in Kn, which we denote by Sn, Sn ={
λ = (λ1, . . . , λn) ∈ Kn

∣∣∣∑n
i=1 |λi|

2
= 1
}

that generates the hypo-Euclidean norm on

En, i.e.,

‖x‖h,e := sup
λ∈Sn

∥∥∥∥∥∥
n∑
j=1

λjxj

∥∥∥∥∥∥ . (5)

Moreover, if E = H, H is a inner product space over K, then the hypo-Euclidean
norm on Hn will be denoted simply by

‖x‖e := sup
λ∈Sn

∥∥∥∥∥∥
n∑
j=1

λjxj

∥∥∥∥∥∥ . (6)

Let (H; 〈·, ·〉) be a Hilbert space over K and n ∈ N, n ≥ 1. In the Cartesian product
Hn := H × · · · ×H, for the n−tuples of vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Hn, we can define the inner product 〈·, ·〉 by

〈x,y〉 :=

n∑
j=1

〈xj , yj〉 , x, y ∈ Hn, (7)

which generates the Euclidean norm ‖·‖2 on Hn, i.e.,

‖x‖2 :=

 n∑
j=1

‖xj‖2
 1

2

, x ∈ Hn. (8)

The following result established in [6] connects the usual Euclidean norm ‖·‖ with
the hypo-Euclidean norm ‖·‖e .
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Theorem 1.1 (Dragomir, 2007, [6]). For any x ∈ Hn we have the inequalities

1√
n
‖x‖2 ≤ ‖x‖e ≤ ‖x‖2 , (9)

i.e., ‖·‖2 and ‖·‖e are equivalent norms on Hn.

The following representation result for the hypo-Euclidean norm plays a key role
in obtaining various bounds for this norm:

Theorem 1.2 (Dragomir, 2007, [6]). For any x ∈ Hn with x = (x1, . . . , xn) , we
have

‖x‖e = sup
‖x‖=1

 n∑
j=1

|〈x, xj〉|2
 1

2

. (10)

Motivated by the above results, in this paper we introduce the hypo-q-norms on
a Cartesian product of normed linear spaces. A representation of these norms in
terms of bounded linear functionals of norm one, the equivalence with the q-norms
on a Cartesian product and some reverse inequalities obtained via the scalar Shisha-
Mond, Birnacki et al. and other Grüss type inequalities are also given.

2. General Results

Let (E, ‖·‖) be a normed linear space over the real or complex number field K. We
denote by E∗ its dual space endowed with the norm ‖·‖ defined by

‖f‖ := sup
‖x‖=1

|f (x)| <∞, where f ∈ E∗.

We have the following representation result for the hypo-q-norms on En.

Theorem 2.1. Let (E, ‖·‖) be a normed linear space over the real or complex number
field K. For any x ∈ En with x = (x1, . . . , xn) , we have the representation

‖x‖h,n,q = sup
‖f‖=1


 n∑
j=1

|f (xj)|q
1/q

 , (11)

where p, q > 1 with 1
p + 1

q = 1,

‖x‖h,n,1 = sup
‖f‖=1


n∑
j=1

|f (xj)|

 (12)

and

‖x‖h,n,∞ = ‖x‖n,∞ = max
j∈{1,...,n}

{‖xj‖} . (13)

In particular,

‖x‖h,e = sup
‖f‖=1


 n∑
j=1

|f (xj)|2
1/2

 . (14)
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Proof. Using Hölder’s discrete inequality for p, q > 1 and 1
p + 1

q = 1 we have∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ ≤
 n∑
j=1

|αj |p
1/p n∑

j=1

|βj |q
1/q

,

which implies that

sup
‖α‖p=1

∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ ≤ ‖β‖q (15)

where α = (α1, . . . , αn) and β = (β1, . . . , βn) .
For (β1, . . . , βn) 6= 0, consider α = (α1, . . . , αn) with

αj :=
βj |βj |q−2

(
∑n
k=1 |βk|

q
)
1/p

for those j for which βj 6= 0 and αj = 0, for the rest.
We observe that∣∣∣∣∣∣

n∑
j=1

αjβj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

βj |βj |q−2

(
∑n
k=1 |βk|

q
)
1/p

βj

∣∣∣∣∣∣ =

∑n
j=1 |βj |

q

(
∑n
k=1 |βk|

q
)
1/p

=

 n∑
j=1

|βj |q
1/q

= ‖β‖q

and

‖α‖pp =

n∑
j=1

|αj |p =

n∑
j=1

∣∣∣βj |βj |q−2∣∣∣p
(
∑n
k=1 |βk|

q
)

=

n∑
j=1

(
|βj |q−1

)p
(
∑n
k=1 |βk|

q
)

=

n∑
j=1

|βj |qp−p

(
∑n
k=1 |βk|

q
)

=

n∑
j=1

|βj |q

(
∑n
k=1 |βk|

q
)

= 1.

Therefore, by (15) we have the representation

sup
‖α‖p=1

∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ = ‖β‖q (16)

for any β = (β1, . . . , βn) ∈ Kn.
By Hahn-Banach theorem, we have for any u ∈ E, u 6= 0 that

‖u‖ = sup
‖f‖=1

|f (u)| . (17)

Let α = (α1, . . . , αn) ∈ Kn and x ∈ En with x = (x1, . . . , xn) . Then by (17) we
have ∥∥∥∥∥∥

n∑
j=1

αjxj

∥∥∥∥∥∥ = sup
‖f‖=1

∣∣∣∣∣∣f
 n∑
j=1

αjxj

∣∣∣∣∣∣ = sup
‖f‖=1

∣∣∣∣∣∣
n∑
j=1

αjf (xj)

∣∣∣∣∣∣ . (18)
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By taking the supremum in this equality we have

sup
‖α‖p=1

∥∥∥∥∥∥
n∑
j=1

αjxj

∥∥∥∥∥∥ = sup
‖α‖p=1

 sup
‖f‖=1

∣∣∣∣∣∣
n∑
j=1

αjf (xj)

∣∣∣∣∣∣


= sup
‖f‖=1

 sup
‖α‖p=1

∣∣∣∣∣∣
n∑
j=1

αjf (xj)

∣∣∣∣∣∣
 = sup

‖f‖=1

 n∑
j=1

|f (xj)|q
1/2

,

where for the last equality we used the representation (16).
This proves (11).
Using the properties of the modulus, we have∣∣∣∣∣∣

n∑
j=1

αjβj

∣∣∣∣∣∣ ≤ max
j∈{1,...,n}

|αj |
n∑
j=1

|βj |

which implies that

sup
‖α‖∞=1

∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ ≤ ‖β‖1 (19)

where α = (α1, . . . , αn) and β = (β1, . . . , βn) .

For (β1, . . . , βn) 6= 0, consider α = (α1, . . . , αn) with αj :=
βj

|βj | for those j for

which βj 6= 0 and αj = 0, for the rest.
We have ∣∣∣∣∣∣

n∑
j=1

αjβj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

βj
|βj |

βj

∣∣∣∣∣∣ =

n∑
j=1

|βj | = ‖β‖1

and

‖α‖∞ = max
j∈{1,...,n}

|αj | = max
j∈{1,...,n}

∣∣∣∣ βj|βj |
∣∣∣∣ = 1

and by (19) we get the representation

sup
‖α‖∞=1

∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ = ‖β‖1 (20)

for any β = (β1, . . . , βn) ∈ Kn.
By taking the supremum in the equality (18) we have

sup
‖α‖∞=1

∥∥∥∥∥∥
n∑
j=1

αjxj

∥∥∥∥∥∥ = sup
‖α‖∞=1

 sup
‖f‖=1

∣∣∣∣∣∣
n∑
j=1

αjf (xj)

∣∣∣∣∣∣


= sup
‖f‖=1

 sup
‖α‖∞=1

∣∣∣∣∣∣
n∑
j=1

αjf (xj)

∣∣∣∣∣∣
 = sup

‖f‖=1

 n∑
j=1

|f (xj)|

 ,

where for the last equality we used the equality (20), which proves the representation
(12).
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Finally, we have ∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ ≤
n∑
j=1

|αj | max
j∈{1,...,n}

|βj |

which implies that

sup
‖α‖1=1

∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ ≤ ‖β‖∞ (21)

where α = (α1, . . . , αn) and β = (β1, . . . , βn) .
For (β1, . . . , βn) 6= 0, let j0 ∈ {1, ..., n} such that ‖β‖∞ = maxj∈{1,...,n} |βj | = |βj0 | .

Consider α = (α1, . . . , αn) with αj0 =
βj0

|βj0 |
and αj = 0 for j 6= j0. For this choice we

get

n∑
j=1

|αj | =
∣∣βj0∣∣
|βj0 |

= 1 and

∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ =

∣∣∣∣ βj0|βj0 |βj0
∣∣∣∣ = |βj0 | = ‖β‖∞ ,

therefore by (21) we obtain the representation

sup
‖α‖1=1

∣∣∣∣∣∣
n∑
j=1

αjβj

∣∣∣∣∣∣ = ‖β‖∞ (22)

for any β = (β1, . . . , βn) ∈ Kn.
By taking the supremum in the equality (18) and by using the equality (22), we

have

sup
‖α‖1=1

∥∥∥∥∥∥
n∑
j=1

αjxj

∥∥∥∥∥∥ = sup
‖α‖1=1

 sup
‖f‖=1

∣∣∣∣∣∣
n∑
j=1

αjf (xj)

∣∣∣∣∣∣


= sup
‖f‖=1

 sup
‖α‖1=1

∣∣∣∣∣∣
n∑
j=1

αjf (xj)

∣∣∣∣∣∣
 = sup

‖f‖=1

(
max

j∈{1,...,n}
|f (xj)|

)

= max
j∈{1,...,n}

(
sup
‖f‖=1

|f (xj)|

)
= max
j∈{1,...,n}

{‖xj‖} ,

which proves (13). For the last equality we used the property (17). �

Corollary 2.2. With the assumptions of Theorem 2.1 we have for q ≥ 1 that

1

n1/q
‖x‖n,q ≤ ‖x‖h,n,q ≤ ‖x‖n,q (23)

for any any x ∈ En.
In particular, we have

1√
n
‖x‖2 ≤ ‖x‖h,e ≤ ‖x‖2 (24)

for any any x ∈ En.
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Proof. Let x ∈ En with x = (x1, . . . , xn) and f ∈ E∗ with ‖f‖ = 1, then for q ≥ 1 n∑
j=1

|f (xj)|q
1/q

≤

 n∑
j=1

(‖f‖ ‖xi‖)q
1/q

= ‖f‖

 n∑
j=1

‖xi‖q
1/q

= ‖f‖ ‖x‖n,q

and by taking the supremum over ‖f‖ = 1, we get the second inequality in (23).
By the properties of complex numbers, we have

max
j∈{1,...,n}

{|f (xj)|} ≤

 n∑
j=1

|f (xj)|q
1/q

and by taking the supremum over ‖f‖ = 1, we get

sup
‖f‖=1

(
max

j∈{1,...,n}
{|f (xj)|}

)
≤ sup
‖f‖=1

 n∑
j=1

|f (xj)|q
1/q

(25)

and since

sup
‖f‖=1

(
max

j∈{1,...,n}
{|f (xj)|}

)
= max
j∈{1,...,n}

{
sup
‖f‖=1

|f (xj)|

}
= max
j∈{1,...,n}

{‖xj‖} = ‖x‖n,∞ ,

then by (25) we get

‖x‖n,∞ ≤ ‖x‖h,n,q for any x ∈ En. (26)

Since  n∑
j=1

‖xj‖q
1/q

≤
(
n ‖x‖qn,∞

)1/q
= n1/q ‖x‖n,∞

then also
1

n1/q
‖x‖n,q ≤ ‖x‖n,∞ for any x ∈ En. (27)

By utilizing the inequalities (26) and (27) we obtain the first inequality in (23). �

Remark 2.1. In the case of inner product spaces the inequality (24) has been ob-
tained in a different and more difficult way [6] by employing the rotation-invariant
normalized positive Borel measure on the unit sphere.

Corollary 2.3. With the assumptions of Theorem 2.1 we have for r ≥ q ≥ 1 that

‖x‖h,n,r ≤ ‖x‖h,n,q ≤ n
r−q
rq ‖x‖h,n,r (28)

for any any x ∈ En.
In particular, for q ≥ 2 we have

‖x‖h,n,q ≤ ‖x‖h,e ≤ n
q−2
2q ‖x‖h,n,q (29)

and for 1 ≤ q ≤ 2 we have

‖x‖h,e ≤ ‖x‖h,n,q ≤ n
2−q
2q ‖x‖h,e (30)

for any any x ∈ En.
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Proof. We use the following elementary inequalities for the nonnegative numbers aj ,
j = 1, ..., n and r ≥ q > 0 (see for instance [8]) n∑

j=1

arj

1/r

≤

 n∑
j=1

aqj

1/q

≤ n
r−q
rq

 n∑
j=1

arj

1/r

. (31)

Let x ∈ En with x = (x1, . . . , xn) and f ∈ E∗ with ‖f‖ = 1, then for r ≥ q ≥ 1 we
have  n∑

j=1

|f (xj)|r
1/r

≤

 n∑
j=1

|f (xj)|q
1/q

≤ n
r−q
rq

 n∑
j=1

|f (xj)|r
1/r

. (32)

By taking the supremum over f ∈ E∗ with ‖f‖ = 1 and using Theorem 2.1, we get
(28). �

Remark 2.2. If we take q = 1 in (28), then we get

‖x‖h,n,r ≤ ‖x‖h,n,1 ≤ n
r−1
r ‖x‖h,n,r (33)

for any any x ∈ En.
In particular, for r = 2 we get

‖x‖h,e ≤ ‖x‖h,n,1 ≤
√
n ‖x‖h,e (34)

for any any x ∈ En.

3. Some Reverse Inequalities

Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality [4] (see also
[5, Theorem 5. 14])

Lemma 3.1. Let a, A ∈ R and z = (z1, . . . , zn) , y = (y1, . . . , yn) be two sequences
of real numbers with the property that:

ayj ≤ zj ≤ Ayj for each j ∈ {1, . . . , n} . (35)

Then for any w = (w1, . . . , wn) a sequence of positive real numbers, one has the
inequality

0 ≤
n∑
j=1

wjz
2
j

n∑
j=1

wjy
2
j −

 n∑
j=1

wjzjyj

2

≤ 1

4
(A− a)

2

 n∑
j=1

wjy
2
j

2

. (36)

The constant 1
4 is sharp in (36).

O. Shisha and B. Mond obtained in 1967 (see [9]) the following counterparts of
(CBS)- inequality (see also [5, Theorem 5.20 & 5.21]).

Lemma 3.2. Assume that a = (a1, . . . , an) and b = (b1, . . . , bn) are such that there
exists a, A, b, B with the property that:

0 ≤ a ≤ aj ≤ A and 0 < b ≤ bj ≤ B for any j ∈ {1, . . . , n} (37)
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then we have the inequality

n∑
j=1

a2j

n∑
j=1

b2j −

 n∑
j=1

ajbj

2

≤

(√
A

b
−
√
a

B

)2 n∑
j=1

ajbj

n∑
j=1

b2j . (38)

and

Lemma 3.3. Assume that a, b are nonnegative sequences and there exists γ, Γ with
the property that

0 ≤ γ ≤ aj
bj
≤ Γ <∞ for any j ∈ {1, . . . , n} . (39)

Then we have the inequality

0 ≤

 n∑
j=1

a2j

n∑
j=1

b2j

 1
2

−
n∑
j=1

ajbj ≤
(Γ− γ)

2

4 (γ + Γ)

n∑
j=1

b2j . (40)

We have the following result:

Theorem 3.4. Let (E, ‖·‖) be a normed linear space over the real or complex number
field K and x ∈ En with x = (x1, . . . , xn) . Then we have

0 ≤ ‖x‖2h,e −
1

n
‖x‖2h,n,1 ≤

1

4
n ‖x‖2n,∞ , (41)

0 ≤ ‖x‖2h,e −
1

n
‖x‖2h,n,1 ≤ ‖x‖h,n,1 ‖x‖n,∞ (42)

and

0 ≤ ‖x‖h,e −
1√
n
‖x‖h,n,1 ≤

1

4

√
n ‖x‖n,∞ . (43)

Proof. Let x ∈ En with x = (x1, . . . , xn) and put R = maxj∈{1,...,n} {‖xj‖} =
‖x‖n,∞ . If f ∈ E∗ with ‖f‖ = 1 then |f (xj)| ≤ ‖f‖ ‖xj‖ ≤ R for any j ∈ {1, ..., n} .

If we write the inequality (36) for zj = |f (xj)| , wj = yj = 1, A = R and a = 0,
we get

0 ≤ n
n∑
j=1

|f (xj)|2 −

 n∑
j=1

|f (xj)|

2

≤ 1

4
n2R2

for any f ∈ E∗ with ‖f‖ = 1.
This implies that

n∑
j=1

|f (xj)|2 ≤
1

n

 n∑
j=1

|f (xj)|

2

+
1

4
nR2 (44)

for any f ∈ E∗ with ‖f‖ = 1.
By taking the supremum in (44) over f ∈ E∗ with ‖f‖ = 1 we get (41).
If we write the inequality (38) for aj = |f (xj)| , bj = 1, b = B = 1, a = 0 and

A = R, then we get

0 ≤ n
n∑
j=1

|f (xj)|2 −

 n∑
j=1

|f (xj)|

2

≤ nR
n∑
j=1

|f (xj)| ,
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for any f ∈ E∗ with ‖f‖ = 1.
This implies that

n∑
j=1

|f (xj)|2 ≤
1

n

 n∑
j=1

|f (xj)|

2

+R

n∑
j=1

|f (xj)| , (45)

for any f ∈ E∗ with ‖f‖ = 1.
By taking the supremum in (45) over f ∈ E∗ with ‖f‖ = 1 we get (42).
Finally, if we write the inequality (40) for aj = |f (xj)| , bj = 1, b = B = 1, γ = 0

and Γ = R we have

0 ≤

n n∑
j=1

|f (xj)|2
 1

2

−
n∑
j=1

|f (xj)| ≤
1

4
nR,

for any f ∈ E∗ with ‖f‖ = 1.
This implies that n∑

j=1

|f (xj)|2
 1

2

≤ 1√
n

n∑
j=1

|f (xj)|+
1

4

√
nR, (46)

for any f ∈ E∗ with ‖f‖ = 1.
By taking the supremum in (46) over f ∈ E∗ with ‖f‖ = 1 we get (43). �

Further, we recall the Čebyšev’s inequality for synchronous n-tuples of vectors
a = (a1, . . . , an) and b = (b1, . . . , bn) , namely if (aj − ak) (bj − bk) ≥ 0 for any j,
k ∈ {1, ..., n} , then

1

n

n∑
j=1

ajbj ≥
1

n

n∑
j=1

aj
1

n

n∑
j=1

bj . (47)

In 1950, Biernacki et al. [1] obtained the following discrete version of Grüss’ inequality:

Lemma 3.5. Assume that a = (a1, . . . , an) and b = (b1, . . . , bn) are such that there
exists real numbers a, A, b, B with the property that:

a ≤ aj ≤ A and b ≤ bj ≤ B for any j ∈ {1, . . . , n} . (48)

Then∣∣∣∣∣∣ 1n
n∑
j=1

ajbj −
1

n

n∑
j=1

aj
1

n

n∑
j=1

bj

∣∣∣∣∣∣ ≤ 1

n

⌈n
2

⌉(
1− 1

n

⌈n
2

⌉)
(A− a) (B − b)

=
1

n2

⌈
n2

4

⌉
(A− a) (B − a) ≤ 1

4
(A− a) (B − b) ,

(49)

where dxe gives the largest integer less than or equal to x.

The following result also holds:
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Theorem 3.6. Let (E, ‖·‖) be a normed linear space over the real or complex number
field K and x ∈ En with x = (x1, . . . , xn) . Then for q, r ≥ 1 we have

‖x‖q+rh,n,q+r ≤ 1

n
‖x‖qh,n,q ‖x‖

r
h,n,r +

1

n

⌈
n2

4

⌉
‖x‖q+rn,∞

≤ 1

n
‖x‖qh,n,q ‖x‖

r
h,n,r +

1

4
n ‖x‖q+rn,∞ . (50)

Proof. Let x ∈ En with x = (x1, . . . , xn) and put R = maxj∈{1,...,n} {‖xj‖} =
‖x‖n,∞ . If f ∈ E∗ with ‖f‖ = 1 then |f (xj)| ≤ ‖f‖ ‖xj‖ ≤ R for any j ∈ {1, ..., n} .

If we take into the inequality (49) aj = |f (xj)|q, bj = |f (xj)|r, a = 0, A = Rq,
b = 0 and B = Rr, then we get∣∣∣∣∣∣ 1n

n∑
j=1

|f (xj)|q+r −
1

n

n∑
j=1

|f (xj)|q
1

n

n∑
j=1

|f (xj)|r
∣∣∣∣∣∣ ≤ 1

n2

⌈
n2

4

⌉
Rq+r. (51)

On the other hand, since the sequences {aj}j=1,...,n , {bj}j=1,...,n are synchronous,

then by (47) we have

0 ≤ 1

n

n∑
j=1

|f (xj)|q+r −
1

n

n∑
j=1

|f (xj)|q
1

n

n∑
j=1

|f (xj)|r .

Using (51) we then get
n∑
j=1

|f (xj)|q+r ≤
1

n

n∑
j=1

|f (xj)|q
n∑
j=1

|f (xj)|r +
1

n

⌈
n2

4

⌉
Rq+r (52)

for any f ∈ E∗ with ‖f‖ = 1.
By taking the supremum in (52), we get

sup
‖f‖=1


n∑
j=1

|f (xj)|q+r


≤ 1

n
sup
‖f‖=1


n∑
j=1

|f (xj)|q
n∑
j=1

|f (xj)|r
+

1

n

⌈
n2

4

⌉
Rq+r

≤ 1

n
sup
‖f‖=1


n∑
j=1

|f (xj)|q
 sup
‖f‖=1


n∑
j=1

|f (xj)|r
+

1

n

⌈
n2

4

⌉
Rq+r,

which proves the first inequality in (50).
The second part of (50) is obvious. �

Corollary 3.7. With the assumptions of Theorem 3.6 and if r ≥ 1, then we have

‖x‖2rh,n,2r ≤
1

n
‖x‖2rh,n,r +

1

n

⌈
n2

4

⌉
‖x‖2rn,∞ ≤

1

n
‖x‖2rh,n,r +

1

4
n ‖x‖2rn,∞ . (53)

In particular, for r = 1 we get

‖x‖2h,e ≤
1

n
‖x‖2h,n,1 +

1

n

⌈
n2

4

⌉
‖x‖2n,∞ ≤

1

n
‖x‖2h,n,1 +

1

4
n ‖x‖2n,∞ . (54)

The first inequality in (54) is better than the second inequality in (41).
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4. Reverse Inequalities Via Forward Difference

For an n-tuple of complex numbers a = (a1, . . . , an) with n ≥ 2 consider the (n− 1)-
tuple built by the aid of forward differences ∆a = (∆a1, ...,∆an−1) where ∆ak :=
ak+1−ak where k ∈ {1, ..., n− 1} . Similarly, if x = (x1, . . . , xn) ∈ En is an n-tuple of
vectors we also can consider in a similar way the (n− 1)-tuple ∆x = (∆x1, ...,∆xn−1) .

We obtained the following Grüss’ type inequalities in terms of forward differences:

Lemma 4.1. Assume that a = (a1, . . . , an) and b = (b1, . . . , bn) are n-tuples of
complex numbers. Then∣∣∣∣∣∣ 1n

n∑
j=1

ajbj −
1

n

n∑
j=1

aj
1

n

n∑
j=1

bj

∣∣∣∣∣∣ (55)

≤



1
12

(
n2 − 1

)
‖∆a‖n−1,∞ ‖∆b‖n−1,∞ , [7],

1
6
n2−1
n ‖∆a‖n−1,α ‖∆b‖n−1,β where α, β > 1, 1

α + 1
β = 1, [2],

1
2

(
1− 1

n

)
‖∆a‖n−1,1 ‖∆b‖n−1,1 , [3].

The constants 1
12 ,

1
6 and 1

2 are best possible in (55).

The following result also holds:

Theorem 4.2. Let (E, ‖·‖) be a normed linear space over the real or complex number
field K and x ∈ En with x = (x1, . . . , xn) . Then for q, r ≥ 1 we have

‖x‖q+rh,n,q+r ≤
1

n
‖x‖qh,n,q ‖x‖

r
h,n,r (56)

+



1
12qr

(
n2 − 1

)
n ‖x‖q+r−2n,∞ ‖∆x‖2n−1,∞ ,

1
6

(
n2 − 1

)
qr ‖x‖q+r−2n,∞ ‖∆x‖h,n−1,α ‖∆x‖h,n−1,β

where α, β > 1, 1
α + 1

β = 1,

1
2 (n− 1) qr ‖x‖q+r−2n,∞ ‖∆x‖2h,n−1,1 .

Proof. Let x ∈ En with x = (x1, . . . , xn) and f ∈ E∗ with ‖f‖ = 1. If we take into
the inequality (55) aj = |f (xj)|q, bj = |f (xj)|r, then we get∣∣∣∣∣∣ 1n

n∑
j=1

|f (xj)|q+r −
1

n

n∑
j=1

|f (xj)|q
1

n

n∑
j=1

|f (xj)|r
∣∣∣∣∣∣ (57)

≤



1
12

(
n2 − 1

)
maxj=1,...,n−1 |∆ |f (xj)|q|maxj=1,...,n−1 |∆ |f (xj)|r| ,

1
6
n2−1
n

(∑n−1
j=1 |∆ |f (xj)|q|

α
)1/α (∑n−1

j=1 |∆ |f (xj)|r|
β
)1/β

where α, β > 1, 1
α + 1

β = 1,

1
2

(
1− 1

n

)∑n−1
j=1 |∆ |f (xj)|q|

∑n−1
j=1 |∆ |f (xj)|r| .
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We use the following elementary inequality for powers p ≥ 1

|ap − bp| ≤ pRp−1 |a− b|

where a, b ∈ [0, R] .
Put R = maxj∈{1,...,n} {‖xj‖} = ‖x‖n,∞ . Then for any f ∈ E∗ with ‖f‖ = 1 we

have |f (xj)| ≤ ‖f‖ ‖xj‖ ≤ R for any j ∈ {1, ..., n} .
Therefore

|∆ |f (xj)|q| = ||f (xj+1)|q − |f (xj)|q| ≤ qRq−1 ||f (xj+1)| − |f (xj)||
≤ qRq−1 |f (xj+1)− f (xj)| = qRq−1 |f (∆xj)| (58)

for any j = 1, ..., n− 1, where ∆xj = xj+1 − xj is the forward difference.
On the other hand, since the sequences {aj}j=1,...,n , {bj}j=1,...,n are synchronous,

then we have

0 ≤ 1

n

n∑
j=1

|f (xj)|q+r −
1

n

n∑
j=1

|f (xj)|q
1

n

n∑
j=1

|f (xj)|r (59)

and by the first inequality in (57) we get

n∑
j=1

|f (xj)|q+r ≤
1

n

n∑
j=1

|f (xj)|q
n∑
j=1

|f (xj)|r

+
1

12

(
n2 − 1

)
nqRq−1 max

j=1,...,n−1
|f (∆xj)| rRr−1 max

j=1,...,n−1
|f (∆xj)|

=
1

n

n∑
j=1

|f (xj)|q
n∑
j=1

|f (xj)|r

+
1

12

(
n2 − 1

)
nqrRq+r−2

(
max

j=1,...,n−1
|f (∆xj)|

)2

(60)

for any f ∈ E∗ with ‖f‖ = 1.
Taking the supremum over f ∈ E∗ with ‖f‖ = 1 in (60) we get the first branch in

the inequality (56).
We also have, by (58), thatn−1∑

j=1

|∆ |f (xj)|q|
α

1/α

≤

(qRq−1)α n−1∑
j=1

|f (∆xj)|α
1/α

= qRq−1

n−1∑
j=1

|f (∆xj)|α
1/α

and, similarly, n−1∑
j=1

|∆ |f (xj)|r|
β

1/β

≤ rRr−1
n−1∑
j=1

|f (∆xj)|β
1/β

where α, β > 1, 1
α + 1

β = 1.
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By the second inequality in (57) and by (59) we have

n∑
j=1

|f (xj)|q+r ≤
1

n

n∑
j=1

|f (xj)|q
n∑
j=1

|f (xj)|r

+
1

6

(
n2 − 1

)n−1∑
j=1

|∆ |f (xj)|q|
α

1/αn−1∑
j=1

|∆ |f (xj)|r|
β

1/β

≤ 1

n

n∑
j=1

|f (xj)|q
n∑
j=1

|f (xj)|r

+
1

6

(
n2 − 1

)
qrRq+r−2

n−1∑
j=1

|f (∆xj)|α
1/αn−1∑

j=1

|f (∆xj)|β
1/β

for any f ∈ E∗ with ‖f‖ = 1, where α, β > 1, 1
α + 1

β = 1.

Taking the supremum over f ∈ E∗ with ‖f‖ = 1 in (??) we get the second branch
in the inequality (56).

We also have, by (58), that

n−1∑
j=1

|∆ |f (xj)|q| ≤ qRq−1
n−1∑
j=1

|f (∆xj)|

and

n−1∑
j=1

|∆ |f (xj)|r| ≤ rRr−1
n−1∑
j=1

|f (∆xj)| .

By the third inequality in (57) and by (59) we have

n∑
j=1

|f (xj)|q+r ≤
1

n

n∑
j=1

|f (xj)|q
n∑
j=1

|f (xj)|r (61)

+
1

2
(n− 1)

n−1∑
j=1

|∆ |f (xj)|q|
n−1∑
j=1

|∆ |f (xj)|r|

≤ 1

n

n∑
j=1

|f (xj)|q
n∑
j=1

|f (xj)|r

+
1

2
(n− 1) qrRq+r−2

n−1∑
j=1

|f (∆xj)|
n−1∑
j=1

|f (∆xj)|

for any f ∈ E∗ with ‖f‖ = 1.
Taking the supremum over f ∈ E∗ with ‖f‖ = 1 in (61) we get the third branch

in the inequality (56). �



HYPO-q-NORMS ON A CARTESIAN PRODUCT 201

Corollary 4.3. With the assumptions of Theorem 4.2 and if r ≥ 1, then we have

‖x‖2rh,n,2r ≤
1

n
‖x‖2rh,n,r (62)

+



1
12r

2
(
n2 − 1

)
n ‖x‖2r−2n,∞ ‖∆x‖2n−1,∞ ,

1
6r

2
(
n2 − 1

)
‖x‖2r−2n,∞ ‖∆x‖h,n−1,α ‖∆x‖h,n−1,β

where α, β > 1, 1
α + 1

β = 1,

1
2r

2 (n− 1) ‖x‖2r−2n,∞ ‖∆x‖2h,n−1,1 .
In particular, for r = 1 we get

‖x‖2h,e ≤
1

n
‖x‖2h,n,1 +



1
12

(
n2 − 1

)
n ‖∆x‖2n−1,∞ ,

1
6

(
n2 − 1

)
‖∆x‖h,n−1,α ‖∆x‖h,n−1,β

where α, β > 1, 1
α + 1

β = 1,

1
2 (n− 1) ‖∆x‖2h,n−1,1 .

. (63)
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