Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 52(1), 2025, Pages 187-201, DOI: 10.52846/ami.v52i1.1942
ISSN: 1223-6934

Hypo-¢-Norms on a Cartesian Product of Normed Linear
Spaces
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ABSTRACT. In this paper we introduce the hypo-g-norms on a Cartesian product of normed
linear spaces. A representation of these norms in terms of bounded linear functionals of norm
one, the equivalence with the g-norms on a Cartesian product and some reverse inequalities
obtained via the scalar Shisha-Mond, Birnacki et al. and other Griiss type inequalities are
also given.
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1. Introduction

Let (E,||-]|) be a normed linear space over the real or complex number field K. On
K™ endowed with the canonical linear structure we consider a norm ||-||,, and the unit
sphere

S ={A= (A1, An) € KP[IA]l, = 1}
As an example of such norms we should mention the usual p-norms

max {|A1],...,[\n]} i p=o0;
I\l = ) )
k=t AeM)? if pe(l,00).

The Fuclidean norm is obtained for p = 2, i.e.,

2
Az = | D1
k=1

It is well known that on E™ := E x - - - x E' endowed with the canonical linear structure
we can define the following p-norms:

2

max {|[z1],..., lzall} if p=oc;
Il = ) 2
(> k=1 |x|[”) P if pel,00);

where x = (21,...,2,) € E™.

Received April 30, 2024. Accepted November 11, 2024.

187



188 S. S. DRAGOMIR

Following [0], for a given norm ||-[,, on K", we define the functional |||, , : E" —
[0,00) given by

n
1%/ly,, == sup Z Azl (3)
xes(lI-ll,) ||j=1
where x = (x1,...,z,) € E™.
It is easy to see, by the properties of the norm |||, that:
() [1xll;,,, > 0 for any x € E™;
i) o+ llp < Xl + 15l for any x, y € B
(i) [lexl, , = lal (%]}, for each o € K and x € E™;
and therefore |||, .. is a semi-norm on E™. This will be called the hypo-semi-norm
generated by the norm I|-[,, on E™.
If by S, with p € [1,00] we denote the spheres generated by the p-norms ||an
on K", then we can obtain the following hypo-g-norms on E™ :

n
||X||h,n,q ‘= Sup Z)\J‘rj ’ (4>
)\ESn,p j=1

withq>1and%—F%:lifp>1,q:lifp:ooandq:ooifpzl.

For p = 2, we have the Euclidean sphere in K", which we denote by S,,, S, =
{)\ =\, ) €KY i = 1} that generates the hypo-Euclidean norm on
E™ ie

[l = sup | D Ajaj |- (5)
NS |52

Moreover, if E = H, H is a inner product space over K, then the hypo-FEuclidean
norm on H™ will be denoted simply by

n
Il == sup ||> Ay |- (6)
AES,, j=1

Let (H;(-,-)) be a Hilbert space over K and n € N, n > 1. In the Cartesian product
H™:= H x --- x H, for the n—tuples of vectors x = (z1,...,2,), ¥y = (Y1,---,Yn) €
H™, we can define the inner product (-,-) by

Z Jﬂj,y] x,y € H", (7)
j=1

which generates the Euclidean norm ||-||, on H", i.e.,

2

2 n
clly o= { D llzsl® |, xeH™ (8)
Jj=1

The following result established in [6] connects the usual Euclidean norm ||-|| with
the hypo-Euclidean norm ||-||, .
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Theorem 1.1 (Dragomir, 2007, [6]). For any x € H™ we have the inequalities

1
N Ixlly < lIxlle < lIxlly 9)
e, |||l and |||, are equivalent norms on H™.

The following representation result for the hypo-Euclidean norm plays a key role
in obtaining various bounds for this norm:

Theorem 1.2 (Dragomir, 2007, [6]). For any x € H™ with x = (x1,...,Z,), we
have

2

Il = sup | D [a,ap)*| (10)
j=1

llzll=1

Motivated by the above results, in this paper we introduce the hypo-g-norms on
a Cartesian product of normed linear spaces. A representation of these norms in
terms of bounded linear functionals of norm one, the equivalence with the g-norms
on a Cartesian product and some reverse inequalities obtained via the scalar Shisha-
Mond, Birnacki et al. and other Griiss type inequalities are also given.

2. General Results

Let (E,||-||) be a normed linear space over the real or complex number field K. We
denote by E* its dual space endowed with the norm ||-|| defined by

£l :== sup |f (z)| < oo, where f € E*.
llzll=1

We have the following representation result for the hypo-g-norms on E™.

Theorem 2.1. Let (E, ||-||) be a normed linear space over the real or complex number

field K. For any x € E™ with x = (21, ...,Z,), we have the representation
" 1/q
1%/l g = Sup S OIf () , (11)
- o

wherep,q>1with%+é:1,

n

xllppy = sup > 1F ()] (12)

171=1 | ;=1
and
X =||lx = max xill}. 13
Il e = 1l 0 = max {11} (13)

In particular,
1/2

[%ll),,. = sup S If (@)l . (14)
llfll=1 j=1
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Proof. Using Holder’s discrete inequality for p, ¢ > 1 and % + % =1 we have
n " Ve s 1/q
doaiBil < | DYl St
j=1 j=1 j=1
which implies that
SUP ZO‘JﬁJ < ||5H

ladl,=1 |5=

where « = (a1,...,a,) and 8= (81,...,5n) -
For (681,...,8n) # 0, consider a = (v, ..., ay,) with
B; 18;1%°
(i 1B

for those j for which 3; # 0 and a; = 0, for the rest.
We observe that

= B 18;1° 2 21185l
a;Bi| = Bi|=—=—=—"2
g ™ Z (S 18D (i 186D

1/q

st =18l
j=1

Jj =

and

N - o e (T
o2 =3 lay| Z@k T = X LA

j*l j=1
S T
Z (. 15 Zl@zzlmm |

Therefore, by (15) we have the representation

SUP ZQJBJ ||5Hq

llell, =

for any 8 = (B1,...,0n) € K™
By Hahn-Banach theorem, we have for any v € E, u # 0 that

[ull = sup [f ()]
I£11=1

(15)

(16)

(17)

Let a = (a1,...,a5) € K® and x € E" with x = (21,...,2,). Then by (17) we

have

n
E ajxj|| = sup E ajxj || = sup g a;f (x;)

= o = o

(18)
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By taking the supremum in this equality we have

Za zj|| = sup sup Zozjf(xj)

Hal\ 71 j=1 lall,=1 \ IIflI=1 5=
1/2
n n
= sup | sup D aif(z;)| | = sup [ D |f ()" |
[Ifll=1 ||0¢Hp=1 j=1 [Ifll=1 j=1
where for the last equality we used the representation (16).
This proves (11).
Using the properties of the modulus, we have
n
Zajﬂj < max |a]\2|ﬁj
j=1
which implies that
| SHUP ) Z%ﬂj < 18l (19)
«

where « = (aq,...,a,) and 8 = (61,...,,6’”).
For (81,...,0n) # 0, consider a = (a1, ...,q,) with a; := éﬁ for those j for
which 8; # 0 and o; = 0, for the rest.

We have
> ;B = Zﬁﬂj => 18l =8Il
j=1 j=1""7 j=1
and o
ol = max fajl= max |25\ —
Je{l..n} je{l..n} [ |B5]
and by (19) we get the representation
sup ZO‘JBJ =18l (20)

el oo

for any 8 = (B1,...,08n) € K.
By taking the supremum in the equality (18) we have

1]1

n n
sup E a;x;|| = sup sup g a; f ()
lolle=1{|5=1 lello=1 \ IfII=1 |52

= sup sup Zajf(zj) = sup Z\f(%” ;

I71=1 \ llello=1 5= Ifl=1 \ 5=

where for the last equality we used the equality (20), which proves the representation

(12).
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Finally, we have

which implies that
n
sup | Y ;85| < 1Bl (21)
lall,=1]5=7

where « = (a1,...,a,) and 8= (51,...,5n) -
For (81,...,8n) # 0, let jo € {1, ...,n}iuch that || 8], = max;cq1,...ny 165 = 18j,l -

Consider a = (v, ..., 0p) with o, = |Z¢| and a; = 0 for j # jo. For this choice we
J
get ’
Z il and (S| = [ 2] = 1841 = 151
291 g 2 5]
therefore by (21) we obtain the representation
sup Z%ﬁ; =18l (22)

ladl, =1 | 5=

for any 8 = (f1,...,0n) € K™
By taking the supremum in the equality (18) and by using the equality (22), we
have

sup Za]m] = sup Zajf(xj)

ledly =1 || 5= oot \ 17121 =

= sup sup Zajf(xj) = sup ( max |f(ac])>

IF1I=1 \ el =1 |53 I£1=1 \IE{Lsreem}

Je{l,.., IIfll=1 Je{1,...,

= o max ( sup |f($j)|> max {II%II}
which proves (13). For the last equality we used the property (17). O

Corollary 2.2. With the assumptions of Theorem 2.1 we have for ¢ > 1 that

1
17 %l g < 1%l g < 1%l (23)

for any any x € E™.
In particular, we have

1
7n [y < [llp,e < [1xll; (24)

for any any x € E™.
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Proof. Let x € E™ with x = (21,...,z,) and f € E* with ||f|| = 1, then for ¢ > 1

1/q " 1/q 1/q

Z|f(1'j)|q = DN (FEADE = I sl = LI, 4
j=1 =1

j=1

and by taking the supremum over || f|| = 1, we get the second inequality in (23).
By the properties of complex numbers, we have

" 1/q

max )|} < z;)|?

s, 1wl < (317

and by taking the supremum over | f]| = 1, we get
1/q
n
s (| max (@) < s | S01f )l (25)

jpl=r \ae(limy = ; !

and since

sp (e (17 (@))) = _max {sup f(xj)l}

=1 \IE{L-m JE{Lnt L fl1=1
= cmax  {llesllt = %l
then by (25) we get
[1%[l,1,00 < 1%l p,q for any x € E™. (26)
Since
N 1/q )
1/q
Sl | = (nlxli ) =0l o
j=1
then also )
7¢Il < 1], o0 for any x € E". (27)

By utilizing the inequalities (26) and (27) we obtain the first inequality in (23). O

Remark 2.1. In the case of inner product spaces the inequality (24) has been ob-
tained in a different and more difficult way [6] by employing the rotation-invariant
normalized positive Borel measure on the unit sphere.

Corollary 2.3. With the assumptions of Theorem 2.1 we have for r > q > 1 that

g
||x||h7n)r S HX| h,n,q S n re ||X||h,n77‘ (28)
for any any x € E™.
In particular, for ¢ > 2 we have
g2
||X||h,n,q < ||X||h,e <n ||X||h,n,q (29)
and for 1 < q <2 we have
2-q
1xllhe < M%llppg <nz (X, . (30)

for any any x € E™.
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Proof. We use the following elementary inequalities for the nonnegative numbers a;,

j=1,..,nand r > g >0 (see for instance [8])

1/r 1/q 1/r
n n n
r—gq
g aj < g aj <n E aj ) (31)
=1 =1 =1

Let x € E™ with x = (21,...,%,) and f € E* with ||f|| = 1, then for r > ¢ > 1 we
have

1/r 1/q 1/r

i@l <[ Xr@r] =ow (Xrer] o 6

By taking the supremum over f € E* with ||f|| = 1 and using Theorem 2.1, we get

(28). O
Remark 2.2. If we take ¢ = 1 in (28), then we get
”X”h,n,r < HX| h,n,1 snr ||X||h,n,r (33)
for any any x € E™.
In particular, for r = 2 we get
xllpe < I%lp 01 < VRl (34)
for any any x € E™.
3. Some Reverse Inequalities
Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality [4] (see also

[5, Theorem 5. 14])

Lemma 3.1. Leta, Ac Randz = (z1,...,24), Yy = (Y1,.--,Yn) be two sequences
of real numbers with the property that:

ay; < zj; < Ay; for each je{l,...,n}. (35)
Then for any w = (wi,...,wy,) a sequence of positive real numbers, one has the
inequality
2 2
0< ijzjz ijyjz — ijzjyj < 1 (A—a) ijyj . (36)
j=1 j=1 j=1 j=1

The constant % is sharp in (36).

O. Shisha and B. Mond obtained in 1967 (see [9]) the following counterparts of
(CBS)- inequality (see also [5, Theorem 5.20 & 5.21]).

Lemma 3.2. Assume that a = (a1,...,a,) and b = (by,...,b,) are such that there
exists a, A, b, B with the property that:

0<a<a; <A and 0<b<b; <B foranyje{l,...,n} (37)
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then we have the inequality

2 2
Sy (Sem) < (5 -\f5) Tendin
j=1  j=1 =1 = =

and

Lemma 3.3. Assume that a, b are nonnegative sequences and there exists v, T' with
the property that

0§7§%§F<oo forany je{l,...,n}. (39)
J

Then we have the inequality

0= (S ar>w ;ajbngZ;b;. (40)

We have the following result:

Theorem 3.4. Let (E, ||-||) be a normed linear space over the real or complex number

field K and x € E™ with x = (z1,...,¢ ) Then we have
1
2
0 <[l — < <nllx|lh (41)
2 2

0 < [xllh,. — E ”X“hm,l < el 1,00 (42)

and ) 1
0 < e = = Il 0 < 3V (13)
Proof. Let x € E"™ with x = (21,...,2,) and put R = max;jeq1 . o) {[l75]} =

%[00 - If f € E* with [[f[| =1 then |f (z;)| < [[f]|[lz;]] < R for any j € {1,...,n}.
If we write the inequality (36) for z; = |f (z;)|, w; =y; =1, A= R and a = 0,

we get
2

0<n) If (@) = | D If ()] S R
j=1 j=1

for any f € E* with ||f| = 1.
This implies that

>J>>—l

2

Z|f < (I @l| + e (44)
j=1

for any f € E* with ||f|| =1.
By taking the supremum in (44) over f € E* with || f|| =1 we get (41).
If we write the inequality (38) for a; = |f (z;)], bj =1, b =B =1, a =0 and
A = R, then we get
2

0= nz | ()l — Zlf(xj)l <nRY_|f ()]

j=1
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for any f € E* with || f]| = 1.
This implies that

2
Sl < - [ SIr@)l] +RY I @), (45)
j=1 j=1 j=1

for any f € E* with || f]| = 1.

By taking the supremum in (45) over f € E* with || f|| = 1 we get (42).

Finally, if we write the inequality (40) for a; = |f (z;)|,b; =1, b=B=1,7=0
and I' = R we have

2

0< [0 U@ | ~ 1 @)l < gnR
=1 =

for any f € E* with || f]| = 1.
This implies that

2

S @) | < 2= 301 @)l + ViR, (16)

for any f € E* with ||f| = 1.
By taking the supremum in (46) over f € E* with || f|| = 1 we get (43). O

Further, we recall the Cebysev’s inequality for synchronous n-tuples of vectors
a = (ai,...,an) and b = (by,...,b,), namely if (a; —ay) (b; —bx) > 0 for any j,
ke {l,...,n}, then

I Ias 1¢
—Zajij—Zaj—ij. (47)
j=1 j=1 j=1
In 1950, Biernacki et al. [1] obtained the following discrete version of Griiss’ inequality:

Lemma 3.5. Assume that a = (a1,...,a,) and b = (b1,...,b,) are such that there
exists real numbers a, A, b, B with the property that:

a<a;<A and b<b; <B foranyje{l,...,n}. (48)

Then
1 — lew 1 1rn 1rn
P ILUREPIE PP <i[51 (=215 e-aw-n

_ 1 [“T (A—a)(B—a) <

S5 (A=a) (B 1),

(49)

1
4

where [x] gives the largest integer less than or equal to x.

The following result also holds:
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Theorem 3.6. Let (E, ||-||) be a normed linear space over the real or complex number
field K and x € E™ with x = (x1,...,2,). Then for ¢, r > 1 we have

e < St el S [ ] et
h,n,q+r — n h,n,q h,n,r nl 4

1 1 .
< 5IIXIIZ,anIXIIhm+ —nllx|E (50)

Proof. Let x € E™ with x = (21,...,2,) and put R = maxjeq1,.. o) {/lz5]} =
[1Xlly,00 - I f € E* with [|f]| = 1 then [f (z;)] < [If]| [|z;]| < R for any j € {1,...,n

If we take into the inequality (49) a; = |f (z;)|?, b; = |f (x;)|", a = 0, A = RY,
b=0and B = R", then we get

n n n 2
j=1 7j=1 j=1

On the other hand, since the sequences {a;},_, . {bj},_; , are synchronous,
then by (47) we have

}]f DD ST ST
j=1 j=1
Using (51) we then get
Elf@w“< 2]f%|§]f%\+ e e

for any f € E* with || f]| = 1.
By taking the supremum in (52), we get

su ()%t
P Z|f i)l

IF=1 | =1
1 1 [n?

<o Sl 1 [5] a
=1 jzl Z nld
1 - 1 [n?

<1 Pl b s {3 Pl b | 2| R
n i le Ifl=1 ; nild

which proves the first inequality in (50).
The second part of (50) is obvious. O

Corollary 3.7. With the assumptions of Theorem 5.6 and if r > 1, then we have

]- 2r
12", 20 < - I+ { ]nnnw_||mnr+4mumm. (53)

In particular, for r =1 we get
1 n?
I [BS

The first inequality in (54) is better than the second inequality in (41).

2
I

n,oo —

1
*I\Xllhnﬁr Il (59)

Ixll7.e <
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4. Reverse Inequalities Via Forward Difference

For an n-tuple of complex numbers a = (a1, ..., a,) with n > 2 consider the (n — 1)-
tuple built by the aid of forward differences Aa =(Aay,...,Aa,—1) where Aay :=
ak+1—ap where k € {1,...,n — 1}. Similarly, if x = (z1,...,2,) € E™ is an n-tuple of

vectors we also can consider in a similar way the (n — 1)-tuple Ax = (Azy, ..., Az,_1) .
We obtained the following Griiss’ type inequalities in terms of forward differences:

Lemma 4.1. Assume that a = (a1,...,a,) and b = (by,...,b,) are n-tuples of
complex numbers. Then

1o Ien 1
Ezajbj—gzajgz;bj (55)
et i —

15 (n* = 1) [|Aal] |Ab]|

n—1,00 n—1,00" [ ]’

IA

2_
g | Aal

nela ||Aan717ﬁ where «, 8> 1, é
% (1 - l) ||Aa||n—l 1 HAan—l o B3l
The constants 15, & and § are best possible in (55).
The following result also holds:

Theorem 4.2. Let (E, ||-||) be a normed linear space over the real or complex number
field K and x € E™ with x = (z1,...,2,). Then for ¢, r > 1 we have

1
+

r—2
12qr (n _1)n”X”q+ [Ax H

n—1,00"

+r—2
GO O R0 ([N [VAC RN ViSSP
where a, B > 1, a+B:1’

+r—2 2
3 (= 1) qr x50 A s

Proof. Let x € E™ with x = (21,...,2,) and f € E* with | f|| = 1. If we take into
the inequality (55) a; = |f (z;)|?, b; = |f (z;)|", then we get

%Z SIS ST Z|f ) 67)

j 1

75 (n® — 1) max;=1, _ n1 |A|f(xj [Imaxj=1, . no1 |A]f (25)]"],

s (st alr ap)l) (S alr ar)

where o, 8 > 1, —&-%:

IN

1
a

5 (1= 3) I IA LS @)1 2 1AL (@)l
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We use the following elementary inequality for powers p > 1
|a? — ] < pRP™ " |a — |

where a,b € [0, R].
Put R = max;c(1,... n} {llz;||} = Han,oo. Then for any f € E* with ||f|| = 1 we
have |f (z;)] < | F1 5] < R for any j € {1,..,n}.
Therefore
AL @) = 1F (@)l = 1 @) < RIS (z0)] = |f (25)]]
< qRT|f(zj41) = f (2))] = qRIT|f (Azy)| (58)
for any j =1,...,n — 1, where Az; = xj41 — x; is the forward difference.

On the other hand, since the sequences {a;},_, ., {b;},_, , are synchronous,
then we have

D ITCH DS SITICHILS SITCHTl (59)
j=1 j=1 J=1

and by the first inequality in (57) we get

n

DI G ST BTNy

j=1

1 2 q—1 . r—1 .
+ 5 (n° —1)ngR jomax|f (Azy)|rRTT . max | (Az;)
1 n n ,
= =D I @) Y1 ()]
j=1 j=1
1 2
t13 (n* = 1) ngrrR** =2 (j_lmwfl_l |f (ASL‘J)|> (60)

for any f € E* with || f]| = 1.

Taking the supremum over f € E* with || f|| = 1 in (60) we get the first branch in
the inequality (56).

We also have, by (58), that

1 1/« o 1/«
SOIALf ()] < [ (gRHT D If (Axy)”
j=1 j=1

1 1/

=qR7 ) If (Axy)”
j=1
and, similarly,

o1 1/B o1 1/B
STl <rr YD I (Axy))”
Jj=1 j=1

wherea,ﬂ>1,é+%:1.
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By the second inequality in (57) and by (59) we have

OITEEH G ST BTN

n—1 /e n—1 1/6
1 a r
+5 (7= 1) [ D IS @)l S 1Alf @)’
j=1 j=1

<@ I @
1 _ " n—1 1/ n—1 1/8
b (02— 1) grRr? (Z 1 <Aa:j>|a) (Z 1 <ij>|ﬁ)

Jj=1

for any f € E* with || f|| = 1, where «, § > 1, éJr % =1.

Taking the supremum over f € E* with || f|| =1 in (??) we get the second branch
in the inequality (56).

We also have, by (58), that

n—1 n—1
D OIALf ()| < gRITHY | f (Axy)
Jj=1 j=1

and

n—1 n—1
DOIALf @) < rRTVY IS (Agy)]

j=1 j=1

By the third inequality in (57) and by (59) we have

SO @™ < 2SI )Y I )l (61)
i=1 j=1 j=1
L)AL @Y AL )
< %Z @l Y18 ol

45 (= 1)grReFT 2Z|f 2|3 1 ()

Jj=1

for any f € E* with ||f] = 1.
Taking the supremum over f € E* with ||f|| = 1 in (61) we get the third branch
in the inequality (56). O
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Corollary 4.3. With the assumptions of Theorem 4.2 and if r > 1, then we have

1 2
Il 20 < I (62
2r—2
2 (02 = 1) x| A s
2r—2
) BTl Ve VS RN S P
where a, > 1, ,+ﬂ_1
2r—2 2
372 (= D) [Ix, S A, oy -
In particular, for r =1 we get
1 (0 =) nax|y_,
g (n* —1) |Ax] 1Ax]|
6 hn 1a h,n—1,8
”XHhe = HXH”” 1Y where o, B>1, L4 5 =1, (63)
2
3 (=DA%, ;-
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