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for some Impulsive Stochastic Neural Networks Model
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ABSTRACT. This paper is concerned with the existence, uniqueness and the exponential sta-
bility of double measure r-mean pseudo almost periodic solution for a class of recurrent neural
networks for r > 2 by employing the fixed point theorem and differential inequality. Finally,
we give an example to confirm the reliability and feasibility of our findings.
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1. Introduction

In the last decades, since stochastic modeling has an interesting role in engineering,
social science, finance and physics, stochastic differential equations has been widely
studied (see[l1, 19, 20, 21, 22, 23]). A lot of attention has been given to the quali-
tative properties such as uniqueness, existence and stability for stochastic differential
equations. Many authors considered the stability, uniqueness and existence of almost
periodic solutions for impulsive differential systems in abstract space. The stability
and the existence of piecewise almost periodic solutions of impulsive differential sys-
tems with time-varying delay has been established by Satmov (see [13]). Recently,
recurrent neural networks (RNN) have attracted considerable attentions, this is due
to the fact that they are a class of important mathematic models which are widely
used in many areas, such as classification of patterns, associative memories, parallel
computation, solving certain optimization problems, and so on [, 5]. RNN are an
attractive tool for both practical applications and for the modeling of biological nerve
nets, but their successful application requires an understanding of their dynamical
properties, in particular, their stability. Many authors studied the dynamic behaviors
of neural networks with time delays (see [2, 5, 7, 16]).

In [8], Dingshi and Yusen studied the existence of periodic measures for the impulsive
stochastic equations to the following neural networks

dyi(s) = | = ai(s)yils) + Sy aig ()25 (43 (5)) + fils)| ds
+ 2051 9ij(5,9i(s5))dBj(s), s >0, s # s, k€N,
yi(si) = Ini(y(sk)), 5= s,

yi(s0) =4, i =1,2...1n,

Received May 09, 2024. Accepted August 9, 2025.

321



322 M. MIRAOUOI AND M. MISSAOUI

Motivated by the above description, in this paper, we investigate the uniqueness, ex-
istence and stability of almost periodic solution of the following stochastic differential
equation

dyi(s) = | = auls)ya(s) + 25— i ()0 (03 () + 5y £y (o) ds

+Z?:1 QSU( y](s)) (3)’ S Z 07 S 7é Sk k S Nv (1)
yi(st) = Iy (Sk)) 8 = Sk,
yi(so) =5, i =1,2..n,

where y;(s) corresponds to the state of the ith unit at time s, a;(s) > 0 represents
the rate with which the ith unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs, ¢;(y,(s)) denotes the acti-
vation functions of the jth unit at time s, n corresponds to the number of units in a
neural network, (b;;(s))nxn is connection matrice, f;;(s) is the external bias on the ith
unit, for all j € {1,--- ,n}, ¢i;(-,-) : [0, +00[xL"(P,K) — L"(P,H)), for each k € N,
I() : L"(P,K) = L"(P,H), B(s) = (B1(s), -+, Bn(s)) is an n-dimensional Brown-
ian motion defined on (P, F,{F;}i>0, P) and the initial condition ¥ = (¢1,- -+, ¥p).
o, p, ¥, I, s satisfy suitable conditions that will be established later. Moreover, the
notations z(¢;) represent the right-hand side limits of y(-) at sy, and a; = infser a(s).
The paper is organized as follows: In section 2, we shall introduce the necessary pre-
liminary results, notations and definitions needed in the later sections. In section
3, we mention some useful and important properties on a concept of mean-value of
uniformly almost periodic functions. Making use of these properties, we prove the
existence and uniqueness of p-mean (a, 8)-pseudo almost periodic mild solutions for
(1). In section 4, we prove the exponential stability of the solution of our problems
(1). At last, in section 5, an example is given to illustrate our results.

2. Preliminaries

In this section we shall give some preliminary results which will be used in the sequel.

The involvement of these results is stated with reference to [3, 9, 10, 14, 15, 17, 18].

Throughout this paper, we shall introduce the following notations

o (H,|l-|ln) and (K, || - |lx) are real separable Hilbert spaces.

e (O, F, P) is a complete probability space.

e Let L"(P,H) be a Banach space defined by L"(P,H) := {Y : H-valued random
1

variable} with the norm ||Y]|, = (fQIEHYHTdP)F

o L(IK,H) = {Y : K — H linear bounded operators}. It is equipped with the usual
operator norm || - ||.

o LYK, H) = {Y : K — H Q-Hilbert-Schmidt operators} with the norm HYHig =
Tr(YQY™) < 0.

o (O, F,(Fs)s>0, P) is a filtered probability space, where Fy = o{B(z) — B(y); =,y <
s} and (B(s), s € R) is two-sided standard Wiener process.

e Denoting B the Lebesgue o—field of R and by M = {« : positive measure on B;
a(R) = 400 and a([z,y]) < +o0, V 7,y € R, z < y}. Throughout this paper, we
take a, f € M and satisfies the following hypotheses:
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(Ho): imsup,_, ;o g&:::g < 0.

(H,) for all 7 € R, there exist v > 0 and a bounded interval I such that:
ala+ 150 € A) < ya(A), when A € B satisfy ANT = 0.

Let Y : R — L"(P,K) a stochastic process. If there exists [ € R such that
E||Y(t)||" <, then, Y is named to be stochastically bounded in r-th mean sense. It
is named to be stochastically continuous in r-th mean sense if }im E|lY(#)-Y(s)|" =0.

—s5

We denoted by BC(R, L™(P,H)) the space of any stochastically bounded and contin-
uous processes. One can show that BC(R, L" (P, #)) is a Banach space with
1

IY]| = sup,er (]E||Y(s)||’“) " Let S be the set consisting of all real sequences {s; };en
such that 6 = inf;en(s;41 — 8;) > 0, lim;_, o0 8; = 00. For {s;}ien € S, let
PC(R,L"(P,H)) = {gp : R — L"(P,H) stochastically bounded piecewise continuous
functions ; ¢(+) stochastically continuous at s for s ¢ {s;}ien and ¢(s;) = p(s7)
for all i € N} and

PC(RxL"(P,K),L"(P,H)) = {cp :RxL"(P,K) — L"(P,H) stochastically bounded
piecewise continuous functions ;for any x € L"(P,K), ¢(.,z) € PC(R,L"(P, H))
and for any t € R, (¢, .) stochastically continuous at x € L" (P, IC)}

A continuous stochastic process Y : R — L"(P,H) is called r-mean almost peri-
odic if for any ¢ > 0 there exists ¢({) > 0 such that for each 6§ € R, therefore, there
exists & € [0, 0 4 ¢(()] satisfying: sup,cr E||Y (s + &) — Y (s)]|” < ¢.

The set of all such processes will be denoted by AP(R, L™ (P, H)).

A sequence of a continuous stochastic process Y, : R — L"(P,H) is called r-mean
almost periodic if for any ¢ > 0 there exists ¢ = ¢(¢) > 0 such that for ¢ € N, there
exists at least one number k € [i,4 + ¢], satisfying: E||Y,4x — Yo||" < (, n € N.

The set of all such processes will be denoted by AP(N, L"(P,H)).

Now, let ¢ : R x L"(P,K) — L"(P,H) be a continuous process. ¢ is called
almost periodic in s € R uniformly in Y € T, where T € L"(P,K) is a compact,
if for any ¢ > 0 there exists ¢(¢,7) > 0 such that for each § € R, therefore,
there exists & € [0,0 + ¢((,T)] verified: sup,cr E|l@(s +&£,Y) — ¥(s,Y)||” < ¢ for
all stochastic process Y : R — T. The set of all such processes is denoted by
APR x L"(P,K),L"(P,H)). Now, we define:

P L (P M) = (¥ N = L (PH) « Y] = sup (Y ()] ).

k
PAPo(N, L"(P,L"(P,H)), o, ) = {Ye (N, H) = lim b S Y ()] 7al) =
=0

o}, and PAP(N, L"(P,H),a, B) = {{Yk}kez € IX(NH): Y = YVl + YY) €

AP(N,L"(P,H)),Y? € PAPo(N, LT(P,’H),oz,,B)}, {Yi }ken is called r-mean (a, B)-
pseudo almost periodic. Let {s;};eny € S and ¢ € PC(R, L"(P,H)). ¢ is called r-mean
almost periodic if the following conditions are satisfied
(1) {st = sitx— sk}, i € N, is equipotentially almost periodic, that is, for any ¢ > 0,
there exists a relatively dense set Q¢ of R such that for each t € Q¢ there is an
integer p € N such that for all |sgy, — sp —t| < ¢ for all kK € N.
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(2) For any ¢ > 0, there exists a nonnegative number ¢ = 6(¢) such that if the points
s’ and s” belong to a same interval of continuity of ¢ and |s’ — s”| < §, then
Ello(s) — p(s")lI" < ¢.

(3) For each ¢ > 0, 3 a relatively dense set w(¢) € R such that if ¢ € w({) then,
Ell¢(s) — (s +1t)||" < ¢ for all ¢ € R satisfying the condition |s — sg| > ¢,k € N.

The number ¢ is called ¢-translation number of ¢. We denote by AP (R, L" (P, H))

the space of any r-mean almost periodic functions. One can show that AP (R, L"(P, H))
1

is a Banach space with ||Y||« = sup,cp (EHY(S)HT): Let

UPC(R,L"(P,H)) = {Y € PC(R, L"(P,H)); Ysatisfies the condition (2)}

The function ¢ € PC(R x L"(P,K), L"(P,#)) is said to be r-mean almost periodic
in s € R uniformly in z € L"(P,K) if, for every compact subset K C L"(P,K),
{¢(.,x);x € K} is uniformly bounded, and given ¢ > 0, there exists a relatively dense
subset we such that |o(s +t,z) — p(s,2)||” < ¢ for all z € K,t € we and s € R
satisfying |s — sx| > C.

The set of all such processes is denoted by APt(R x L™ (P,K), L"(P,H)). Denote
PCY(R, L' (P.H)) = { € PC(R, L' (P, H)); lim Ellp(s)]” =0},

b
PAPL(R, L' (P, H), 0, B)={¢ : PC(RLT(RH);bg@om/_?||<p(s)wda(s) =o0}.
PAPL(R x L"(P,K), L"(P,H),a, 8) = {<p :PC(R x L"(P,K),L"(P,H);

1 b
lim 7/ El|o(s, z)||"da(s) = 0 uniformly with respect to = € K,
Jim i [ Ello(s.a) da(s)

where K is an arbitrary compact subset of L"(P, IC)}
PAP(R, L' (P,H), 0, 8) = {6 € PC(R,I" (R, H));

¢ =+ 1:pe APp(R,L"(P,H)), ¢ € PAPL(R, LT(P,H),a,ﬁ)}.

One can show that PAP¢(R, L"(P,H), a, §) is a Banach space with the sup norm
||-lloo- Then, the set PAP%(R, L"(P,H), v, B) is translation invariant of PC(R, L" (P, H))
and PCL(R, L™ (P, H)) C PAP(R, L"(P,H), a, ).

Let a sequence of functions {¢y }ren C PAPR(R, L"(P,H), v, 3). If ), converges uni-
formly to ¢, then p € PAPR(R, L"(P,H), v, B).

¢ € AP3(R x L"(P,K),L"(P,H)), ¢ € PAPL(R x L"(P, /C),LT(P,H),a,ﬁ)}-

¢ is called r-mean («, 8)-pseudo almost periodic.

Lemma 2.1. [12] Suppose that ¢ € PAPT(Rx L"(P,K),L"(P,H), , 8) and that the
following conditions hold:
(1) {¢(s,z) : s e R,x € K} is bounded for every bounded subset K € L"(P,K).
(2) @(s,.) is uniformly continuous in each bounded subset of L"(P,K) uniformly in
seR.
If ¥(.) € PAPT(R,L"(P,K),«,8) such that R(¥) C L"(P,K), then o(.,¥(.)) €
PAP1(R, L (P, H), a, §).
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Lemma 2.2. [12] Suppose that the sequence of vector valued functions {Ij}ren is
(a, B)-pseudo almost periodic, i.e., for any v € L™ (P, H),{Ix(x),k € N} is a («, 5)-
pseudo almost periodic sequence. Assume {Ix(x),k € N} is bounded for every bounded
subset K C L™(P,H), I(x) is uniformly continuous in x € L™ (P, H) uniformly in N.
If ¢ € PAP1(R, L7 (P, H), o, 3) N UPC(R, L™ (P,H)) such that R(¥)) C L"(P,K),
then, It (¢ (sk)) is (o, B)-pseudo almost periodic.

Let h : R — RT be a continuous function such that h(s) > 1 for all s € R and
lim| 5o A(s) = 00. Define

PCQ(R,L"(P,H)) = {p € PC(R,L"(P,H); lim Ell¢(s)|I” o)

|s|—o0 h(S)
which is a Banach space with the norm ||¢||;, = sup,cg E‘lf((j))”T
Lemma 2.3. [12] A set C C PCQ(R, L"(P,H)) is relatively compact if and only if
the following conditions are verified

(i) lim|gooo % = 0 uniformly for ¢ € C.

(i7) C(s) = {p(s) : ¢ € C} is relatively compact in L™ (P, H) for every s € R.
(13i) The set C is equicontinuous on each interval (s, sk41) (k € N).

Lemma 2.4. [12] Assume that f € APr(R,L"(P,H),«, ), the sequence {y;}icn €
AP (R, L"(P,H),a, 3), and {tg}, j € N are equipotentially almost periodic. Then,
for each € > 0, there exist relatively dense sets Q. of R and Q. of N such that

o Ellg(t+s)—gt)||" <e forallt e R, |t —t;| >e,5€ Qe and i € N.

o |[T(t+u,s+u)—T(ts)||" <eforallt,s e R, |t —s| >0,|s—t;] >e|t—t;] >

g,u € Q. and i € N,
o E|lyirg —uill" < e forallg € Q. and i € N.
o Elly! —ul|” <e for all g,u € Q. and i € N.

Lemma 2.5. [(]
(i) If f,g € PAPT(R,L"(P,H),,3). Then f x g € PAPt(R,L"(P,H),«, ).
(ii) If f € APt (R,L"(P,H)) and g € PAPY(R, L"(P,H)). Then
[ x g€ PAPY(R,L"(P,H),, ).

3. Main results

In this section, we establish some results for the existence, uniqueness, and the global
exponential stability of the pseudo almost periodic solution of (1). For convenience,
we introduce the following notations and norms:
sup g (Ellbis (5)[7) = big, supex (B ()I7) = i, Iy = Sy supyea (g OI).
We first introduce the notion of mild solution to system (3.1) — (3.2).

An F,-progressively measurable process {y;(s)}scr is called a mild solution of
system (1) if, for any s € R, s > sg,$ # s, k € N,

W) = Visspi+ [ v sﬂZ% s us(r +Zm ()]ar

/ Vi(s,7) Zgb”Tyj )dB;( +ZVssk I (yi(sk)),

SE<S

(2)
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where V(s,s0) = e Jio (DT Begore giving the main result in this third part of the
paper, we make the following assumptions:

(A1) : ai(s) is continuously almost periodic function, b;;, fi; are (o, ) — PAPy
functions, for all 1 <i,j5 < n.

(A2) : The functions ¢;; € PAPt(R x L"(P,K), L"(P,L3),a, 3), and ¢;;(t,-) is uni-
formly continuous in each bounded subset of L"(P,K) uniformly in s € R, Ij is
a pseudo almost periodic sequence, I1(y), ¢;(y) are uniformly continuous in y €
L"(P,K) uniformly in k € N.

(A3) : There exists ¢;; > 0, Cj, > 0 and @ > 0 such that for all z, y € L"(P,K), we
have: El|i; (s, ) — dij(s,9)lI7g < dijEllz —ylI", Elllk(z —y)|" < CyE[lz — y||" and
Ellej(x —y)lI" < G5E[lx -yl

Lemma 3.1. Let the assumptions (Al) be fulﬁlled If fi; e PAPT (R, L"(P,K), o, B)
and if the function W; is defined by Wi (t f V(t,s) > 25, fij(s)ds, for eacht € R,

then W; € PAPr(R, L"(P,K), v, B) .

Proof. We have that f;; € PAP¢(R,L"(P,K),®, ), which can be decomposed as
fij = fij,1+fij,27 where fij,l € 1A:PT(lR7 L (P, K)) and fij,g S fh&P%(lR7 L (1D7 K), «, ,8),
then W (t) can be decomposed as

t

Z / V{t5)fija s )d8+/ V(tvs)fij,Q(S)dS}

o0 (3)
= il( )+ Wia(t).

Next we need to verify that W () € APt (R, L"(P,K)) and

Wiz(t) € PAPS(R, L"(P,K),«, ). Thus our proof will be split into the following
three steps.

Step 1. W;1(t) € UPC(R, L"(P,K)).

Let t,t; € R, such that ¢t > ty, for any € > 0, there exist £ = &(¢) such that

0 <t—t1 <&, satisfying
< .
Zl 8(2)

Using a substitution technique7 we have
E|Wii(t) — Wi (t)]"

fz]l

tl n T
<2 'E( / IVttt - v<t17s>||;||fij,1<s+t—t1>“d8) (4)

t n ”
+ 2T_1E(/ IV ()1 I fija(s +t—t1) = fij,1(8)||d8) :
j=1

By Holder’s inequality, it is easy to show that

B( [ IV o0 0) = V) 3 oot = )n)’

— 00

<( [ eetas) bupZEllfm, < 23 Il

— 0 *Jl
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E(/_; 1V (t1,9)| ; | fija(s+t—1t1)— fij,l(S)HdS)r

t1 r n
<([ e ) Y swBl )l < 7Z||fm,1||’"
— 00 j=1 se

7]1

Substituting these into (4) give E||W;1(t) — Wir (¢1)||” < (al) > M figallse <e.
Step 2. W; 1 (t) € APyp(R,L"(P,K)): Let a number [, such that in any interval
[0,8 + ] one finds a number 7/, such that

B[ Wi (t+7) = Wa(t)|" <2 1Z||fu1||oo ( / e~ ST o= [l ainirgg)!
r—1
+2( / V(t,5)ds) / Vit5) Y Bl fpals + ™) — fya(o)ds.
There exists 6 €]0, 1] such that

E|Wii(t +7') = W (8)||” < 2”Zufm,1|

t t t -
X [/ eff:ai(r+fr')dr+9|f;ai(r)drff;ai(r+'r')dr|) % ‘/ai(r—i—T')dr—/ ai(r)dr} ds

t t r—1
v / e I ge) T / e~ P w0 S B (s 4 ) — fupa(s) s,

e =
Using the almost periodicity of a; and f;;1, we get

E[|Wii(t+7") = Wi (t)]|"

<2"" 1Z||fm|| (/ —ast=s)=0et=s) (4 — ) +27 1z:||f”71||oog(/ —ai(t— s))

_ e” _ -t
Y it + 2D Wt oo = 2 Ianu,lnoo( o+ 5 )-
j=1 = j=1 i &i

\a\ o

Consequently, the function W;; belongs to APt(R, L™ (P, K)).
Step 3. Wiy € PAPSY. (R, L"(P,K),a, 3). For 7 > 2 and b > 0, we have

(s

1 - 1 b t n )
m/ EllWiz ()] da(?) < m/_bE /OOV(t,s);fw,g(s)ds dot)

= Mi}/fb (]E/O: IV (2 5)fis2(s)] ds ) da(t)
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Using Holder’s inequality, and Fubini’s Theorem we get

b
ST ) ElWaldat)

1\7—1 1 b t as(tes) n .
P} Y B e LRI

(
< (@) mmmm L Bt odsaas
(

A=l S Bl falt - )1 (s

—-b

e %is b . —a:s n .
Moreover, we get ‘m f_b]E”fijQ(t—S)||7d06(t)’ < em a3 | fialll. Since
fiz € PAPY(R, L"(P,H),a, 3) which is translation invariant and from Lebesgue’s
Dominated Convergence Theorem, we deduce that:

1 b
lim 7/ E||[Wi2(t)||"da(t) = 0. This completes the proof. O
b oo B([_b7 b]) b H 2( )” ( )

Lemma 3.2. Let the assumptions (A;) — (A,) be fulfilled.

If pi,bi; € PAPT(R, L"(P,K), o, 8) and if the function Z; is defined by:

Zi(t) = fioo Vi(t,s) 35 bij(s)pjds = 300, fjoo V(t,s)bi;j(s)pjds, for each t € R,
then Z; € PAPr(R, L™ (P,K), v, §).

Proof. We have that ¢;,b;; € PAPt(R, L"(P,K), o, 8), which can be decomposed
as @; = i1 + @i2 and b;; = b;j1 + bij o where ;1,051 € APp(R,L"(P,K)) and
©i2, bij2 € PAPL(R, L"(P,K), a, ), then Z;(t) can be decomposed as

Zi(t) = Z[ V(t, S)bij(S)ngdS =Zi (t) + Zig(t), (5)
where
Zil(t) = Z[ V(t,S)bijJ(S)(pjldS, and

Jj=1
Zip(t) = Z [/ V(t, 8)bij(s)pj2ds +/ V(t, 8)bij2(s)pj1ds
j=1 - —00
t
+ / V(t7 S)bij,Q (S)szds} .

Next we need to verify that Z;;(t) € APt (R, L"(P,K)) and Z;»(t) € PAPS

(R, L"(P,K), a, 8). Thus our proof will be split into the following three steps.

Step 1. Z;,(t) € UPC(R, L"(P,K)).

Let t,t; € R, such that ¢ > ty, for any ¢ > 0, there exist £ = &£(¢) such that

\T
0 <t—t <&, satisfying >7_, Sollesllte < 5(%) .

bij1
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Using a substitution technique, we have

E||Zi1(t) — Zin (t1)[|"

n t1
}EH; |:/ V(t,S+t*t1)bij71(5+t7t1)<)0j1 7/

t .

V(tl, s)bij,l(s)gojlds}

—0o0 —00

—0o0

_ EH ; {/fl [V(t, s+t—t) — V(t, s)} bija(s +t—t1)oj1

t1 r
+/ V(t1,s) [bij,l(Sth—tl)%‘l - bij,l(s)‘le}ds}

tl n s
< zrflE(/ [Vt s+t —t1) =Vt s)| > lbijals +t— tl)%luds)

— 0 j=1

t s
+2T_1E(/ [V (t1,s) ||Z\|bw1 (s+t—1t1)pj1 — bij,l(S)SOﬂHdS)

j=1
= Ji(t) + Jo(t).

(6)
By Holder’s inequality, it is easy to show that
t1 n r
Ji(t) = 2T71E(/ IVt s+t —t) = V(tr,s)| Y ||bij,1(5+t*t1)¢j1|\d8)
. 2
n ty
< 2r_12</ IV(t,s+t—t1)—V(ts, )Hds)
j=1 7=
t1 n
([ Wts =t = V(e 9 Y Bl (st = gl ds)
. 2
n t1 r
< 2 ([ e ) sw Bl o) e
< Zj( e ) sup Bl ()] e
or— 1 n
< o Llhalilenl and
t1 r
Ja(t) = 2”*1E</ [V (t1,s ||Z||bw1 s+t —11)pj1 — bij,l(s)s&j1||d5>
_ Z
t1 r—1
- 27«_1(/ IV(ts+t—t) = V(tr,s)|ds)
—00
t1
x(/ IV Gt S Bl s+ ¢ — 1) — bisa (o) i leds)
_ Z
11
< ([ emeooy ZSUP]Ewal W llenli
— 00
n
r—1
< EE D IbialZllen.

Jj=1
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Substituting these into (6) give

i 2 r - T s
E|IZa(t) = Za(t)I" < (=) D bl lenlis <.
7 j=1

Step 2. Z;1 (lf) S AAI)T(IR7 LT(P)7 K))
Let a number [, such that in any interval [4,0 4 [.] one finds a number 7/, such that

E(|Zia(t +7') = Za(t)]"
t n -
< 2’"71EH / Vit+1,s+71)—V(ts)] Zbij,l(s + T/)ijldSH
oo =

T

t n
+ 2“11’5“ / V(t,s) Y [biga(s+ 1) = biga(s)pds
oo ~

n t t r—1
<2 Y Ibsallellon B ([ 1V + 75 +7) = Vies)lds)+ 27 ([ Vit s)as)
=1 e o
t n
! s T
></ V(t,s) Y Ellbija(s+7") = bisn ()"l ds
oo ~
r—1 - T r t—fta-(r+7'/)dr —ftav(r)dr r r—1 ¢ r—1
<2 Y bl B ( f e e e i) 1 ([ Ve s)as)
Jj=1 e —o0

t n
x / V(t,5) S Elbig (s + ) — biga ()| o1 e ds.

j=1

There exists 6 €]0, 1] such that

n
E|Zun(t +7') = Zu@)II" <2771 ) IbijallZ el
j=1
t

t t
X [ / e~ J ailrdm)dr40] [ as(rydr—[Jai(r+7)dr) \ / ai(r +7')dr — / a;(r)dr

t —
+ 2T—1(/e— fs’ ai(r)drds) !

t n
x / e S0 S R (5 4 7Y (5 4+ 77) — big (8) 0y (5)7ds.

j=1

}Tds

Using the almost periodicity of a; and b;; 1, 9,1 we get

E(|Zia(t +7') = Za (O]

n t r t r
< 2Y Pallienlin ([ O e i) 2 te ([ enmion)
Jj=1 e —o0

n t
1 —a;(t— r 1 €
< 2 allalienlie ([ e i) 2 G
J= _*
< g” €

n
277 Ibijllsellpinllse 7 +27
j=1 paid [3

n
= 8(2T_1Z||bij,1
j=1

1 1
r T 27‘—1 )
|oo||§031|‘ooai2,r + a;
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Consequently, the function Z;; belongs to APt(R, L"(P,K)).

Step 3. Zi» € PAPY(R, L"(P,K),

a, f).

For r > 2 and b > 0, we have

1

B~ bb])/
37—

= B(=b8)

/m s Zl\bu2 s llds)”

E[| Ziz(8)]" da(t)

/ /vmznbm ligszlds )

/Vts

o Mlgszlds) da(t)].

Using Holder’s mequahty, and Fubini’s Theorem we get

1

E)
b t n
s [ [ B O lenldsde

<

/ E|| Zoo (1) do(t)

+ZEHbu2 I H%l\loodsda+ZEllbu2 )||T||80j2\|20dsda]

Then, we get
1

B([=b.b) /fb

— %7‘71 /8

saei [

Jj=1

E[|Ziz(8)[|" de(t)

n

S [Elbiatt = oI + Ellbia(t = I lese

+ ZEnbU,z(t - s>|r||soj1||;o)dsda<t>

<o Taem / B¢ — o)1l da(t)ds
37— 1 +oo T

tot ), LAt vy | Elbuat = o) el datoyds

S Eni g [ Blbat = o psalidaas
w Jy 2 Bn ),

Moreover, we get

Since bij1052, bij2pj1,bij 202 € PAPL(R, L™ (P, H),

variant and from

limp 00 m fEbEHZig(t)Hrda(t) = 0. This completes the proof.

e~ s o
— E|bij,q1(t — rod < e B R bis 1|52,
B bb])/ [1Bi5..(6 = )l es2 lredar(®)| < e Ellbisa el 0s2]

e~ us . . Cws ) .
N E|[bij2(t — 8)||"[|@j1||oede(t)| < e 2E||bij 1|5 |l051 ||,
B(=b,B) [ Ellba(t = 9l eda(t)| < e = Elbualllen

—a;s b

e = o
ey | Ellbiz(t = s)I"lwszllbeda(t)| < e *Elbij 2|5l @2l
B(=b, ) / 1Bis,2(t = )| 052 5edex(t)| < e 2 ElJbis al| 1052

a, ) which is translation in-
Lebesgue’s Dominated Convergence Theorem, we deduce that

O
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Lemma 3.3. Let the assumptions (A,)—(A,) be fulfilled. If p;; € PAP¢(R, L"(P,K),
a, B) and if the function G; is defined by Gi(t) = >°7_, fjoo V(t,s)pij(s)dBj(s), for
each t € R, then G; € PAPr(R,L"(P,K), o, ) .

Proof. We have that ¢;; € PAPy (R, L"(P,K), «, §), which can be decomposed as
¢ij = Pija+oij2 where ¢ij1 € APp(R, L"(P,K)) and ¢,2 € PAPL(R, L"(P,K), a, ),
then G;(t) can be decomposed as

t

Z / V(. 9)051(aB; () + | V(t.8)002(d8,(5) .

= Gil( ) + Gia(t).

Next we need to verify that G;;(t) € AP(R, L"(P,K)) and

Gio(t) € PAP%(R, L"(P,K),«,3). Thus our proof will be split into the following
three steps.

Step 1. Gy1(t) € UPC(R, L"(P,K)).

Let t,t; € R, such that ¢t > t1, for any ¢ > 0, there exist £ = £(¢) such that 0 <

r—2
. . p— — 2
t —t; <&, satisfying: Z;—;l pijillte < 4, where A = C,27! ((’;;) T; + 317)
Using a substitution technique, we have

E[|Ga(t) = Ga(t)]"

i /_Vts+t t1)dija(s +t—t1)dB;(s /th’ )biji (s )dB()]H

_ ]EH i [[; [V(ts—i—t— t) — V(tl,s)]@j,l(sﬂ— t)
+/:O V(t,s) [¢ij,1(8+t—t1) —¢ij,1(s)]d3j(s)]Hr

4 " NG
<2 B[ Vst t-0) = V(9 Y [uals + - 0)]dB, ()

t1 n r
+2T*1E(/ \|V(t178)||z||¢ij,1(8+t—t1)—¢ij,1(8)||dBj(8)) :
j=1
By Ito integral and Hélder’s inequality, it is easy to show that
t1 n T
B( [ IVt t—0) = Ve Y Iouals+ 1= )ldB ()
=1
e 2 /2
<OE(/ IV (ts -t t2) = Ve, )23 (s £ — )]ds)
j=1
(t1-9)a 1 ) 7 " Bi-s) -
g (t1—s)a; —5(ti—s)a; | T
/ T ) T ([ i) 3Pl (Ol
o(-2)7 2 ansu 1l

a3 j=1

IN
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and

e( [ oo IVt )1 D (s + ¢ = 1) = By (3)l|dBy(s) )

=1
<o [y < (v HEZII% (st~ 1) = bisa(s)["ds)
<Ch 72“‘?” 1Hoo

& =
Substituting these into (8) give

r—2

T L r-2\E 2
E|lGa () — Gat)| < G2 ((52) F =

1\ — ,
) Y lbualln <<
)

Step 2. G;1(t) € APt (R, L"(P,K)).
Let a number [, such that in any interval [§, + [I.] one finds a number 7/, such that

E|Gi(t+7") = Ga ()"

< 2T*1EH/_;[V(t+T’,s+T’) -V, S)]ié"j’l(s+7/)d3j(s)HT

+or- IZEH/ V(t,s) ¢”7 (S+T')_¢l.j,1(s)]dB‘j(s)H,.

= J1+J2.

Using It6 integral and Hoélder’s inequality, we have

[~ t n /2
hog e ([ Wi s ) < Vs S Blouals + 1) ds)
oo =1
RN e e ~Jtairdri2 g\
< CTQT ZHd)ijﬂl |£O]E(/ |€ s ai(rr)dr =[S ai(r r‘ ds)
j=1 -

There exists 6 €]0, 1] such that

— 00

t t 2
/ a;(r+7")dr f/ ai(r)dr

Using the almost periodicity of a; and ¢;;,1, we get

n t r
ho< c2t Z H%ll\";o(/ e 2ailtme)m20e(t=) 2y 5)2d5>
i=1 —o0

. n t t / t t ,
5 < Crzr—l Z ||¢l]’1||;o [/ 6_2 ST ai(r+7")dr+20| [ a;(r)dr— [T a;(r4+7")dr])

r/2
X ] ds.

A

n t . r/2
< g2t Z l|ij1] ZOET(/ e 2ailt=o) (¢ _ s)2ds>
=1 —oo
r—1 1 1 r/
< 270 (gmt ) Zn%,lnm



334 M. MIRAOUOI AND M. MISSAOUI

and
n

[ V69 St +7) = suatolan )|

Jo < 27K

— 00

< Cr2r_1€(g) T2 i 51115
ra; ra;

<o ([ wena) T [ vens el - ssaelrds

. caff 1 1 \"/2,_
E|[Wii(t +7) — Wi (D)|” < Cp2 1[(@*4?) : 1+(

r—2\"2" 2 ]+
) T Idualle.
Ta; ra;ld 4
= =7 =1

Consequently, the function G;; belongs to APt (R, L"(P,K)).
Step 3. Gy € PAPL(R, L"(P,K), a, ).
For » > 2 and b > 0, we have

1 " - .. s (s
M/E”Gﬂ“” da(“—g / /oo ts@qﬁu,z()d&()

<5 [ ( /OOZIVts%z 9l ds)" da(t),

da(t)

using Holder’s inequality, and Fubini’s Theorem we get

i | Gl dat

< m[bb(/t (V(t,s))fizds)%(/_ Z]EH@]Q NG ds)da()

— 00

Ta

<ot [T ams [ > Eloualt — ol dalthi

Moreover, we get

La;s

0.0

Since ¢;;2 € PAPY(R, L" (P, H), a, 3) which is translation invariant and from Lebesgue’s
Dominated Convergence Theorem, we deduce that

r

/En@]z( >||’“da<t>\s ~gass gl

1 b
lim ——— E||Gi(t)||"da(t) =
im s [ EIGa)da()
This completes the proof. O

Lemma 3.4. Let the assumptions (A1)—(Az) be fulfilled. If I, € PAPt(R, L? (P, K),
a, B) and if the function Ty, is defined by

t) = Z V(t, i)k (9)

te<t

for each t € R. Then Ty € PAPT (R, L"(P,K), o, 5) .
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Proof. We have that I, € PAPT(R, L"(P,K),«, ), which can be decomposed as
Iy = I j + Io i, where I , € AP (R, L"(P,K)) and I, € PAPY.(R, L"(P,K), a, 3),
then T'y(t) can be decomposed as

Fk(t) - Z V(t,tk)flﬁk + Z V(t,tk).[gyk

te<t te<t (10)
= Fl_’k(t) + F27k(t).

Next we need to verify that 'y x(t) € APp(R, L"(P,K)) and I's x(t) € PAP%(R,
L"(P,K), a, 8). Thus our proof will be split into the following three steps.
Step 1. Ty 4(t) € UPC(R, L"(P,K)).
Let t,t; € R, such that ¢ > ty, for any ¢ > 0, there exist £ = &£(¢) such that
0 <t—t <&, satisfying
- 1— e %aiyr
Il < (—5—) =

Using a substitution technique and Hélder’s inequality, we get

BTk (t) = P (t)]"

<2 | Y v + 28] 3 v wna

te<t te<t1
, r
< 2r—1( Z e—%(t—tk)> SupIE||I1,k||T + 2r—1( Z e—ﬂ(h—tk)) SupEHIl,kHr
toet keN tr<ti ke

2 T -
< (m) [T kll% < e

Step 2. Ty 4(t) € AP1(R, L' (P,K)).
Let a number [, such that in any interval [4,0 4 I.] one finds a number 7/, such that

BIPuslt+7) = Te(®)” 2B S0 Ve bl + S Vet

t<t+T1’/ te<t
T
< 2T?1EH Z V(t+ 7"tk g) 1 kg — Z Vit+ T/’tk+q)ll’k“
te<t tp<t
T
+ 2R SV )T+ Y V() Tk
te<t tr<t
= j1 + j2~

For any € > 0, by Lemma 2.4, there exist relative dense sets of real numbers €2, and
integers Q., for every 7 € €., there exists at least one number ¢ € Q. such that
ty <t < tpg1, |t —tg] > €, [t —tp_1| > e, one has t + 7' >t + 7' + € > tp4q and
thtqe1 > thyr + 7 —e >t + 7' that is tgyq <t + 7 < tiyq+1 such that [t — 7| < e
and E||[1 y4q — L1 5] <&, ¢ € Qe, k €N, then

r

J1 < 2T71E‘ Z V(f + T/7tk+q)[ll,k+q — Il,k]
tr<t
< 2 (Y e W) Bl g — sl
tr<t

— ) ¢
- 1—e %
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and similarly to the proof of Step 2 in Lemma 3.1, we obtain

B < 2TE| DV thrg) — VIt 0|

trp <t

r
21 (3 et — 1)) sup Bl 4"
th<t keN
27’7167“6—7”5&
S 7_&1’_7_81113]}3”[1)]6”7,.
(1 —e %%)" pen

IN

Consequently, the function I'y i belongs to AP (R, L" (P, K)).
Step 3. 'y, € PAP%(R, L"(P,K), o, ).
For b > 0, by Holder’s inequality, we have

b
T ), ElTas(®l da)

1 b
A= v A POM(CALY

trp<t
Let k € N, define the function w(t) by u(t) = V (¢, tx) Ik, tr < t. Then,
. T T < i r—ra;(t—ty) r_
A Ellu(@)]|” = Lim [[V(#, t5) Lo ]" < lim MTe %IN)EHIMH

T

da(t).

So, u € PCY(R, L™ (P,K)). Define u; : R — L"(P,K) by
uj; = V(t,tk,j)fg)k,j, tp <teR.
Therefore, u; € PAP%(R, L"(P,K), «, 3). Furthermore,
Elu; ()1 BNV (¢, tr—j) T2, 1—5"
< et B Ly
keN

IN

e~ t0) =it gup | Iy |
keN
Thus, the series Z;io u; is uniformly convergent on R. By Lemma 2.1, we ob-

tain: Y2, _, V(t,te)l2x = Y0 u;(t) € PAPR(R, L"(P,K), o, 8), which also means,
limp— oo m fEbE HZtk<t V(t,tk)lg,kHr da(t) = 0. This completes the proof. O
Theorem 3.5. Suppose that (A1)-(As) hold. If M = 3" ' max; [# max; b;;p; +
r—2 -
Ck

C (7‘72) 2 2
"\ar ey
(a, B)-pseudo almost periodic mild solution on R"™.

Proof. Define the operator F' : PAPT (R, L"(P,K),«,8) N UPC(R, L"(P,K)) —
PCR,L"(P,K))

(F)(®) = /Vts_z Dpa(ws () + fis ()] s

} < 1, then the system (1) has a unique r-mean

T / Vit,s Z@J(s uy ())AB,(s) + 37 V() I (wi(te).

tp<t
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In order to show that system (3.1) — (3.2) has a r-mean (¢, 8)-pseudo almost pe-
riodic mild solution, we only need to prove the operator F' has a fixed point in
PAPt(R,L"(P,K),a, ) NUPC(R, L"(P,K)) and divide the proof into two steps.
Step 1. F maps bounded sets into bounded sets in PAP (R, L™ (P, K), o, 5)NUPC(R,
L"(P,K)). Let p* > 0 and

y € By- = {y ¢ PAPy(R, L"(P,K), o, /) NUPC(R, L"(P,K)) : E||y||" < p*}.

It suffices to show that there exists K > 0 such that for each y € Bp- we have
E||Fy||" < K. Let y € By«, t € R. For r > 2, we have

Bl (Fy): (0" <47 11@1\2 [ veomiestes|

’/_OOZV(tfs)fij(S)ds "

a4 1]EH/ SVt 516155, 35(5))5)|

0 j=1

+4"7'E

(11)

+ 47| SVt el ()|

t <t

Using It6 integral and Holder’s inequality, we get

BlEal <o ([ o) ([ "“”)ZEH% )" Elles (ws ()" ds)

t r—1 t
s ([ ) ([ e S mn )
t n 3
s ([ S By (o) lgas)
j=1

+a (> e*w*tw)“l( > e S IR L (yi(b) )

tp <t <t

(27w [ ey oras)
) P
() S ([_emea)
rric, z@](/e rznstge) T [ty (oas)

oo

* (ﬁ) Ck(Ze SRy, (b))

<t
(12)
So

r—1 47‘—1 n

El(Fy:I" < — = max@bijllyllos + —— > fis
ai =

41"—1 ,
Eii:j;:sggjg(7kﬂyiﬂoo‘

r—2
_ _2 2 2 _
e c( ) 2 max By llylln +
a;r J

air
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Then

41 _ 41

E[[(Fy)®I" < max [(4n)r lﬁmj‘dx%bij\|y||§o+(4n)r I;Zfij
i = i=1

r—1

—2
—— max @;; rT4+—— __C 700}
) o billyl +(1_e,5ﬂ)r kI

air

+(4n)" 'O, (

= K.

Step 2. For any x,y € Bp-

E|l(Fz — Fy)()l” <3 'E| Z / V(t)bis ()i (25 () = 03 s (5))]ds |
s8] [ SV m ) ~ b)) 03

+ 3T’1EH >Vt te) k(i (tr) — In(yilts))] '

tp<t

Using Holder’s inequality and (A3), we get

E| g / ; V (2, 8)bis (s)lips (@5 (s)) — 05 (s ())]ds|

t r—1 t n
(/ eiﬂ(tﬂ)ds) (/ eiﬂ(tis)zbijﬂi

1 ”
o maxbi;7; ZSIGIPIEH%( s) = y; ()]l

a;"
Q4 =1

IN

wi(w;(s)) — w;i(y;(s))

Tds)

IN

IN

1 _ r
— max b;; P, Ellz — y|
a;” i
and

E|| 3 Vit ) (ai(t) — Il |

< (T etw) (X e s IR ) - L))

1

< ————CrsupEllzi(s) —yi(s)]"-
S 1o dmy CESUR l[zi(s) = yi(s)ll

Using It6 integral, Holder’s inequality and (As), we get

r

ZIR Z V(t,)[13(5,5(5)) = B 5,35 ()} dBs s)

r—2\"7 2 R .
gcr( ) - max i 3 supElla; (s) — g (5)|
J j:15€R

@i’ ai

r—2
r—2\ 2 2 _— T
<C» ( : ) o mjaxcbijEIIw —yl"
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Consequently,
. ool 1 o r—2\ 2 2 - .
Blro - ol < 37 [ w4 C (22) T 2w Bl - )
ai’ i ai ai’ i
37‘710 ,
+ﬁSUPEH%( s) —wi(s)|"
r—2
r r—1 1 —2\ 2 _
Bl (Fo - Fy)0" < 3 max [ maxmmw( ) 2 max
4 a;" a; ai” J
Ck ”
o O gy
A oy Elle =

Since by construction M < 1, we have the strict contraction of operator F' and
by the Banach contraction mapping principle, F' has a unique fixed point such that
Fy=uy. O
4. Exponential stability

Theorem 4.1. Under hypothesis of Theorem 3.1. the r-mean («, 8)-pseudo almost
periodic mild solution of the system (1) is exponentially stable if

n r—2 r—2
R ey S max gy (- 2 2 —2r=Dat-t0)\ 2
L = ml_ln%— 4 [C,. 2 m]axmj <m) (1 —e 2 i )

—a;i(t—to) o
+Z ( ) maxbij@] >0, forr > 2.
J

Proof. It follows from Theorem 3.1 that system (1) has at least one mild solution
z(t) = (@1(t), ..., o (t))T € B with initial value ¥(t) = (¥1(t), ..., n(t))T. Let y(t) be
an arbitrary solution of system (1) with initial value ¥*(t) = (5 (t), ..., %% (t))T. Let
zi(t) = z;(t) — yi(t), ui(t) = i (t) — ¥F(t), i = 1...n, then for r > 2

20(t) = Yilto)e™ Jio 110 4 / ffo‘““”“zb () 103 (2(5)) = 3 (s ()| ds

t t o n
+/€7 Jio ai(s)déz [¢ij(57$i(5)) — ¢ij(s,yi(s ] )+ Z e tU ail)dep I (zi(te)).
to

=1 te <t

Bl = Elai(®) - ()"
< AR g 0) — il ()]
t n ”
g / S 9o ) (9]
+4r—1 —ab(t S)Z |:¢” S, xj ¢LJ(8 yj( ))i|dBJ(S)HT
4| 2 eastt—th [Im(tk)) - fk(yi(tk))] T
t <t
3
< 4Tl TRy () — 1T+ 47D Uk
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Using Holder inequality, we get

Ui <E (/ e80T 7 by ()l ps (i () — soj(yj(S))Ild8>

to j=1
¢ r—1
<([emea) [ene ”ZEH% IElps (25(5)) = 4w (5))|ds
to to
1 — e—ailt=to) \ r—1 — —a;(t—s)
< () et [ S Bl -
Us =E[| 37 et [1(oiaw)) = Butwstan)] |
<t
r—1
< [ S et S e TR Iy (wi(th)) — Ty () 7
= t <t

r—1
o Z efﬂ(t*tk) Z 67ﬂ<t7tk)E||l'¢(tk) - yl(tk))”T
t<t tp<t
Cy —ai(t—tg) "
< O Z e Ell@i(te) =yt | -

(1 _5‘1 ) tp <t
Using It6 integral and Holder inequality, we obtain

T

U= 8| [ 7o S [t — 0t )],
. . /2
<cE < [ e S s 60) - @j(s,y]-(s))n?ds)

r/2
k 2(7 ) s 7—u s
<c. < [t e >Z||<z>u (5,235 ))¢>ij(s,yj(8))ll2d8>

to
<c, ( / Co Py, ) ( / t e‘”“S>ZE||¢>¢j(s,a:j<s>>—@j(s,yj(s))nws)
to to =1
< oy (= 2) T (1o )
( / —ate S>ZEHx] (s >|’“ds>.
Therefore

Ellz()” < 4" e TR |ghi() — o ()]

o C (e .
e (1 7:(1.7)”1 (E e TR 2 (tk) — yi(t)] )
— e %%

tp<t

r—2
. r—2 = _20=1) g 2
" o — 1-— r—2 2% 0 )
+ [ macs <2<r— 1@) (1-e
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1 — e~ @ilt=to) \ r—1 — ”
() ]« [ S Bl ) o

ai

Consequently

Ello(t) — y(l" < 47" maxe 5By (1) — " (1))

r, Ch —a(t— .
+4 ﬁ x | D maxe T HE 2 (t) — y(te)]
tp <t

r—2 _—

n _ _ = 2(r=
e e (=g T (o) T
= r—1)as

1_6*111(75 to) \ r—1 - t s (t—s -
*Z( ) mjaxbij%} X/ e IR ||z (s) — y(s)|"ds.

to

Let us choose Z(t) = E||x(t) — y(t)||"e%?, then we have

r—2
_ t n _ —92 3 _2(r—1) =2
< g4t 1, L _ o rgtai(t=to)) 2
Z(t) < 4 Z(t0)+/to4 c ;m?XQSJ(Q(T_l)%) (1-e )
n 1 — e~ ailt=to) \ r—1 -
+Zl (T) maxbijcpj]Z(s)ds
=
4 C
1 Z max _:a ) Z(tk)
<t
Now by using Gronwall-Bellman’s lemma [24]
2() < 4 Z(t0)4" " Z(to) [ (1+4T*1max%)
tp<t b1t

r—2

xex (4T71 [C imaXW i : (1*6 2(T 1)a a;(t— to)) =
P T__ i 7\ 20r — Das

+Z(1—e ai(t— to)) 1mjaxﬁj<,7j}(t—to)).

Then
T r— r r— C t+1
Ella(t) ~ yOl" < 4 [(t0) — w(to) " (1 + 4 lmgxﬁ)
n 2 = 2( 1) r=2

—ai(t—to) \ r—1 _
) max b”@] (t — to)) .
J

+Z(
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For r = 2, by using Hoélder inequality, we get

2
v < E(/ *“*“Zubu s x]u)_%(yj(s)”ds)
to
1 — e ailt—t0) — a;(t—s) 2
< ()t [ ZJEII% — i) IFds,

Us = B| Y s [hyai(ta) - myz-(tk))} I

tp <t
< [ ST ermltt ) [ 3T e TR (@i () — I (i (1))
ty, <t t <t

tp <t

< (%) (Z e OB 1) yi<tk>>||2> -

Using It6 integral and Holder inequality, we obtain

U2

e ai(t=s) Z [qj” (s,zj(s)) — ¢ij(s,y;(s ))]dBj(S)HQ

t t
4max ¢i; (/ e_ﬂ(t_s)ds> (/ e 4O x(s) — y(5)||2d5>
J to to
/1 — e—ailt—to) t e (t—s
iy () ([ (o) - y(o) )
i to

Therefore, now by using Gronwall-Bellman’s lemma [24] we obtain

IN

IN

. Ck t+1
Ella(t) —y(0)2 < 47" fa(to) — y(to)|*(1 + 4 max s ,@))
1 — e—ai(t—to)
xgggp( — min a; + 4 max (eT) [maxb”(p] + 42451]] to))7
had 3 j=1

which implies that the r-mean (a, §)-pseudo almost periodic mild solution of the
system (1) is exponential stable. O

5. Applications

In this section, we illustrate our main results by an example. Consider the two-
dimensional impulsive stochastic neural networks

dyi(s) = | = as(s)yi(s) + iy s ()i (s () + X5 fisls)| ds

+ Z?,l ®ij(s,yi(s))dBj(s), s >0, s # sg, k€N, (14)
yi(si) = Lik(y(sk)), s = s,

yi(so) =y, i =1,2

where (Bj(s),s € R) is two-sided standard Weiner process, H = L2([0,7]), sx =
k+ %|sink —sinv2k|, k € N, this gives § = inf(sp11 — s5) = % >0, ¢; = (1,17,

a1(s) = az(s) = 8 + sin(27s) + sin(v27s) € APp(R,R) = a; =6
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sin(27s)+sin(v2rs)4e~ ¢l cos(27s)+cos(v2ms)+e |5l

(bij(s))1<ij<2 = > 1 20 2 )
== COS(2WS)+COS(\/§7TS)+1+T sin(27s)+sin(v/2ms)+e”°
20 20

(fij(s))1<ij<2 = 20(bij(s))1<i, <2,

1.
©01(8) = @a(s) = 5 sins,
cos(27s) + cos(v2ms) + e~ 15l cos(2ms) + cos(v/2ms) + e~ *]

cos(2ms) + cos(v2ms) + eIl cos(2ms) + cos(v/2ms) + e~ sl

1

611 (s.9:(5)) = =5

5 ) sin(ui(s))

L=I5= 4—10[005(27rk) + cos(V2mk) + e*kQ] sin(y;),

this gives that b;; = 0,3, p; = ?, fij =6, ¢ij = 0,12 and C}, = %. It is obvious
to verify that the functions ¢;; € PAPT(R x L*(P,H), L*(P, L3), o, B), bij, fij €
PAPt(R,L?(P,H),, 3), I € PAPT(N x L*(P,H), L?*(P,H), a, 3), and

¢j € PAP1 (R, L?(P,L*(P,H)),, 3). Sowe have M = 0,695 < 1, L = 5,54 > 0. All
conditions from Theorems 3.5, 4.1 are satisfied, then the system 14 has has exactly one
r-mean («, 3)-pseudo almost periodic mild solution, which is globally exponentially
stable.

Example 5.1. We will choose the two measures o and S in the previous application
defined by the following double weights, respectively:

in et if t<0,
pl(t) = e (t)a t€R and P2(t):{ 1 if t;O

We have 2 < a([-r,r]) = [7 e"®Mdt < 2er. Then a € M satisfies (Hy). In deed
sin(7+a) < 2+sin(a) for all 7 € R and a € A, which implies that a(7+ A4) < e?a(A).

From [1], 8 € M satisfies (H;). Since lrlinfgop;m

< 00, then (Hy) is true.
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