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Abstract. This paper is concerned with the existence, uniqueness and the exponential sta-

bility of double measure r-mean pseudo almost periodic solution for a class of recurrent neural
networks for r ≥ 2 by employing the fixed point theorem and differential inequality. Finally,

we give an example to confirm the reliability and feasibility of our findings.
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1. Introduction

In the last decades, since stochastic modeling has an interesting role in engineering,
social science, finance and physics, stochastic differential equations has been widely
studied (see[11, 19, 20, 21, 22, 23]). A lot of attention has been given to the quali-
tative properties such as uniqueness, existence and stability for stochastic differential
equations. Many authors considered the stability, uniqueness and existence of almost
periodic solutions for impulsive differential systems in abstract space. The stability
and the existence of piecewise almost periodic solutions of impulsive differential sys-
tems with time-varying delay has been established by Satmov (see [13]). Recently,
recurrent neural networks (RNN) have attracted considerable attentions, this is due
to the fact that they are a class of important mathematic models which are widely
used in many areas, such as classification of patterns, associative memories, parallel
computation, solving certain optimization problems, and so on [4, 5]. RNN are an
attractive tool for both practical applications and for the modeling of biological nerve
nets, but their successful application requires an understanding of their dynamical
properties, in particular, their stability. Many authors studied the dynamic behaviors
of neural networks with time delays (see [2, 5, 7, 16]).
In [8], Dingshi and Yusen studied the existence of periodic measures for the impulsive
stochastic equations to the following neural networks

dyi(s) =
[
− ai(s)yi(s) +

∑n
j=1 aij(s)ϕj(yj(s)) + fi(s)

]
ds

+
∑n
j=1 φij(s, yi(s))dBj(s), s ≥ 0, s 6= sk, k ∈ N,

yi(s
+
k ) = Ik,i(y(sk)), s = sk,

yi(s0) = ψi, i = 1, 2...n,
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Motivated by the above description, in this paper, we investigate the uniqueness, ex-
istence and stability of almost periodic solution of the following stochastic differential
equation

dyi(s) =
[
− ai(s)yi(s) +

∑n
j=1 bij(s)ϕj(yj(s)) +

∑n
j=1 fij(s)

]
ds

+
∑n
j=1 φij(s, yj(s))dBj(s), s ≥ 0, s 6= sk, k ∈ N,

yi(s
+
k ) = Ik(yi(sk)), s = sk,

yi(s0) = ψi, i = 1, 2...n,

(1)

where yi(s) corresponds to the state of the ith unit at time s, ai(s) ≥ 0 represents
the rate with which the ith unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs, ϕj(yj(s)) denotes the acti-
vation functions of the jth unit at time s, n corresponds to the number of units in a
neural network, (bij(s))n×n is connection matrice, fij(s) is the external bias on the ith
unit, for all j ∈ {1, · · · , n}, φij(·, ·) : [0,+∞[×Lr(P,K)→ Lr(P,H)), for each k ∈ N,
Ik(.) : Lr(P,K) → Lr(P,H), B(s) = (B1(s), · · · , Bn(s)) is an n-dimensional Brown-
ian motion defined on (P,F , {Ft}t≥0,P) and the initial condition ψ = (ψ1, · · · , ψn).
φ, ϕ, ψ, Ik, sk satisfy suitable conditions that will be established later. Moreover, the
notations x(t+k ) represent the right-hand side limits of y(·) at sk, and ai = infs∈R a(s).
The paper is organized as follows: In section 2, we shall introduce the necessary pre-
liminary results, notations and definitions needed in the later sections. In section
3, we mention some useful and important properties on a concept of mean-value of
uniformly almost periodic functions. Making use of these properties, we prove the
existence and uniqueness of p-mean (α, β)-pseudo almost periodic mild solutions for
(1). In section 4, we prove the exponential stability of the solution of our problems
(1). At last, in section 5, an example is given to illustrate our results.

2. Preliminaries

In this section we shall give some preliminary results which will be used in the sequel.
The involvement of these results is stated with reference to [3, 9, 10, 14, 15, 17, 18].
Throughout this paper, we shall introduce the following notations
• (H, ‖ · ‖H) and (K, ‖ · ‖K) are real separable Hilbert spaces.
• (Ω,F , P ) is a complete probability space.
• Let Lr(P,H) be a Banach space defined by Lr(P,H) := {Y : H-valued random

variable} with the norm ‖Y ‖r =
( ∫

Ω
E‖Y ‖rdP

) 1
r

.

• L(K,H) = {Y : K → H linear bounded operators}. It is equipped with the usual
operator norm ‖ · ‖.
• L0

2(K,H) = {Y : K → H Q-Hilbert-Schmidt operators} with the norm ‖Y ‖2
L0

2
=

Tr(Y QY ∗) <∞.
• (Ω,F , (Fs)s≥0, P ) is a filtered probability space, where Fs = σ{B(x)−B(y); x, y ≤
s} and (B(s), s ∈ R) is two-sided standard Wiener process.
• Denoting B the Lebesgue σ−field of R and by M = {α : positive measure on B;
α(R) = +∞ and α([x, y]) < +∞, ∀ x, y ∈ R, x < y}. Throughout this paper, we
take α, β ∈M and satisfies the following hypotheses:
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(H0): lim supr→+∞
α([−r,r])
β([−r,r]) <∞.

(H1) for all τ ∈ R, there exist γ > 0 and a bounded interval I such that:
α(a+ τ ; a ∈ A) ≤ γα(A), when A ∈ B satisfy A ∩ I = ∅.

Let Y : R −→ Lr(P,K) a stochastic process. If there exists l ∈ R∗+ such that
E‖Y (t)‖r ≤ l, then, Y is named to be stochastically bounded in r-th mean sense. It
is named to be stochastically continuous in r-th mean sense if lim

t→s
E‖Y (t)−Y (s)‖r = 0.

We denoted by BC(R, Lr(P,H)) the space of any stochastically bounded and contin-
uous processes. One can show that BC(R, Lr(P,H)) is a Banach space with

‖Y ‖r = sups∈R

(
E‖Y (s)‖r

) 1
r

. Let S be the set consisting of all real sequences {si}i∈N
such that δ = infi∈N(si+1 − si) > 0, limi→∞ si =∞. For {si}i∈N ∈ S, let

PC(R, Lr(P,H)) =
{
ϕ : R→ Lr(P,H) stochastically bounded piecewise continuous

functions ;ϕ(·) stochastically continuous at s for s /∈ {si}i∈N and ϕ(si) = ϕ(s+
i )

for all i ∈ N
}

and

PC(R×Lr(P,K), Lr(P,H)) =
{
ϕ : R×Lr(P,K)→ Lr(P,H) stochastically bounded

piecewise continuous functions ; for any x ∈ Lr(P,K), ϕ(., x) ∈ PC(R, Lr(P,H))

and for any t ∈ R, ϕ(t, .) stochastically continuous at x ∈ Lr(P,K)
}
·

A continuous stochastic process Y : R −→ Lr(P,H) is called r-mean almost peri-
odic if for any ζ > 0 there exists c(ζ) > 0 such that for each θ ∈ R, therefore, there
exists ξ ∈ [θ, θ + c(ζ)] satisfying: sups∈R E‖Y (s+ ξ)− Y (s)‖r < ζ.

The set of all such processes will be denoted by AP(R, Lr(P,H)).
A sequence of a continuous stochastic process Yn : R −→ Lr(P,H) is called r-mean

almost periodic if for any ζ > 0 there exists c = c(ζ) > 0 such that for i ∈ N, there
exists at least one number k ∈ [i, i+ c], satisfying: E‖Yn+k − Yn‖r < ζ, n ∈ N.

The set of all such processes will be denoted by AP(N, Lr(P,H)).
Now, let ϕ : R × Lr(P,K) −→ Lr(P,H) be a continuous process. ϕ is called

almost periodic in s ∈ R uniformly in Y ∈ T , where T ∈ Lr(P,K) is a compact,
if for any ζ > 0 there exists c(ζ, T ) > 0 such that for each θ ∈ R, therefore,
there exists ξ ∈ [θ, θ + c(ζ, T )] verified: sups∈R E‖ϕ(s + ξ, Y ) − ψ(s, Y )‖r < ζ for
all stochastic process Y : R −→ T . The set of all such processes is denoted by
AP(R× Lr(P,K), Lr(P,H)). Now, we define:

l∞(N, Lr(P,H)) =
{
Y : N→ Lr(P,H) : ‖Y ‖ = sup

n∈N
(E‖Y (n)‖r)1/r

}
,

PAP0(N, Lr(P,Lr(P,H)), α, β) =
{
Y ∈ l∞(N,H) : lim

b→∞
1

β([−b,b])

k∑
i=0

E‖Y (i)‖rα(i) =

0
}
, and PAP(N, Lr(P,H), α, β) =

{
{Yk}k∈Z ∈ l∞(N,H);Yk = Y 1

k + Y 2
k ;Y 1

k ∈

AP(N, Lr(P,H)), Y 2
k ∈ PAP0(N, Lr(P,H), α, β)

}
, {Yk}k∈N is called r-mean (α, β)-

pseudo almost periodic. Let {si}i∈N ∈ S and ϕ ∈ PC(R, Lr(P,H)). ϕ is called r-mean
almost periodic if the following conditions are satisfied
(1) {sik = si+k−sk}, i ∈ N, is equipotentially almost periodic, that is, for any ζ > 0,

there exists a relatively dense set Qζ of R such that for each t ∈ Qζ there is an
integer p ∈ N such that for all |sk+p − sk − t| < ζ for all k ∈ N.
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(2) For any ζ > 0, there exists a nonnegative number δ̄ = δ̄(ζ) such that if the points
s′ and s′′ belong to a same interval of continuity of ϕ and |s′ − s′′| < δ̄, then
E‖ϕ(s′)− ϕ(s′′)‖r < ζ.

(3) For each ζ > 0, ∃ a relatively dense set ω(ζ) ∈ R such that if t ∈ ω(ζ) then,
E‖ϕ(s)−ϕ(s+ t)‖r < ζ for all t ∈ R satisfying the condition |s− sk| > ζ, k ∈ N.

The number t is called ζ-translation number of ϕ. We denote by APT(R, Lr(P,H))
the space of any r-mean almost periodic functions. One can show that APT(R, Lr(P,H))

is a Banach space with ‖Y ‖∞ = sups∈R

(
E‖Y (s)‖r

) 1
r

. Let

UPC(R, Lr(P,H)) =
{
Y ∈ PC(R, Lr(P,H));Y satisfies the condition (2)

}
.

The function ϕ ∈ PC(R × Lr(P,K), Lr(P,H)) is said to be r-mean almost periodic
in s ∈ R uniformly in x ∈ Lr(P,K) if, for every compact subset K ⊆ Lr(P,K),
{ϕ(., x);x ∈ K} is uniformly bounded, and given ζ > 0, there exists a relatively dense
subset ωζ such that ‖ϕ(s + t, x) − ϕ(s, x)‖r < ζ for all x ∈ K, t ∈ ωζ and s ∈ R
satisfying |s− sk| > ζ.

The set of all such processes is denoted by APT(R× Lr(P,K), Lr(P,H)). Denote

PC0
T(R, Lr(P,H)) =

{
ϕ ∈ PC(R, Lr(P,H)); lim

s→∞
E‖ϕ(s)‖r = 0

}
,

PAP0
T(R, Lr(P,H), α, β)=

{
ϕ : PC(R, Lr(P,H); lim

b→∞
1

β([−b,b])

∫ b

−b
E‖ϕ(s)‖rdα(s) = 0

}
.

PAP0
T(R× Lr(P,K), Lr(P,H), α, β) =

{
ϕ : PC(R× Lr(P,K), Lr(P,H);

lim
b→∞

1

β([−b, b])

∫ b

−b
E‖ϕ(s, x)‖rdα(s) = 0 uniformly with respect to x ∈ K,

where K is an arbitrary compact subset of Lr(P,K)
}
·

PAPT(R, Lr(P,H), α, β) =
{
φ ∈ PC(R, lr(R,H));

φ = ϕ+ ψ;ϕ ∈ APT(R, Lr(P,H)), ψ ∈ PAP0
T(R, Lr(P,H), α, β)

}
.

One can show that PAPT(R, Lr(P,H), α, β) is a Banach space with the sup norm
‖.‖∞. Then, the set PAP0

T(R, Lr(P,H), α, β) is translation invariant of PC(R, Lr(P,H))
and PC0

T(R, Lr(P,H)) ⊂ PAP0
T(R, Lr(P,H), α, β).

Let a sequence of functions {ϕk}k∈N ⊂ PAP0
T(R, Lr(P,H), α, β). If ϕk converges uni-

formly to ϕ, then ϕ ∈ PAP0
T(R, Lr(P,H), α, β).

PAPT(R× Lr(P,K), Lr(P,H), α, β) =
{
ϕ : PC(R× Lr(P,K), Lr(P,H);φ = ϕ+ ψ;

ϕ ∈ APT(R× Lr(P,K), Lr(P,H)), ψ ∈ PAP0
T(R× Lr(P,K), Lr(P,H), α, β)

}
·

ϕ is called r-mean (α, β)-pseudo almost periodic.

Lemma 2.1. [12] Suppose that ϕ ∈ PAPT(R×Lr(P,K), Lr(P,H), α, β) and that the
following conditions hold:
(1) {ϕ(s, x) : s ∈ R, x ∈ K} is bounded for every bounded subset K ∈ Lr(P,K).
(2) ϕ(s, .) is uniformly continuous in each bounded subset of Lr(P,K) uniformly in

s ∈ R.
If ψ(.) ∈ PAPT(R, Lr(P,K), α, β) such that R(ψ) ⊂ Lr(P,K), then ϕ(., ψ(.)) ∈
PAPT(R, Lr(P,H), α, β).
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Lemma 2.2. [12] Suppose that the sequence of vector valued functions {Ik}k∈N is
(α, β)-pseudo almost periodic, i.e., for any x ∈ Lr(P,H), {Ik(x), k ∈ N} is a (α, β)-
pseudo almost periodic sequence. Assume {Ik(x), k ∈ N} is bounded for every bounded
subset K ⊂ Lr(P,H), Ik(x) is uniformly continuous in x ∈ Lr(P,H) uniformly in N.
If ψ ∈ PAPT(R, Lr(P,H), α, β) ∩ UPC(R, Lr(P,H)) such that R(ψ) ⊂ Lr(P,K),
then, Ik(ψ(sk)) is (α, β)-pseudo almost periodic.

Let h : R → R+ be a continuous function such that h(s) ≥ 1 for all s ∈ R and
lim|s|→∞ h(s) =∞. Define

PC0
h(R, Lr(P,H)) =

{
ϕ ∈ PC(R, Lr(P,H); lim

|s|→∞

E‖ϕ(s)‖r

h(s)
= 0
}

which is a Banach space with the norm ‖ϕ‖h = sups∈R
E‖ϕ(s)‖r
h(s) .

Lemma 2.3. [12] A set C ⊆ PC0
h(R, Lr(P,H)) is relatively compact if and only if

the following conditions are verified

(i) lim|s|→∞
E‖ϕ(s)‖r
h(s) = 0 uniformly for ϕ ∈ C.

(ii) C(s) = {ϕ(s) : ϕ ∈ C} is relatively compact in Lr(P,H) for every s ∈ R.
(iii) The set C is equicontinuous on each interval (sk, sk+1) (k ∈ N).

Lemma 2.4. [12] Assume that f ∈ APT (R, Lr(P,H), α, β), the sequence {yi}i∈N ∈
APT (R, Lr(P,H), α, β), and {tji}, j ∈ N are equipotentially almost periodic. Then,
for each ε > 0, there exist relatively dense sets Ωε of R and Ωε of N such that
• E‖g(t+ s)− g(t)‖r < ε for all t ∈ R, |t− ti| > ε, s ∈ Ωε and i ∈ N.
• ‖Γ(t + u, s + u) − Γ(t, s)‖r < ε for all t, s ∈ R, |t − s| > 0, |s − ti| > ε, |t − ti| >
ε, u ∈ Ωε and i ∈ N.
• E‖yi+q − yi‖r < ε for all q ∈ Ωε and i ∈ N.
• E‖yqi − u‖r < ε for all q, u ∈ Ωε and i ∈ N.

Lemma 2.5. [6]
(i) If f, g ∈ PAPT(R, Lr(P,H), α, β). Then f × g ∈ PAPT(R, Lr(P,H), α, β).

(ii) If f ∈ APT(R, Lr(P,H)) and g ∈ PAP0
T(R, Lr(P,H)). Then

f × g ∈ PAP0
T(R, Lr(P,H), α, β).

3. Main results

In this section, we establish some results for the existence, uniqueness, and the global
exponential stability of the pseudo almost periodic solution of (1). For convenience,
we introduce the following notations and norms:
sups∈R(E‖bij(s)‖r) = bij , sups∈R(E‖fij(s)‖r) = fij , ‖y(t)‖r =

∑n
i=1 supt∈R(‖yi(t)‖r).

We first introduce the notion of mild solution to system (3.1)− (3.2).
An Fs-progressively measurable process {yi(s)}s∈R is called a mild solution of

system (1) if, for any s ∈ R, s > s0, s 6= sk, k ∈ N,

yi(s) = V (s, s0)ψi +

∫ s

s0

V (s, τ)
[ n∑
j=1

bij(τ)ϕj(yj(τ)) +

n∑
j=1

fij(τ)
]
dτ

+

∫ s

s0

V (s, τ)

n∑
j=1

φij(τ, yj(τ))dBj(τ) +
∑
sk<s

V (s, sk)Ik(yi(sk)),

(2)
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where V (s, s0) = e
−

∫ s
s0
ai(τ)dτ

. Before giving the main result in this third part of the
paper, we make the following assumptions:
(A1) : ai(s) is continuously almost periodic function, bij , fij are (α, β) − PAPT

functions, for all 1 ≤ i, j ≤ n.
(A2) : The functions φij ∈ PAPT(R× Lr(P,K), Lr(P,L2

0), α, β), and φij(t, ·) is uni-
formly continuous in each bounded subset of Lr(P,K) uniformly in s ∈ R, Ik is
a pseudo almost periodic sequence, Ik(y), ϕj(y) are uniformly continuous in y ∈
Lr(P,K) uniformly in k ∈ N.
(A3) : There exists φij > 0, Ck > 0 and ϕj > 0 such that for all x, y ∈ Lr(P,K), we

have: E‖φij(s, x) − φij(s, y)‖r
L0

2
≤ φijE‖x − y‖r, E‖Ik(x − y)‖r ≤ CkE‖x − y‖r and

E‖ϕj(x− y)‖r ≤ ϕjE‖x− y‖r.

Lemma 3.1. Let the assumptions (A1) be fulfilled. If fij ∈ PAPT(R, Lr(P,K), α, β)

and if the function Wi is defined by Wi(t) =
∫ t
−∞ V (t, s)

∑n
j=1 fij(s)ds, for each t ∈ R,

then Wi ∈ PAPT (R, Lr(P,K), α, β) .

Proof. We have that fij ∈ PAPT(R, Lr(P,K), α, β), which can be decomposed as
fij = fij,1+fij,2, where fij,1 ∈ APT(R, Lr(P,K)) and fij,2 ∈ PAP0

T(R, Lr(P,K), α, β),
then W (t) can be decomposed as

Wi(t) =

n∑
j=1

[ ∫ t

−∞
V (t, s)fij,1(s)ds+

∫ t

∞
V (t, s)fij,2(s)ds

]
= Wi1(t) +Wi2(t).

(3)

Next we need to verify that Wi1(t) ∈ APT(R, Lr(P,K)) and
Wi2(t) ∈ PAP0

T(R, Lr(P,K), α, β). Thus our proof will be split into the following
three steps.
Step 1. Wi1(t) ∈ UPC(R, Lr(P,K)).
Let t, t1 ∈ R, such that t > t1, for any ε > 0, there exist ξ = ξ(ε) such that
0 < t− t1 < ξ, satisfying

n∑
j=1

∥∥∥fij1∥∥∥r
∞
≤ ε
(ai

2

)r
.

Using a substitution technique, we have

E‖Wi1(t)−Wi1(t1)‖r

≤2r−1E
(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖

n∑
j=1

‖fij,1(s+ t− t1)‖ds
)r

+ 2r−1E
(∫ t1

−∞
‖V (t1, s)‖

n∑
j=1

‖fij,1(s+ t− t1)− fij,1(s)‖ds
)r
.

(4)

By Hölder’s inequality, it is easy to show that

E
(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖

n∑
j=1

‖fij,1(s+ t− t1)‖ds
)r

≤
(∫ t1

−∞
e−ai(t1−s)ds

)r
sup
s∈R

n∑
j=1

E‖fij,1(s)‖r ≤ 1

air

n∑
j=1

‖fij,1‖r∞, and
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E
(∫ t1

−∞
‖V (t1, s)‖

n∑
j=1

‖fij,1(s+ t− t1)− fij,1(s)‖ds
)r

≤
(∫ t1

−∞
e−ai(t1−s)ds

)r n∑
j=1

sup
s∈R

E‖fij,1(s)‖r ≤ 1

air

n∑
j=1

‖fij,1‖r∞.

Substituting these into (4) give E‖Wi1(t)−Wi1(t1)‖r ≤
(

2
ai

)r∑n
j=1 ‖fij,1‖r∞ < ε.

Step 2. Wi1(t) ∈ APT(R, Lr(P,K)): Let a number lε such that in any interval
[δ, δ + lε] one finds a number τ ′, such that

E‖Wi1(t+ τ ′)−Wi1(t)‖r ≤ 2r−1
n∑
j=1

‖fij,1‖r∞E
(∫ t

−∞
e−

∫ t
s
ai(r+τ

′)dr − e−
∫ t
s
ai(r)drds

)r
+ 2r−1

(∫ t

−∞
V (t, s)ds

)r−1
∫ t

−∞
V (t, s)

n∑
j=1

E‖fij,1(s+ τ ′)− fij,1(s)‖rds.

There exists θ ∈]0, 1[ such that

E‖Wi1(t+ τ ′)−Wi1(t)‖r ≤ 2r−1
n∑
j=1

‖fij,1‖r∞

×
[ ∫ t

−∞
e−

∫ t
s
ai(r+τ

′)dr+θ|
∫ t
s
ai(r)dr−

∫ t
s
ai(r+τ

′)dr|) ×
∣∣∣ ∫ t

s

ai(r + τ ′)dr −
∫ t

s

ai(r)dr
∣∣∣]rds

+ 2r−1
(∫ t

−∞
e−

∫ t
s
ai(r)drds

)r−1

×
∫ t

−∞
e−

∫ t
s
ai(r)dr

n∑
j=1

E‖fij,1(s+ τ ′)− fij,1(s)‖rds.

Using the almost periodicity of ai and fij,1, we get

E‖Wi1(t+ τ ′)−Wi1(t)‖r

≤2r−1
n∑
j=1

‖fij,1‖r∞
(∫ t

−∞
e−ai(t−s)−θε(t−s)ε(t− s)ds

)r
+ 2r−1

n∑
j=1

‖fij,1‖∞ε
(∫ t

−∞
e−ai(t−s)

)r
≤2r−1

n∑
j=1

‖fij,1‖∞
εr

ai2r
+ 2r−1

n∑
j=1

‖fij,1‖∞
ε

ari
= ε2r−1

n∑
j=1

‖fij,1‖∞
(εr−1

ai2r
+

1

ari

)
.

Consequently, the function Wi1 belongs to APT(R, Lr(P,K)).
Step 3. Wi2 ∈ PAP0

T(R, Lr(P,K), α, β). For r > 2 and b > 0, we have

1

β([−b, b])

∫ b

−b
E‖Wi2(t)‖rdα(t) ≤ 1

β([−b, b])

∫ b

−b
E

∥∥∥∥∥∥
∫ t

∞
V (t, s)

n∑
j=1

fij,2(s)ds

∥∥∥∥∥∥
r

dα(t)

≤ nr−1

β([−b, b])

n∑
j=1

∫ b

−b

(
E
∫ t

∞
‖V (t, s)fij,2(s)‖ ds

)r
dα(t).
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Using Hölder’s inequality, and Fubini’s Theorem we get

1

β([−b, b])

∫ b

−b
E‖Wi2(t)‖rdα(t)

≤
( 1

ai

)r−1 1

β([−b, b])

∫ b

−b

∫ t

−∞
e−ai(t−s)

n∑
j=1

E‖fij,2(s)‖rdsdα

≤
( 1

ai

)r−1 1

β([−b, b])

∫ b

−b

∫ +∞

0

e−ais
n∑
j=1

E‖fij,2(t− s)‖rdsdα(t)

≤
( 1

ai

)r−1
∫ +∞

0

e−ais

β([−b, b])

∫ b

−b

n∑
j=1

E‖fij,2(t− s)‖rdα(t)ds

Moreover, we get
∣∣∣ e

−ais

β([−b,b])
∫ b
−b E‖fij,2(t− s)‖rdα(t)

∣∣∣ ≤ e−ais
∑n
j=1 ‖fij,2‖r∞. Since

fi2 ∈ PAP0
T(R, Lr(P,H), α, β) which is translation invariant and from Lebesgue’s

Dominated Convergence Theorem, we deduce that:

lim
b→∞

1

β([−b, b])

∫ b

−b
E‖Wi2(t)‖rdα(t) = 0. This completes the proof. �

Lemma 3.2. Let the assumptions (A1)− (A2) be fulfilled.
If ϕi, bij ∈ PAPT(R, Lr(P,K), α, β) and if the function Zi is defined by:

Zi(t) =
∫ t
−∞ V (t, s)

∑n
j=1 bij(s)ϕjds =

∑n
j=1

∫ t
−∞ V (t, s)bij(s)ϕjds, for each t ∈ R,

then Zi ∈ PAPT (R, Lr(P,K), α, β).

Proof. We have that ϕi, bij ∈ PAPT(R, Lr(P,K), α, β), which can be decomposed
as ϕi = ϕi1 + ϕi2 and bij = bij,1 + bij,2 where ϕi1, bij,1 ∈ APT(R, Lr(P,K)) and
ϕi2, bij,2 ∈ PAP0

T(R, Lr(P,K), α, β), then Zi(t) can be decomposed as

Zi(t) =

n∑
j=1

∫ t

−∞
V (t, s)bij(s)ϕjds = Zi1(t) + Zi2(t), (5)

where

Zi1(t) =

n∑
j=1

∫ t

−∞
V (t, s)bij,1(s)ϕj1ds, and

Zi2(t) =

n∑
j=1

[ ∫ t

−∞
V (t, s)bij,1(s)ϕj2ds+

∫ t

−∞
V (t, s)bij,2(s)ϕj1ds

+

∫ t

−∞
V (t, s)bij,2(s)ϕj2ds

]
.

Next we need to verify that Zi1(t) ∈ APT(R, Lr(P,K)) and Zi2(t) ∈ PAP0
T

(R, Lr(P,K), α, β). Thus our proof will be split into the following three steps.
Step 1. Zi1(t) ∈ UPC(R, Lr(P,K)).
Let t, t1 ∈ R, such that t > t1, for any ε > 0, there exist ξ = ξ(ε) such that

0 < t− t1 < ξ, satisfying
∑n
j=1

∥∥∥bij,1‖r∞‖ϕj1‖r∞ ≤ ε(ai2 )r.
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Using a substitution technique, we have

E‖Zi1(t)− Zi1(t1)‖r

= E
∥∥∥ n∑
j=1

[ ∫ t1

−∞
V (t, s+ t− t1)bij,1(s+ t− t1)ϕj1 −

∫ t1

−∞
V (t1, s)bij,1(s)ϕj1ds

]∥∥∥r
= E

∥∥∥ n∑
j=1

[ ∫ t1

−∞

[
V (t, s+ t− t1)− V (t1, s)

]
bij,1(s+ t− t1)ϕj1

+

∫ t1

−∞
V (t1, s)

[
bij,1(s+ t− t1)ϕj1 − bij,1(s)ϕj1

]
ds
]∥∥∥r

≤ 2r−1E
(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖

n∑
j=1

‖bij,1(s+ t− t1)ϕj1‖ds
)r

+ 2r−1E
(∫ t1

−∞
‖V (t1, s)‖

n∑
j=1

‖bij,1(s+ t− t1)ϕj1 − bij,1(s)ϕj1‖ds
)r

= J1(t) + J2(t).

(6)
By Hölder’s inequality, it is easy to show that

J1(t) = 2r−1E
(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖

n∑
j=1

‖bij,1(s+ t− t1)ϕj1‖ds
)r

≤ 2r−1
n∑
j=1

(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖ds

)r−1

×
(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖

n∑
j=1

E‖bij,1(s+ t− t1)ϕj1‖rds
)

≤ 2r−1
n∑
j=1

(∫ t1

−∞
e−ai(t1−s)

)r
sup
s∈R

E‖bij,1(s)‖r‖ϕj1‖r∞

≤ 2r−1

air

n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞ and

J2(t) = 2r−1E
(∫ t1

−∞
‖V (t1, s)‖

n∑
j=1

‖bij,1(s+ t− t1)ϕj1 − bij,1(s)ϕj1‖ds
)r

≤ 2r−1
(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖ds

)r−1

×
(∫ t1

−∞
‖V (t1, s)‖

n∑
j=1

E‖bij,1(s+ t− t1)− bij,1(s)‖r‖ϕj1‖r∞ds
)

≤ 2r−1
(∫ t1

−∞
e−ai(t1−s)

)r n∑
j=1

sup
s∈R

E‖bij,1(s)‖r‖ϕj1‖r∞

≤ 2r−1

air

n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞.
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Substituting these into (6) give

E‖Zi1(t)− Zi1(t1)‖r ≤
( 2

ai

)r n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞ < ε.

Step 2. Zi1(t) ∈ APT(R, Lr(P,K)).
Let a number lε such that in any interval [δ, δ + lε] one finds a number τ ′, such that

E‖Zi1(t+ τ ′)− Zi1(t)‖r

≤ 2r−1E
∥∥∥ ∫ t

−∞
[V (t+ τ ′, s+ τ ′)− V (t, s)]

n∑
j=1

bij,1(s+ τ ′)ϕj1ds
∥∥∥r

+ 2r−1E
∥∥∥∫ t

−∞
V (t, s)

n∑
j=1

[bij,1(s+ τ ′)− bij,1(s)]ϕj1ds
∥∥∥r

≤ 2r−1
n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞E
(∫ t

−∞
‖V (t+ τ ′, s+ τ ′)− V (t, s)‖ds)r+ 2r−1

(∫ t

−∞
V (t, s)ds

)r−1

×
∫ t

−∞
V (t, s)

n∑
j=1

E‖bij,1(s+ τ ′)− bij,1(s)‖r‖ϕj1‖r∞ds

≤ 2r−1
n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞E
(∫ t

−∞
e−

∫ t
s ai(r+τ

′)dr − e−
∫ t
s ai(r)drds

)r
+ 2r−1

(∫ t

−∞
V (t, s)ds

)r−1

×
∫ t

−∞
V (t, s)

n∑
j=1

E‖bij,1(s+ τ ′)− bij,1(s)‖r‖ϕj1‖r∞ds.

There exists θ ∈]0, 1[ such that

E‖Zi1(t+ τ ′)− Zi1(t)‖r ≤ 2r−1
n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞

×
[ ∫ t

−∞
e−

∫ t
s
ai(r+τ

′)dr+θ|
∫ t
s
ai(r)dr−

∫ t
s
ai(r+τ

′)dr|) ×
∣∣∣ ∫ t

s

ai(r + τ ′)dr −
∫ t

s

ai(r)dr
∣∣∣]rds

+ 2r−1
(∫ t

−∞
e−

∫ t
s
ai(r)drds

)r−1

×
∫ t

−∞
e−

∫ t
s
ai(r)dr

n∑
j=1

E‖bij,1(s+ τ ′)ϕj1(s+ τ ′)− bij,1(s)ϕj1(s)‖rds.

Using the almost periodicity of ai and bij,1, ϕj1 we get

E‖Zi1(t+ τ ′)− Zi1(t)‖r

≤ 2r−1
n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞
(∫ t

−∞
e−ai(t−s)−θε(t−s)ε(t− s)ds

)r
+ 2r−1ε

(∫ t

−∞
e−ai(t−s)

)r
≤ 2r−1

n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞εr
(∫ t

−∞
e−ai(t−s)(t− s)ds

)r
+ 2r−1 ε

ari

≤ 2r−1
n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞
εr

ai2r
+ 2r−1 ε

ari

= ε
(
2r−1

n∑
j=1

‖bij,1‖r∞‖ϕj1‖r∞
1

ai2r
+ 2r−1 1

ari

)
.
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Consequently, the function Zi1 belongs to APT(R, Lr(P,K)).
Step 3. Zi2 ∈ PAP0

T(R, Lr(P,K), α, β).
For r > 2 and b > 0, we have

1

β([−b, b])

∫ b

−b
E‖Zi2(t)‖rdα(t)

≤ 3r−1

β([−b, b])

[ ∫ b

−b
E
(∫ t

∞
V (t, s)

n∑
j=1

‖bij,1(s)‖‖ϕj2‖ds
)r

+
(∫ t

∞
V (t, s)

n∑
j=1

‖bij,2(s)‖‖ϕj1‖ds
)r

+
(∫ t

∞
V (t, s)

n∑
j=1

‖bij,2(s)‖‖ϕj2‖ds
)r
dα(t)

]
.

Using Hölder’s inequality, and Fubini’s Theorem we get

1

β([−b, b])

∫ b

−b
E‖Zi2(t)‖rdα(t)

≤ 3r−1

air−1

1

β([−b, b])

∫ b

−b

∫ t

−∞
e−ai(t−s)

[ n∑
j=1

E‖bij,1(s)‖r‖ϕj2‖r∞dsdα

+

n∑
j=1

E‖bij,2(s)‖r‖ϕj1‖r∞dsdα+

n∑
j=1

E‖bij,2(s)‖r‖ϕj2‖r∞dsdα
]
.

Then, we get

1

β([−b, b])

∫ b

−b
E‖Zi2(t)‖rdα(t)

≤ 3r−1

air−1

1

β([−b, b])

∫ b

−b

∫ +∞

0

e−ais
n∑
j=1

[
E‖bij,1(t− s)‖r + E‖bij,2(t− s)‖r

]
‖ϕj2‖r∞

+

n∑
j=1

E‖bij,2(t− s)‖r‖ϕj1‖r∞
)
dsdα(t)

≤ 3r−1

air−1

∫ +∞

0

n∑
j=1

e−ais

β([−b, b])

∫ b

−b
E‖bij,1(t− s)‖r‖ϕj2‖r∞dα(t)ds

+
3r−1

air−1

∫ +∞

0

n∑
j=1

e−ais

β([−b, b])

∫ b

−b
E‖bij,2(t− s)‖r‖ϕj1‖r∞dα(t)ds

+
3r−1

air−1

∫ +∞

0

n∑
j=1

e−ais

β([−b, b])

∫ b

−b
E‖bij,2(t− s)‖r‖ϕj2‖r∞dα(t)ds.

Moreover, we get∣∣∣∣ e−ais

β([−b, b])

∫ b

−b
E‖bij,1(t− s)‖r‖ϕj2‖r∞dα(t)

∣∣∣∣ ≤ e−aisE‖bij,1‖r∞‖ϕj2‖r∞,∣∣∣∣ e−ais

β([−b, b])

∫ b

−b
E‖bij,2(t− s)‖r‖ϕj1‖r∞dα(t)

∣∣∣∣ ≤ e−aisE‖bij,1‖r∞‖ϕj1‖r∞,∣∣∣∣ e−ais

β([−b, b])

∫ b

−b
E‖bij,2(t− s)‖r‖ϕj2‖r∞dα(t)

∣∣∣∣ ≤ e−aisE‖bij,2‖r∞‖ϕj2‖r∞.
Since bij,1ϕj2, bij,2ϕj1, bij,2ϕj2 ∈ PAP0

T(R, Lr(P,H), α, β) which is translation in-
variant and from Lebesgue’s Dominated Convergence Theorem, we deduce that

limb→∞
1

β([−b,b])
∫ b
−b E‖Zi2(t)‖rdα(t) = 0. This completes the proof. �
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Lemma 3.3. Let the assumptions (A1)−(A2) be fulfilled. If φij ∈ PAPT(R, Lr(P,K),

α, β) and if the function Gi is defined by Gi(t) =
∑n
j=1

∫ t
−∞ V (t, s)φij(s)dBj(s), for

each t ∈ R, then Gi ∈ PAPT (R, Lr(P,K), α, β) .

Proof. We have that φij ∈ PAPT(R, Lr(P,K), α, β), which can be decomposed as
φij = φij,1+φij,2 where φij,1 ∈ APT(R, Lr(P,K)) and φij,2 ∈ PAP0

T(R, Lr(P,K), α, β),
then Gi(t) can be decomposed as

Gi(t) =

n∑
j=1

[ ∫ t

−∞
V (t, s)φij,1(s)dBj(s) +

∫ t

∞
V (t, s)φij,2(s)dBj(s)

]
= Gi1(t) +Gi2(t).

(7)

Next we need to verify that Gi1(t) ∈ APT(R, Lr(P,K)) and
Gi2(t) ∈ PAP0

T(R, Lr(P,K), α, β). Thus our proof will be split into the following
three steps.
Step 1. Gi1(t) ∈ UPC(R, Lr(P,K)).
Let t, t1 ∈ R, such that t > t1, for any ε > 0, there exist ξ = ξ(ε) such that 0 <

t− t1 < ξ, satisfying:
∑n
j=1 ‖φij,1‖r∞ ≤

ε
A , where A = Cr2

r−1
((

r−2
rai

) r−2
2 2

rai
+ 1

air

)
.

Using a substitution technique, we have

E‖Gi1(t)−Gi1(t1)‖r

= E
∥∥∥ n∑
j=1

[ ∫ t1

−∞
V (t, s+ t− t1)φij,1(s+ t− t1)dBj(s)−

∫ t1

−∞
V (t1, s)φij,1(s)dBj(s)

]∥∥∥r

= E
∥∥∥ n∑
j=1

[ ∫ t1

−∞

[
V (t, s+ t− t1)− V (t1, s)

]
φij,1(s+ t− t1)

+

∫ t1

−∞
V (t1, s)

[
φij,1(s+ t− t1)− φij,1(s)

]
dBj(s)

]∥∥∥r
≤ 2r−1E

(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖

n∑
j=1

‖φij,1(s+ t− t1)‖dBj(s)
)r

+ 2r−1E
(∫ t1

−∞
‖V (t1, s)‖

n∑
j=1

‖φij,1(s+ t− t1)− φij,1(s)‖dBj(s)
)r
.

(8)

By Itô integral and Hölder’s inequality, it is easy to show that

E
(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖

n∑
j=1

‖φij,1(s+ t− t1)‖dBj(s)
)r

≤ CrE
(∫ t1

−∞
‖V (t, s+ t− t1)− V (t1, s)‖2

n∑
j=1

‖φij,1(s+ t− t1)‖2ds
)r/2

≤ Cr
(∫ t1

−∞
e−

r
r−2

(t1−s)aids
) r−2

2 ×
(∫ t1

−∞
e−

r
2
(t1−s)aids

) n∑
j=1

sup
s∈R

E‖φij,1(s)‖r

≤ Cr
(r − 2

rai

) r−2
2 2

rai

n∑
j=1

‖φij,1‖r∞
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and

E
(∫ t1

−∞
‖V (t1, s)‖

n∑
j=1

‖φij,1(s+ t− t1)− φij,1(s)‖dBj(s)
)r

≤ Cr
(∫ t1

−∞
‖V (t1, s)‖ds

)r−1

×
(∫ t1

−∞
‖V (t1, s)‖E

n∑
j=1

‖φij,1(s+ t− t1)− φij,1(s)‖rds
)

≤ Cr
1

air

n∑
j=1

‖φij,1‖r∞.

Substituting these into (8) give

E‖Gi1(t)−Gi1(t1)‖r ≤ Cr2r−1
((r − 2

rai

) r−2
2 2

rai
+

1

air

) n∑
j=1

‖φij,1‖r∞ < ε.

Step 2. Gi1(t) ∈ APT(R, Lr(P,K)).
Let a number lε such that in any interval [δ, δ + lε] one finds a number τ ′, such that

E‖Gi1(t+ τ ′)−Gi1(t)‖r

≤ 2r−1E
∥∥∥∫ t

−∞
[V (t+ τ ′, s+ τ ′)− V (t, s)]

n∑
j=1

φij,1(s+ τ ′)dBj(s)
∥∥∥r

+ 2r−1
n∑
j=1

E
∥∥∥ ∫ t

−∞
V (t, s)

n∑
j=1

[φij,1(s+ τ ′)− φij,1(s)]dBj(s)
∥∥∥r

= J̃1 + J̃2.

Using Itô integral and Hölder’s inequality, we have

J̃1 ≤ Cr2
r−1
(∫ t

−∞
|V (t+ τ ′, s+ τ ′)− V (t, s)|2

n∑
j=1

E‖φij,1(s+ τ ′)‖2ds
)r/2

≤ Cr2
r−1

n∑
j=1

‖φij,1‖r∞E
(∫ t

−∞
|e−

∫ t
s ai(r+τ

′)dr − e−
∫ t
s ai(r)dr|2ds

)r/2
.

There exists θ ∈]0, 1[ such that

J̃1 ≤ Cr2
r−1

n∑
j=1

‖φij,1‖r∞
[ ∫ t

−∞
e−2

∫ t
s ai(r+τ

′)dr+2θ|
∫ t
s ai(r)dr−

∫ t
s ai(r+τ

′)dr|)

×
∣∣∣ ∫ t

s

ai(r + τ ′)dr −
∫ t

s

ai(r)dr
∣∣∣2]r/2ds.

Using the almost periodicity of ai and φij,1, we get

J̃1 ≤ Cr2
r−1

n∑
j=1

‖φij,1‖r∞
(∫ t

−∞
e−2ai(t−s)−2θε(t−s)ε2(t− s)2ds

)r
≤ Cr2

r−1
n∑
j=1

‖φij,1‖r∞εr
(∫ t

−∞
e−2ai(t−s)(t− s)2ds

)r/2
≤ 2r−1Cr

( 1

2ai2
+

1

4ai3

)r/2 n∑
j=1

‖φij,1‖r∞εr
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and

J̃2 ≤ 2r−1E
∥∥∥∫ t

−∞
V (t, s)

n∑
j=1

[φij,1(s+ τ ′)− φij,1(s)]dBj(s)
∥∥∥r

≤ Cr2r−1
(∫ t

−∞
(V (t, s))

r
r−2 ds

) r−2
2

∫ t

−∞
(V (t, s))

r
2

n∑
j=1

E‖φij,1(s+ τ ′)− φij,1(s)‖rds

≤ Cr2r−1ε
(r − 2

rai

) r−2
2 2

rai

n∑
j=1

‖φij,1‖r∞

E‖Wi1(t+ τ ′)−Wi1(t)‖r ≤ Cr2r−1
[( 1

2ai2
+

1

4ai3

)r/2
εr−1 +

(r − 2

rai

) r−2
2 2

rai

] n∑
j=1

‖φij,1‖r∞ε.

Consequently, the function Gi1 belongs to APT(R, Lr(P,K)).
Step 3. Gi2 ∈ PAP0

T(R, Lr(P,K), α, β).
For r > 2 and b > 0, we have

1

β([−b, b])

∫ b

−b
E‖Gi2(t)‖rdα(t) ≤

1

β([−b, b])

∫ b

−b
E

∥∥∥∥∥
∫ t

∞
V (t, s)

n∑
j=1

φij,2(s)dBj(s)

∥∥∥∥∥
r

dα(t)

≤ Cr
β([−b, b])

∫ b

−b

(
E
∫ t

∞

n∑
j=1

‖V (t, s)φij,2(s)‖ ds
)r
dα(t),

using Hölder’s inequality, and Fubini’s Theorem we get

1

β([−b, b])

∫ b

−b
E‖Gi2(t)‖rdα(t)

≤ Cr
β([−b, b])

∫ b

−b

(∫ t

−∞
(V (t, s))

r
r−2 ds

) r−2
2
(∫ t

−∞
(V (t, s))

r
2

n∑
j=1

E‖φij,2(s)‖rds
)
dα(t)

≤ Cr
(r − 2

rai

) r−2
2

∫ +∞

0

e−
r
2
ais

β([−b, b])

∫ b

−b

n∑
j=1

E‖φij,2(t− s)‖rdα(t)ds.

Moreover, we get∣∣∣∣ e− r2 aisβ([−b, b])

∫ b

−b
E‖φij,2(t− s)‖rdα(t)

∣∣∣∣ ≤ e− r2 ais‖φij,2‖r∞.
Since φij,2 ∈ PAP0

T(R, Lr(P,H), α, β) which is translation invariant and from Lebesgue’s
Dominated Convergence Theorem, we deduce that

lim
b→∞

1

β([−b, b])

∫ b

−b
E‖Gi2(t)‖rdα(t) = 0.

This completes the proof. �

Lemma 3.4. Let the assumptions (A1)−(A2) be fulfilled. If Ik ∈ PAPT(R, Lp(P,K),
α, β) and if the function Γk is defined by

Γk(t) =
∑
tk<t

V (t, tk)Ik (9)

for each t ∈ R. Then Γk ∈ PAPT(R, Lr(P,K), α, β) .



IMPULSIVE STOCHASTIC NEURAL NETWORKS MODEL 335

Proof. We have that Ik ∈ PAPT(R, Lr(P,K), α, β), which can be decomposed as
Ik = I1,k + I2,k, where I1,k ∈ APT(R, Lr(P,K)) and I2,k ∈ PAP0

T(R, Lr(P,K), α, β),
then Γk(t) can be decomposed as

Γk(t) =
∑
tk<t

V (t, tk)I1,k +
∑
tk<t

V (t, tk)I2,k

= Γ1,k(t) + Γ2,k(t).

(10)

Next we need to verify that Γ1,k(t) ∈ APT(R, Lr(P,K)) and Γ2,k(t) ∈ PAP0
T(R,

Lr(P,K), α, β). Thus our proof will be split into the following three steps.
Step 1. Γ1,k(t) ∈ UPC(R, Lr(P,K)).
Let t, t1 ∈ R, such that t > t1, for any ε > 0, there exist ξ = ξ(ε) such that
0 < t− t1 < ξ, satisfying

‖Ik‖r∞ ≤
(1− e−δai

2

)r
ε.

Using a substitution technique and Hölder’s inequality, we get

E‖Γ1,k(t)− Γ1,k(t1)‖r

≤ 2r−1E
∥∥∥∑
tk<t

V (t, tk)I1,k

∥∥∥r + 2r−1E
∥∥∥ ∑
tk<t1

V (t1, tk)I1,k

∥∥∥r
≤ 2r−1

(∑
tk<t

e−ai(t−tk)
)r

sup
k∈N

E‖I1,k‖r + 2r−1
( ∑
tk<t1

e−ai(t1−tk)
)r

sup
k∈N

E‖I1,k‖r

≤
( 2

1− e−δai
)r
‖I1,k‖r∞ ≤ ε.

Step 2. Γ1,k(t) ∈ APT(R, Lr(P,K)).
Let a number lε such that in any interval [δ, δ + lε] one finds a number τ ′, such that

E‖Γ1,k(t+ τ ′)− Γ1,k(t)‖r ≤ 2r−1E
∥∥∥ ∑
tk<t+τ ′

V (t+ τ ′, tk)I1,k +
∑
tk<t

V (t, tk)I1,k

∥∥∥r
≤ 2r−1E

∥∥∥∑
tk<t

V (t+ τ ′, tk+q)I1,k+q −
∑
tk<t

V (t+ τ ′, tk+q)I1,k

∥∥∥r
+ 2r−1E

∥∥∥∑
tk<t

V (t+ τ ′, tk+q)I1,k +
∑
tk<t

V (t, tk)I1,k

∥∥∥r
= Ĵ1 + Ĵ2.

For any ε > 0, by Lemma 2.4, there exist relative dense sets of real numbers Ωε and
integers Qε, for every τ ′ ∈ Ωε, there exists at least one number q ∈ Qε such that
tk < t ≤ tk+1, |t − tk| > ε, |t − tk−1| > ε, one has t + τ ′ > tk + τ ′ + ε > tk+q and
tk+q+1 > tk+1 + τ ′ − ε > t+ τ ′ that is tk+q < t+ τ ′ < tk+q+1 such that |tq − τ | < ε
and E‖I1,k+q − I1,k‖ < ε, q ∈ Qε, k ∈ N, then

Ĵ1 ≤ 2r−1E
∥∥∥∑
tk<t

V (t+ τ ′, tk+q)[I1,k+q − I1,k]
∥∥∥r

≤ 2r−1
(∑
tk<t

e−ai(t−tk)
)r

E‖I1,k+q − I1,k‖r

≤
( 2

1− e−δai
)r
ε
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and similarly to the proof of Step 2 in Lemma 3.1, we obtain

Ĵ2 ≤ 2r−1E
∥∥∥∑
tk<t

[V (t+ τ ′, tk+q)− V (t, tk)]I1,k

∥∥∥r
≤ 2r−1

(∑
tk<t

e−ai(t−tk)ε(t− tk)
)r

sup
k∈N

E‖I1,k‖r

≤ 2r−1εre−rδai

(1− e−δai)r
sup
k∈N

E‖I1,k‖r.

Consequently, the function Γ1,k belongs to APT(R, Lr(P,K)).
Step 3. Γ2,k ∈ PAP0

T(R, Lr(P,K), α, β).
For b > 0, by Hölder’s inequality, we have

1

β([−b, b])

∫ b

−b
E‖Γ2,k(t)‖rdα(t)

≤ 2r−1 1

β([−b, b])

∫ b

−b
E

∥∥∥∥∥∑
tk<t

V (t, tk)I2,k

∥∥∥∥∥
r

dα(t).

Let k ∈ N, define the function u(t) by u(t) = V (t, tk)I2,k, tk < t. Then,

lim
t→∞

E‖u(t)‖r = lim
t→∞

‖V (t, tk)I2,k‖r ≤ lim
t→∞

Mre−rai(t−tk) sup
k∈N

E‖I2,k‖r = 0.

So, u ∈ PC0
T(R, Lr(P,K)). Define uj : R→ Lr(P,K) by

uj = V (t, tk−j)I2,k−j , tk < t ∈ R.

Therefore, uj ∈ PAP0
T(R, Lr(P,K), α, β). Furthermore,

E‖uj(t)‖r = E‖V (t, tk−j)I2,k−j‖r

≤ e−rai(t−tk−j) sup
k∈N

E‖I2,k‖r

≤ e−rai(t−tk)e−raiδj sup
k∈N

E‖I2,k‖r.

Thus, the series
∑∞
j=0 uj is uniformly convergent on R. By Lemma 2.1, we ob-

tain:
∑
tk<t

V (t, tk)I2,k =
∑∞

0 uj(t) ∈ PAP 0
T (R, Lr(P,K), α, β), which also means,

limb→∞
1

β([−b,b])
∫ b
−b E

∥∥∑
tk<t

V (t, tk)I2,k
∥∥r dα(t) = 0. This completes the proof. �

Theorem 3.5. Suppose that (A1)-(A3) hold. If M = 3r−1 maxi

[
1
air

maxj bijϕj +

Cr

(
r−2
air

) r−2
2 2

air
maxj φij + Ck

(1−e−δai )r

]
< 1, then the system (1) has a unique r-mean

(α, β)-pseudo almost periodic mild solution on Rn.

Proof. Define the operator F : PAPT(R, Lr(P,K), α, β) ∩ UPC(R, Lr(P,K)) →
PC(R, Lr(P,K))

(Fy)(t) =

∫ t

−∞
V (t, s)

n∑
j=1

[
bij(s)ϕj(yj(s)) + fij(s)

]
ds

+

∫ t

−∞
V (t, s)

n∑
j=1

φij(s, yj(s))dBj(s) +
∑
tk<t

V (t, tk)Ik(yi(tk)).
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In order to show that system (3.1) − (3.2) has a r-mean (α, β)-pseudo almost pe-
riodic mild solution, we only need to prove the operator F has a fixed point in
PAPT(R, Lr(P,K), α, β) ∩UPC(R, Lr(P,K)) and divide the proof into two steps.
Step 1. F maps bounded sets into bounded sets in PAPT(R, Lr(P,K), α, β)∩UPC(R,
Lr(P,K)). Let p∗ > 0 and

y ∈ Bp∗ = {y ∈ PAPT(R, Lr(P,K), α, β) ∩UPC(R, Lr(P,K)) : E‖y|‖r ≤ p∗}.

It suffices to show that there exists K̂ > 0 such that for each y ∈ Bp∗ we have

E‖Fy|‖r ≤ K̂. Let y ∈ Bp∗ , t ∈ R. For r > 2, we have

E‖(Fy)i(t)‖r ≤4r−1E
∥∥∥ n∑
j=1

∫ t

−∞
V (t, s)bij(s)ϕj(yj(s))ds

∥∥∥r
+ 4r−1E

∥∥∥∫ t

−∞

n∑
j=1

V (t, s)fij(s)ds
∥∥∥r

+ 4r−1E
∥∥∥∫ t

−∞

n∑
j=1

V (t, s)φij(s, yj(s))dBj(s)
∥∥∥r

+ 4r−1E
∥∥∥ ∑
tk<t

V (t, tk)Ik(yi(tk))
∥∥∥r.

(11)

Using Itô integral and Hölder’s inequality, we get

E‖(Fy)i(t)‖r ≤4r−1
(∫ t

−∞
e−ai(t−s)

)r−1(∫ t

−∞
e−ai(t−s)

n∑
j=1

E‖bij(s)‖rE‖ϕj(yj(s))‖rds
)

+ 4r−1
(∫ t

−∞
e−ai(t−s)

)r−1(∫ t

−∞
e−ai(t−s)

n∑
j=1

E‖fij(s)‖rds
)

+ 4r−1Cr
(∫ t

−∞
e−2ai(t−s)

n∑
j=1

E‖φij(s, yj(s))‖2L0
2
ds
) r

2

+ 4r−1
(∑
tk<t

e−ai(t−tk)
)r−1(∑

tk<t

e−ai(t−s)E‖Ik(yi(tk))‖r
)

≤
( 4

ai

)r−1
n∑
j=1

ϕjbij
(∫ t

−∞
e−ai(t−s)E‖yj(s)‖rds

)
+
( 4

ai

)r−1
n∑
j=1

fij
(∫ t

−∞
e−ai(t−s)ds

)
+ 4r−1Cr

n∑
j=1

φij
(∫ t

−∞
e−

r
r−2

ai(t−s)ds
) r−2

2
(∫ t

−∞
e−

r
2
ai(t−s)E‖yj(s)‖rds

)
+
( 4

1− e−δai
)r−1

Ck
(∑
tk<t

e−ai(t−s)E‖yi(tk)‖r
)
.

(12)
So

E‖(Fy)i(t)‖r ≤ 4r−1

air
max
j
ϕjbij‖y‖r∞ +

4r−1

air

n∑
j=1

fij

+4r−1Cr

(
r − 2

air

) r−2
2 2

air
max
j
φij‖y‖r∞ +

4r−1

(1− e−δai)r
Ck‖yi‖r∞.
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Then

E‖(Fy)(t)‖r ≤ max
i

[
(4n)r−1 1

air
max
j
ϕjbij‖y‖r∞ + (4n)r−1 1

air

n∑
j=1

fij

+(4n)r−1Cr

(
r − 2

air

) r−2
2 2

air
max
j
φij‖y‖r∞ +

4r−1

(1− e−δai)r
Ck‖y‖r∞

]
= K̂.

Step 2. For any x, y ∈ Bp∗

E‖(Fx− Fy)i(t)‖r ≤3r−1E
∥∥∥ n∑
j=1

∫ t

−∞
V (t, s)bij(s)[ϕj(xj(s))− ϕj(yj(s))]ds

∥∥∥r
+ 3r−1E

∥∥∥ ∫ t

−∞

n∑
j=1

V (t, s)[φij(s, xj(s))− φij(s, yj(s))]dBj(s)
∥∥∥r

+ 3r−1E
∥∥∥ ∑
tk<t

V (t, tk)[Ik(xi(tk))− Ik(yi(tk))]
∥∥∥r.

(13)

Using Hölder’s inequality and (A3), we get

E
∥∥∥ n∑
j=1

∫ t

−∞
V (t, s)bij(s)[ϕj(xj(s))− ϕj(yj(s))]ds

∥∥∥r
≤
(∫ t

−∞
e−ai(t−s)ds

)r−1(∫ t

−∞
e−ai(t−s)

n∑
j=1

bijE
∥∥∥ϕj(xj(s))− ϕj(yj(s))∥∥∥rds)

≤ 1

air
max
j
bijϕj

n∑
j=1

sup
s∈R

E‖xj(s)− yj(s)‖r

≤ 1

air
max
j
bijϕjE‖x− y‖r

and

E
∥∥∥ ∑
tk<t

V (t, tk)[Ik(xi(tk))− Ik(yi(tk))]
∥∥∥r

≤
(∑
tk<t

e−ai(t−tk)
)r−1(∑

tk<t

e−ai(t−s)E‖Ik(x(tk))− Ik(y(tk))‖r
)

≤ 1

(1− e−δai)r
Ck sup

s∈R
E‖xi(s)− yi(s)‖r.

Using Itô integral, Hölder’s inequality and (A3), we get

E
∥∥∥ ∫ t

−∞

n∑
j=1

V (t, s)[φij(s, xj(s))− φij(s, yj(s))]dBj(s)
∥∥∥r

≤ Cr
(
r − 2

air

) r−2
2 2

air
max
j
φij

n∑
j=1

sup
s∈R

E‖xj(s)− yj(s)‖r

≤ Cr
(
r − 2

air

) r−2
2 2

air
max
j
φijE‖x− y‖r.
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Consequently,

E‖(Fx− Fy)i(t)‖r ≤ 3r−1
[ 1

air
max
j
bijϕj + Cr

(
r − 2

air

) r−2
2 2

air
max
j
φij
]
E‖x− y‖r

+
3r−1Ck

(1− e−δai)r
sup
s∈R

E‖xi(s)− yi(s)‖r.

E‖(Fx− Fy)(t)‖r ≤ 3r−1 max
i

[ 1

air
max
j
bijϕj + Cr

(
r − 2

air

) r−2
2 2

air
max
j
φij

+
Ck

(1− e−δai)r
]
E‖x− y‖r.

Since by construction M < 1, we have the strict contraction of operator F and
by the Banach contraction mapping principle, F has a unique fixed point such that
Fy = y. �

4. Exponential stability

Theorem 4.1. Under hypothesis of Theorem 3.1. the r-mean (α, β)-pseudo almost
periodic mild solution of the system (1) is exponentially stable if

L = min
i
ai − 4r−1

[
Cr

n∑
j=1

max
j
φij

(
r − 2

2(r − 1)ai

) r−2
2 (

1− e−
2(r−1)
r−2

ai(t−t0)
) r−2

2

+

n∑
j=1

(1− e−ai(t−t0)
ai

)r−1

max
j
bijϕj

]
> 0, for r > 2.

Proof. It follows from Theorem 3.1 that system (1) has at least one mild solution
x(t) = (x1(t), ..., xn(t))T ∈ B with initial value ψ(t) = (ψ1(t), ..., ψn(t))T . Let y(t) be
an arbitrary solution of system (1) with initial value ψ∗(t) = (ψ∗1(t), ..., ψ∗n(t))T . Let
zi(t) = xi(t)− yi(t), ui(t) = ψi(t)− ψ∗i (t), i = 1...n, then for r > 2

zi(t) = ψi(t0)e
−

∫ t
t0
ai(s)ds +

∫ t

t0

e
−

∫ t
t0
ai(s)ds

n∑
j=1

bij(s)
[
ϕj(xj(s))− ϕj(yj(s))

]
ds

+

∫ t

t0

e
−

∫ t
t0
ai(s)ds

n∑
j=1

[
φij(s, xi(s))− φij(s, yi(s))

]
dBj(s) +

∑
tk<t

e
−

∫ tk
t0

ai(s)dsIk(zi(tk)).

E‖zi(t)‖r = E‖xi(t)− yi(t)‖r

≤ 4r−1e−rai(t−t0)E‖ψi(t)− ψ∗i (t)‖r

+4r−1E
∥∥∥∫ t

t0

e−ai(t−s)
n∑
j=1

bij(s)
[
ϕj(xj(s))− ϕj(yj(s))

]
ds
∥∥∥r

+4r−1E
∥∥∥∫ t

t0

e−ai(t−s)
n∑
j=1

[
φij(s, xj(s))− φij(s, yj(s))

]
dBj(s)

∥∥∥r
+4r−1E

∥∥∥ ∑
tk<t

e−ai(t−tk)
[
Ik(xi(tk))− Ik(yi(tk))

]∥∥∥r
≤ 4r−1e−rai(t−t0)E‖ψi(t)− ψ∗i (t)‖r + 4r−1

3∑
k=1

Uk.
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Using Hölder inequality, we get

U1 ≤ E

(∫ t

t0

e−ai(t−s)
n∑
j=1

‖bij(s)‖‖ϕj(xj(s))− ϕj(yj(s))‖ds

)r

≤
(∫ t

t0

e−ai(t1−s)ds

)r−1 ∫ t

t0

e−ai(t−s)
n∑
j=1

E‖bij(s)‖rE‖ϕj(xj(s))− ϕj(yj(s))‖rds

≤
(1− e−ai(t−t0)

ai

)r−1

max
j
bijϕj

∫ t

t0

e−ai(t−s)
n∑
j=1

E‖xj(s)− yj(s)‖rds,

U3 = E
∥∥∥ ∑
tk<t

e−ai(t−tk)
[
Ik(xi(tk))− Ik(yi(tk))

]∥∥∥r

≤

∑
tk<t

e−ai(t−tk)

r−1∑
tk<t

e−ai(t−tk)E‖Ik(xi(tk))− Ik(yi(tk))‖r


≤ Ck

∑
tk<t

e−ai(t−tk)

r−1∑
tk<t

e−ai(t−tk)E‖xi(tk)− yi(tk))‖r


≤ Ck(
1− e−δai

)r−1

∑
tk<t

e−ai(t−tk)E‖xi(tk)− yi(tk))‖r
 .

Using Itô integral and Hölder inequality, we obtain

U2 = E
∥∥∥∫ t

t0

e−ai(t−s)
n∑
j=1

[
φij(s, xj(s))− φij(s, yj(s))

]
dBj(s)

∥∥∥r

≤ CrE

(∫ t

t0

e−2ai(t1−s)
n∑
j=1

‖φij(s, xj(s))− φij(s, yj(s))‖2ds

)r/2

≤ Cr

(∫ t

t0

e−
2(r−1)
r

ai(t−s)e−
2
r
ai(t−s)

n∑
j=1

‖φij(s, xj(s))− φij(s, yj(s))‖2ds

)r/2

≤ Cr
(∫ t

t0

e−
2(r−1)
r−2

ai(t−s)ds

) r−2
2

(∫ t

t0

e−ai(t−s)
n∑
j=1

E‖φij(s, xj(s))− φij(s, yj(s))‖rds

)

≤ Crmax
j
φij

(
r − 2

2(r − 1)ai

) r−2
2 (

1− e−
2(r−1)
r−2

ai(t−t0)
) r−2

2

×

(∫ t

t0

e−ai(t−s)
n∑
j=1

E‖xj(s)− yj(s)‖rds

)
.

Therefore

E‖zi(t)‖r ≤ 4r−1e−rai(t−t0)E‖ψi(t)− ψ∗i (t)‖r

+4r−1 Ck(
1− e−δai

)r−1

∑
tk<t

e−ai(t−tk)E‖xi(tk)− yi(tk))‖r


+
[
Crmax

j
φij

(
r − 2

2(r − 1)ai

) r−2
2 (

1− e−
2(r−1)
r−2

ai(t−t0)
) r−2

2
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+
(1− e−ai(t−t0)

ai

)r−1

max
j
bijϕj

]
×
∫ t

t0

e−ai(t−s)
n∑
j=1

E‖xj(s)− yj(s)‖rds.

Consequently

E‖x(t)− y(t)‖r ≤ 4r−1 max
i
e−rai(t−t0)E‖ψ(t)− ψ∗(t)‖r

+4r−1 Ck(
1− e−δai

)r−1 ×

∑
tk<t

max
i
e−ai(t−tk)E‖x(tk)− y(tk))‖r


+4r−1

[
Cr

n∑
j=1

max
j
φij

(
r − 2

2(r − 1)ai

) r−2
2 (

1− e−
2(r−1)
r−2

ai(t−t0)
) r−2

2

+

n∑
j=1

(1− e−ai(t−t0)
ai

)r−1

max
j
bijϕj

]
×
∫ t

t0

e−ai(t−s)E‖x(s)− y(s)‖rds.

Let us choose Z(t) = E‖x(t)− y(t)‖reait, then we have

Z(t) ≤ 4r−1Z(t0) +

∫ t

t0

4r−1
[
Cr

n∑
j=1

max
j
φij

(
r − 2

2(r − 1)ai

) r−2
2 (

1− e−
2(r−1)
r−2

ai(t−t0)
) r−2

2

+

n∑
j=1

(1− e−ai(t−t0)
ai

)r−1

max
j
bijϕj

]
Z(s)ds

+4r−1
∑
tk<t

max
i

Ck(
1− e−δai

)r−1Z(tk).

Now by using Gronwall-Bellman’s lemma [24]

Z(t) ≤ 4r−1Z(t0)4
r−1Z(t0)

∏
tk<t

(
1 + 4r−1 max

i

Ck(
1− e−δai

)r−1

)

×exp
(
4r−1

[
Cr

n∑
j=1

max
j
φij

(
r − 2

2(r − 1)ai

) r−2
2 (

1− e−
2(r−1)
r−2

ai(t−t0)
) r−2

2

+

n∑
j=1

(1− e−ai(t−t0)
ai

)r−1

max
j
bijϕj

]
(t− t0)

)
.

Then

E‖x(t)− y(t)‖r ≤ 4r−1‖x(t0)− y(t0)‖r
(
1 + 4r−1 max

i

Ck(
1− e−δai

)r−1

)t+1

× exp
(
−min

i
ai + 4r−1

[
Cr

n∑
j=1

max
j
φij

(
r − 2

2(r − 1)ai

) r−2
2 (

1− e−
2(r−1)
r−2

ai(t−t0)
) r−2

2

+

n∑
j=1

(1− e−ai(t−t0)
ai

)r−1

max
j
bijϕj

]
(t− t0)

)
.
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For r = 2, by using Hölder inequality, we get

U1 ≤ E

(∫ t

t0

e−ai(t−s)
n∑
j=1

‖bij(s)‖‖ϕj(xj(s))− ϕj(yj(s))‖ds

)2

≤
(1− e−ai(t−t0)

ai

)
max
j
bijϕj

∫ t

t0

e−ai(t−s)
n∑
j=1

E‖xj(s)− yj(s)‖2ds,

U3 = E
∥∥∥ ∑
tk<t

e−ai(t−tk)
[
Ik(xi(tk))− Ik(yi(tk))

]∥∥∥2

≤

∑
tk<t

e−ai(t−tk)

∑
tk<t

e−ai(t−tk)E‖Ik(xi(tk))− Ik(yi(tk))‖2


≤
(

Ck

1− e−aiδ

)∑
tk<t

e−ai(t−tk)E‖xi(tk)− yi(tk))‖2
 .

Using Itô integral and Hölder inequality, we obtain

U2 = E
∥∥∥ ∫ t

t0

e−ai(t−s)
n∑
j=1

[
φij(s, xj(s))− φij(s, yj(s))

]
dBj(s)

∥∥∥2
≤ 4max

j
φij

(∫ t

t0

e−ai(t−s)ds

)(∫ t

t0

e−ai(t−s)E‖x(s)− y(s)‖2ds
)

≤ 4max
j
φij

(
1− e−ai(t−t0)

ai

)(∫ t

t0

e−ai(t−s)E‖x(s)− y(s)‖2ds
)
.

Therefore, now by using Gronwall-Bellman’s lemma [24] we obtain

E‖x(t)− y(t)‖2 ≤ 4r−1‖x(t0)− y(t0)‖2
(
1 + 4max

i

Ck(
1− e−δai

))t+1

×exp
(
−min

i
ai + 4max

i

(1− e−ai(t−t0)
ai

)[
max
j
bijϕj + 4

n∑
j=1

φij
]
(t− t0)

)
,

which implies that the r-mean (α, β)-pseudo almost periodic mild solution of the
system (1) is exponential stable. �

5. Applications

In this section, we illustrate our main results by an example. Consider the two-
dimensional impulsive stochastic neural networks

dyi(s) =
[
− ai(s)yi(s) +

∑2
j=1 bij(s)ϕj(yj(s)) +

∑2
j=1 fij(s)

]
ds

+
∑2
j=1 φij(s, yi(s))dBj(s), s ≥ 0, s 6= sk, k ∈ N,

yi(s
+
k ) = Ii,k(y(sk)), s = sk,

yi(s0) = ψi, i = 1, 2

(14)

where (Bj(s), s ∈ R) is two-sided standard Weiner process, H = L2([0, π]), sk =

k + 1
4 | sin k − sin

√
2k|, k ∈ N, this gives δ = inf(sk+1 − sk) = 1

3 > 0, ψi = (1, 1)T ,

a1(s) = a2(s) = 8 + sin(2πs) + sin(
√

2πs) ∈ APT(R,R) ⇒ ai = 6
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(bij(s))1≤i,j≤2 =
( sin(2πs)+sin(

√
2πs)+e−|s|

20
cos(2πs)+cos(

√
2πs)+e−|s|

20

cos(2πs)+cos(
√

2πs)+ 1
1+s2

20
sin(2πs)+sin(

√
2πs)+e−s

2

20

)
,

(fij(s))1≤i,j≤2 = 20(bij(s))1≤i,j≤2,

ϕ1(s) = ϕ2(s) =
1

2
sin s,

φij(s, yi(s)) =
1

50

(
cos(2πs) + cos(

√
2πs) + e−|s| cos(2πs) + cos(

√
2πs) + e−|s|

cos(2πs) + cos(
√

2πs) + e−|s| cos(2πs) + cos(
√

2πs) + e−|s|

)
sin(yi(s))

I1 = I2 =
1

40
[cos(2πk) + cos(

√
2πk) + e−k

2

] sin(yi),

this gives that bij = 0, 3, ϕj =
√

2
2 , fij = 6, φij = 0, 12 and Ck = 3

√
2

40 . It is obvious

to verify that the functions φij ∈ PAPT(R × L2(P,H), L2(P,L2
0), α, β), bij , fij ∈

PAPT(R, L2(P,H), α, β), Ik ∈ PAPT(N× L2(P,H), L2(P,H), α, β), and
ϕj ∈ PAPT(R, L2(P,L2(P,H)), α, β). So we have M = 0, 695 < 1, L = 5, 54 > 0. All
conditions from Theorems 3.5, 4.1 are satisfied, then the system 14 has has exactly one
r-mean (α, β)-pseudo almost periodic mild solution, which is globally exponentially
stable.

Example 5.1. We will choose the two measures α and β in the previous application
defined by the following double weights, respectively:

ρ1(t) = esin(t), t ∈ R and ρ2(t) =

{
et if t ≤ 0,
1 if t > 0.

We have 2r
e ≤ α([−r, r]) =

∫ r
−r e

sin(t)dt ≤ 2er. Then α ∈M satisfies (H1). In deed

sin(τ+a) ≤ 2+sin(a) for all τ ∈ R and a ∈ A, which implies that α(τ+A) ≤ e2α(A).

From [1], β ∈M satisfies (H1). Since lim sup
r→+∞

α([−r, r])
β([−r, r])

<∞, then (H2) is true.
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