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The Padovan-Circulant-Hurwitz Sequences

Zafer Adıgüzel, Özgür Erdağ, and Ömür Deveci

Abstract. In this paper, we define the Padovan-circulant-Hurwitz sequences of the first,

second, third and fourth kinds by using the Hurwitz matrices, which are obtained from the

characteristic polynomials of the Padovan-circulant sequences of the first, second, third and
fourth kinds. First, we derive relationships between the Padovan-circulant-Hurwitz numbers

of the first, second, third and fourth kinds and the generating matrices of these sequences.

Then we obtain the miscellaneous properties of these sequences by aid of these matrices.
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1. Introduction

The Padovan sequence is the sequence of the integer {P (n)} defined by the initial
values P (0) = P (1) = P (2) = 1 and the recurrence relation:

P (n) = P (n− 2) + P (n− 3)

for all n ≥ 3.
In [5], Deveci defined the Padovan-circulant sequences of first, second, third and

fourth kind as follows, respectively:

x1
n = x1

n−2 − x1
n−3 − x1

n−4 for n ≥ 5 where x1
1 = x1

2 = x1
3 = 0 and x1

4 = 1,

x2
n = −x2

n−2 + x2
n−4 − x2

n−5 for n ≥ 6 where x2
1 = x2

2 = x2
3 = x2

4 = 0 and x2
5 = 1,

x3
n = −x3

n−3 − x3
n−4 + x3

n−6 for n ≥ 7 where x3
1 = x3

2 = x3
3 = x3

4 = x3
5 = 0 and x3

6 = 1

and

x4
n = x4

n−4 − x4
n−5 − x4

n−6 for n ≥ 7 where x4
1 = x4

2 = x4
3 = x4

4 = x4
5 = 0 and x4

6 = 1.

Let P be a nth degree real polynomial given by

P (x) = a0x
n + a1x

n−1 + ...+ an−1x+ an.

Received May 13, 2024. Accepted August 9, 2025.
This Project was supported by the Commission for the Scientific Research Projects of Kafkas

University. The Project number: 2017-FM-65.

345
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In [11], A. Hurwitz defined the Hurwitz matrix Hn = [hij ]n×n associated to P was
defined as follows:

Hn =



a1 a3 a5 · · · · · · · · · 0 0 0

a0 a2 a4 · · · · · · · · ·
...

...
...

0 a1 a3 · · · · · · · · ·
...

...
...

... a0 a2
. . .

. . .
. . . 0

...
...

... 0 a1
. . .

. . .
. . . an

...
...

...
... a0

. . .
. . .

. . . an−1 0
...

...
... 0 · · · · · · · · · an−2 an

...
...

...
... · · · · · · · · · an−3 an−1 0

0 0 0 · · · · · · · · · an−4 an−2 an


.

Suppose that the (n+ k)th term of a sequence is defined recursively by a linear
combination of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1

where c0, c1, . . . , ck−1 are real constants. In [12], Kalman derived a number of closed-
form formulas for the generalized sequence by the companion matrix method as fol-
lows:

A = [ai,j ]k×k =



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1
c0 c1 c2 ck−2 ck−1


.

Then by an inductive argument he obtained that

An


a0

a1

...
ak−1

 =


an
an+1

...
an+k−1


for n > 0.

As it is well-known recurrence sequences, circulant matrix and Hurwitz matrix ap-
pear in modern research in many fields from mathematics, physics, computer science,
architecture to nature and art see, for example; [4, 9, 13, 15, 16, 19, 20, 21, 23, 24, 25].

Recurrence sequences are widely utilized to solve some problems in various scientific
fields, or different problems in different scientific disciplines are directly created by
taking the structural aspects of these sequences into account. In the literature, many
interesting properties and applications of the recurrence sequences relevant to this
paper have been studied by many authors; see, for example, [1, 6, 7, 8, 10, 14, 22].
In this paper, we give new sequences which are called Padovan-circulant sequences of
first, second, third and fourth kind. Firstly, we define the Padovan-circulant-Hurwitz
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sequences of first, second, third and fourth kind by using the Hurwitz matrices which
are obtained from the characteristic polynomials of the Padovan-circulant sequences
of first, second, third and fourth kind and then we derive relationships between the
Padovan-circulant-Hurwitz numbers of the first, second, third and fourth kind and
the generating matrices of these sequences. Also, we give miscellaneous properties of
the Padovan-circulant-Hurwitz sequences of the first, second, third and fourth kind
such as the generating function, the Binet formula, the permanental, determinantal
and combinatorial representations and the sums by the aid of the generating functions
and the generating matrices of the sequences defined.

2. The Main Results

It is easy to see that the characteristic polynomials of the Padovan-circulant sequences
of first, second, third and fourth kind are as follows, respectively:

f (1) (x) = x4 − x2 + x+ 1,

f (2) (x) = x5 + x3 − x+ 1,

f (3) (x) = x6 + x3 + x2 − 1

and

f (4) (x) = x6 − x2 + x+ 1.

Then we can write the following Hurwitz matrices for the polynomials f (1) (x),
f (2) (x), f (3) (x) and f (4) (x), respectively:

H(1) =


0 1 0 0
1 −1 1 0
0 0 1 0
0 1 −1 1


,

H(2) =


0 0 1 0 0
1 1 −1 0 0
0 0 0 1 0
0 1 1 −1 0
0 0 0 0 1


,

H(3) =


0 1 0 0 0 0
1 0 1 −1 0 0
0 0 1 0 0 0
0 1 0 1 −1 0
0 0 0 1 0 0
0 0 1 0 1 −1


and

H(4) =


0 0 1 0 0 0
1 0 −1 1 0 0
0 0 0 1 0 0
0 1 0 −1 1 0
0 0 0 0 1 0
0 0 1 0 −1 1


.
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Now we define the Padovan-circulant-Hurwitz sequences of first, second, third and
fourth kind by using H(1), H(2), H(3) and H(4) the matrices as follows, respectively:

a1 (n + 4) = a1 (n + 2) − a1 (n + 1) + a1 (n) where a1 (1) = a1 (2) = a1 (3) = 0 and a1 (4) = 1, (1)

a
2

(n+ 5) = −a2 (n+ 2) + a
2

(n+ 1) + a
2

(n) where a
2

(1) = a
2

(2) = a
2

(3) = a
2

(4) = 0 and a
2

(5) = 1,
(2)

a
3
(n + 6) = −a

3
(n + 3) + a

3
(n + 2) + a

3
(n) where a

3
(1) = a

3
(2) = a

3
(3) = a

3
(4) = a

3
(5) = 0 and a

3
(6) = 1

(3)

and
a
4
(n + 6) = a

4
(n + 3) − a

4
(n + 2) + a

4
(n) where a

4
(1) = a

4
(2) = a

4
(3) = a

4
(4) = a

4
(5) = 0 and a

4
(6) = 1

(4)

for n ≥ 1.
The generating functions of the Padovan-circulant-Hurwitz sequences of first, sec-

ond, third and fourth kind are then:

g(1) (x) =
x4

1− x2 + x3 − x4
,

g(2) (x) =
x5

1 + x3 − x4 − x5
,

g(3) (x) =
x6

1 + x3 − x4 − x6

and

g(4) (x) =
x6

1− x3 + x4 − x6
.

By equation (1),( 2), ( 3) and ( 4), we can write the following companion matrices,
respectively:

PH(1) =


0 1 −1 1
1 0 0 0
0 1 0 0
0 0 1 0


,

PH(2) =


0 0 −1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


,

PH(3) =


0 0 −1 1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


and

PH(4) =


0 0 1 −1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


.
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and we call the matrices PH(1), PH(2), PH(3) and PH(4) Padovan-circulant-Hurwitz
matrices of the first, second, third and fourth kind.

Let ak (α) be denoted by akα for k = 1, 2, 3, 4. By an inductive argument, we may
write for α ≥ 3

(
PH(1)

)α
=


a1
α+4 a1

α+5 a1
α+2 − a1

α+3 a1
α+3

a1
α+3 a1

α+4 a1
α+1 − a1

α+2 a1
α+2

a1
α+2 a1

α+3 a1
α − a1

α+1 a1
α+1

a1
α+1 a1

α+2 a1
α−1 − a1

α a1
α


,

(
PH(2)

)α
=


a2
α+5 a2

α+6 a2
α+7 a2

α+3 + a2
α+4 a2

α+4

a2
α+4 a2

α+5 a2
α+6 a2

α+2 + a2
α+3 a2

α+3

a2
α+3 a2

α+4 a2
α+5 a2

α+1 + a2
α+2 a2

α+2

a2
α+2 a2

α+3 a2
α+4 a2

α + a2
α+1 a2

α+1

a2
α+1 a2

α+2 a2
α+3 a2

α−1 + a2
α a2

α


,

(
PH(3)

)α
=


a3
α+6 a3

α+7 a3
α+8 a3

α+3 + a3
α+5 a3

α+4 a3
α+5

a3
α+5 a3

α+6 a3
α+7 a3

α+2 + a3
α+4 a3

α+3 a3
α+4

a3
α+4 a3

α+5 a3
α+6 a3

α+1 + a3
α+3 a3

α+2 a3
α+3

a3
α+3 a3

α+4 a3
α+5 a3

α + a3
α+2 a3

α+1 a3
α+2

a3
α+2 a3

α+3 a3
α+4 a3

α−1 + a3
α+1 a3

α a3
α+1

a3
α+1 a3

α+2 a3
α+3 a3

α−2 + a3
α a3

α−1 a3
α


and

(
PH(4)

)α
=


a4
α+6 a4

α+7 a4
α+8 a4

α+3 − a4
α+5 a4

α+4 a4
α+5

a4
α+5 a4

α+6 a4
α+7 a4

α+2 − a4
α+4 a4

α+3 a4
α+4

a4
α+4 a4

α+5 a4
α+6 a4

α+1 − a4
α+3 a4

α+2 a4
α+3

a4
α+3 a4

α+4 a4
α+5 a4

α − a4
α+2 a4

α+1 a4
α+2

a4
α+2 a4

α+3 a4
α+4 a4

α−1 − a4
α+1 a4

α a4
α+1

a4
α+1 a4

α+2 a4
α+3 a4

α−2 − a4
α a4

α−1 a4
α


,

from which it is clear that

det
(
PH(1)

)α
=
(
PH(3)

)α
=
(
PH(4)

)α
= (−1)

α
and det

(
PH(2)

)α
= 1.

It is clear that each of the eingenvalues of the matrices PH(1), PH(2), PH(3) and
PH(4) are distinct. Let {

ε
(1)
1 , ε

(1)
2 , ε

(1)
3 , ε

(1)
4

}
,

{
ε

(2)
1 , ε

(2)
2 , ε

(2)
3 , ε

(2)
4 , ε

(2)
5

}
and {

ε
(t)
1 , ε

(t)
2 , ε

(t)
3 , ε

(t)
4 , ε

(t)
5 , ε

(t)
6

}
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be the sets of the eingevalues of the matrices PH(1), PH(2) and PH(3) respectively
and let V k be (k + 3)× (k + 3) Vandermonde matrix as follows:

V (k) =



(
ε

(k)
1

)k+2 (
ε

(k)
2

)k+2

· · ·
(
ε

(k)
k+3

)k+2(
ε

(k)
1

)k+1 (
ε

(k)
2

)k+1

· · ·
(
ε

(k)
k+3

)k+1

...
...

...

ε
(k)
1 ε

(k)
2 ε

(k)
k+3

1 1 · · · 1


where k = 1, 2, 3. Suppose now that

W
(k)
i =



(
ε

(k)
1

)α+k+3−i(
ε

(k)
2

)α+k+3−i

...(
ε

(k)
k+3

)α+k+3−i


and V

(k)
i,j is a (k + 3)×(k + 3) matrix obtained from V (k) by replacing the jth column

of V (k) by W
(k)
i . This yields the Binet-type formulas for the Padovan-circulant-

Hurwitz matrices of the first, second and third kind, as stated in the following theorem.

Theorem 2.1. Let akα be the αth term of the sequence of the kth kind for k = 1, 2, 3.
Then

p
(k,α)
ij =

detV
(k)
i,j

detV (k)

where
(
PH(k)

)α
=
[
p

(k,α)
ij

]
such that k = 1, 2, 3.

Proof. Since the eigenvalues of the matrix PH(k) are distinct, the matrix PH(k) is
diagonalizable. Let

D(1) = diag
(
ε

(1)
1 , ε

(1)
2 , ε

(1)
3 , ε

(1)
4

)
,

D(2) = diag
(
ε

(2)
1 , ε

(2)
2 , ε

(2)
3 , ε

(2)
4 , ε

(2)
5

)
and

D(3) = diag
(
ε

(3)
1 , ε

(3)
2 , ε

(3)
3 , ε

(3)
4 , ε

(3)
5 , ε

(3)
6

)
,

then it is readily seen that PH(k)V (k) = V (k)D(k). Since the matrix V (k) is
invertible, (

V (k)
)−1

PH(k)V (k) = D(k)

Thus, the matrix PH(k) is similar to D(k). So we get(
PH(k)

)α
V (k) = V (k)

(
D(k)

)α
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for α ≥ 3. Then we can write the following linear system of equations:

p
(k,α)
i1

(
ε

(k)
1

)k+2

+ p
(k,α)
i2

(
ε

(k)
1

)k+1

+ · · ·+ p
(k,α)
ik+3 =

(
ε

(k)
1

)α+k+3−i

p
(k,α)
i1

(
ε

(k)
2

)k+2

+ p
(k,α)
i2

(
ε

(k)
2

)k+1

+ · · ·+ p
(k,α)
ik+3 =

(
ε

(k)
2

)α+k+3−i

...

p
(k,α)
i1

(
ε

(k)
k+3

)k+2

+ p
(k,α)
i2

(
ε

(k)
k+3

)k+1

+ · · ·+ p
(k,α)
ik+3 =

(
ε

(k)
k+3

)α+k+3−i
.

So, we obtain that

p
(k,α)
ij =

detV
(k)
i,j

detV (k)
for k = 1, 2, 3 and i, j = 1, 2, . . . , k + 3.

�

If we choose

V (4) =



(
ε

(4)
1

)5 (
ε

(4)
2

)5

· · ·
(
ε

(4)
6

)5(
ε

(4)
1

)4 (
ε

(4)
2

)4

· · ·
(
ε

(4)
6

)4

...
...

...

ε
(4)
1 ε

(4)
2 ε

(4)
6

1 1 · · · 1


and W

(4)
i =



(
ε

(4)
1

)α+6−i(
ε

(4)
2

)α+6−i

...(
ε

(4)
6

)α+6−i


then we obtain the Binet formula for the Padovan-circulant-Hurwitz sequence of the
fourth kind as follows:

p
(4,α)
ij =

detV
(4)
i,j

detV (4)
for each i, j = 1, 2, 3, 4, 5, 6.

Then we can give the Binet formulas for the Padovan-circulant-Hurwitz numbers
of the first, second, third and fourth kind by the following Corollary.

Corollary 2.2. Let akα be the αth term of the Padovan-circulant-Hurwitz numbers of
the first, second, third and fourth kind. Then

(i) For k = 1, 2

akα =
detV

(k)
k+3,k+3

detV (k)
.

(ii) For k = 3, 4

akα =
detV

(k)
5,5

detV (k)
=

detV
(k)
6,6

detV (k)
.

Now we consider the relationship between the Padovan-circulant-Hurwitz sequences
of the first, second, third and fourth kind and the permanent of a certain matrix which
is obtained using the Padovan-circulant-Hurwitz matrices of the first, second, third
and fourth kind matrix PH(k), where k = 1, 2, 3.

Definition 2.1. A u×v real matrix M = [mi,j ] is called a contractible matrix in the
kth column (resp. row.) if the kth column (resp. row.) contains exactly two non-zero
entries.
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Suppose that x1, x2, . . . , xu are row vectors of the matrix M . If M is contractible
in the kth column such that mi,k 6= 0,mj,k 6= 0 and i 6= j, then the (u− 1)× (v − 1)
matrix Mij:k obtained from M by replacing the ith row with mi,kxj + mj,kxi and
deleting the jth row. The kth column is called the contraction in the kth column
relative to the ith row and the jth row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix
of order α > 1 and N is a contraction of M .

Let K(1) (n) =
[
k

(1)
i,j

]
, K(2) (n) =

[
k

(2)
i,j

]
, K(3) (n) =

[
k

(3)
i,j

]
and K(4) (n) =

[
k

(4)
i,j

]
be the n× n super-diagonal matrices, defined by, respectively:

k
(1)
i,j =


1

if i = p and j = p+ 1 for 1 ≤ p ≤ n− 1,
if i = p and j = p+ 3 for 1 ≤ p ≤ n− 3

and
i = p+ 1 and j = p for 1 ≤ p ≤ n− 1,

−1 if i = p and j = p+ 2 for 1 ≤ p ≤ n− 2,
0 otherwise.

, for n ≥ 4,

k
(2)
i,j =


1

if i = p and j = p+ 3 for 1 ≤ p ≤ n− 3,
if i = p and j = p+ 4 for 1 ≤ p ≤ n− 4

and
i = p+ 1 and j = p for 1 ≤ p ≤ n− 1,

−1 if i = p and j = p+ 2 for 1 ≤ p ≤ n− 2,
0 otherwise.

, for n ≥ 5,

k
(3)
i,j =


1

if i = p and j = p+ 3 for 1 ≤ p ≤ n− 3,
if i = p and j = p+ 5 for 1 ≤ p ≤ n− 5

and
i = p+ 1 and j = p for 1 ≤ p ≤ n− 1,

−1 if i = p and j = p+ 2 for 1 ≤ p ≤ n− 2,
0 otherwise.

, for n ≥ 6

and

k
(4)
i,j =


1

if i = p and j = p+ 2 for 1 ≤ p ≤ n− 2,
if i = p and j = p+ 5 for 1 ≤ p ≤ n− 5

and
i = p+ 1 and j = p for 1 ≤ p ≤ n− 1,

−1 if i = p and j = p+ 3 for 1 ≤ p ≤ n− 3,
0 otherwise.

, for n ≥ 6.

Then we have the following Theorem.

Theorem 2.3. (i) For k = 1, 2, 3 and n ≥ k + 3,

perK(k) (n) = a(k) (n+ k + 3) .

(ii) For k = 4 and n ≥ 6,

perK(4) (n) = a(4) (n+ 6) .

Proof. (i) Let us consider k = 1 and let the equation hold for n > 4. Then we
show that the equation holds for n+ 1. If we expand the perK(1) (n) by the Laplace
expansion of permanent with respect to the first row, then we obtain

perK(1) (n+ 1) = perK(1) (n− 1)− perK(1) (n− 2) + perK(1) (n− 3) .
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Since perK(1) (n− 1) = a(1) (n+ 3), perK(1) (n− 2) = a(1) (n+ 2) and perK(1) (n− 3) =
a(1) (n+ 1), we easily obtain that perK(1) (n+ 1) = a(1) (n+ 5). So the proof is com-
plete.

The proofs for (ii), (iii) and (iv) are similar to the above and are omitted. �

Let L(1) (n) =
[
l
(1)
i,j

]
, L(2) (n) =

[
l
(2)
i,j

]
, L(3) (n) =

[
l
(3)
i,j

]
and L(4) (n) =

[
l
(4)
i,j

]
be

the n× n matrices, defined by, respectively:

l
(1)
i,j =


1

if i = p and j = p+ 1 for 1 ≤ p ≤ n− 2,
if i = p and j = p+ 3 for 1 ≤ p ≤ n− 3

and
i = p+ 1 and j = p for 1 ≤ p ≤ n− 1,

−1 if i = p and j = p+ 2 for 1 ≤ p ≤ n− 2,
0 otherwise.

, for n ≥ 4,

l
(2)
i,j =


1

if i = p and j = p+ 3 for 1 ≤ p ≤ n− 4,
if i = p and j = p+ 4 for 1 ≤ p ≤ n− 4

and
i = p+ 1 and j = p for 1 ≤ p ≤ n− 1,

−1 if i = p and j = p+ 2 for 1 ≤ p ≤ n− 4,
0 otherwise.

, for n ≥ 5,

l
(3)
i,j =


1

if i = p and j = p+ 3 for 1 ≤ p ≤ n− 5,
if i = p and j = p+ 5 for 1 ≤ p ≤ n− 5

and
i = p+ 1 and j = p for 1 ≤ p ≤ n− 1,

−1 if i = p and j = p+ 2 for 1 ≤ p ≤ n− 5,
0 otherwise.

, for n ≥ 6

and

l
(4)
i,j =


1

if i = p and j = p+ 2 for 1 ≤ p ≤ n− 5,
if i = p and j = p+ 5 for 1 ≤ p ≤ n− 5

and
i = p+ 1 and j = p for 1 ≤ p ≤ n− 1,

−1 if i = p and j = p+ 3 for 1 ≤ p ≤ n− 5,
0 otherwise.

, for n ≥ 6.

Assume that the n× n matrices M (k) (n) =
[
m

(k)
i,j

]
for k = 1, 2, 3 and M (4) (n) =[

m
(4)
i,j

]
is defined by, respectively:

(n− k − 3) th
↓

M (k) (n) =



1 · · · 1 0 0
1
0
0 L(k) (n− 1)
...
0


, for n > k + 3
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and
(n− 6) th
↓

M (4) (n) =



1 · · · 1 0 0
1
0
0 L(4) (n− 1)
...
0


, for n > 6.

Then we can give more general results by using other the permanental representations
than the above.

Theorem 2.4. Let a(k) (n) be the nth the Padovan-circulant-Hurwitz sequences of
the first, second, third and fourth kind for k = 1, 2, 3, 4. Then

(i). For n ≥ k + 3,

perL(k) (n) = a(k) (n) .

(ii). For n > k + 3,

perM (k) (n) =

m−1∑
i=1

a(k) (i) .

Proof. (i). Let us consider the matrix L(2) (n) and let the equation hold for n ≥ 5.
Then we show that the equation holds for n + 1. If we expand perL(2) (n) by the
Laplace expansion of permanent according to the first row, then we obtain

perL(2) (n+ 1) = −perL(2) (n− 2) + perL(2) (n− 3) + perL(2) (n− 4) .

Also, since perL(2) (n− 2) = a(2) (n− 2), perL(2) (n− 3) = a(2) (n− 3) and
perL(2) (n− 4) = a(2) (n− 4), it is clear that perL(2) (n+ 1) = a(2) (n+ 1).

The proofs for the matrices L(1) (n), L(3) (n) and L(4) (n) are similar.
(ii). If we extend perM (k) (n) with respect to the first row, we write

perM (k) (n) = perM (k) (n− 1) + perL(k) (n− 1)

for k = 1, 2, 3, 4. By induction on n, taking into consideration the results of Theorem
2.3 and part (i) in Theorem 2.4, the conclusion is easily seen. �

Let the notation A ◦K denotes the Hadamard product of A and K. A matrix A is
called convertible if there is an m×m (1, -1)-matrix K such that per A = det(A ◦K).

Let n > k + 3 and let R be the n× n matrix, defined by

R =



1 1 1 · · · 1 1
−1 1 1 · · · 1 1
1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...
1 · · · 1 −1 1 1
1 · · · 1 1 −1 1


.

It is easy to see that perK(k) (n) = det
(
K(k) (n) ◦R

)
, perL(k) (n) = det

(
L(k) (n) ◦R

)
and perM (k) (n) = det

(
M (k) (n) ◦R

)
for n > k+3. Then we have the following useful

results.
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Corollary 2.5. (i)

det
(
K(k) (n) ◦R

)
= a(k) (n+ k + 3) , for k = 1, 2, 3 and n > k + 3

and

det
(
K(4) (n) ◦R

)
= a(4) (n+ 6) , for k = 4 and n > 6.

(ii) For k = 1, 2, 3, 4 and n > k + 3,

det
(
L(k) (n) ◦R

)
= a(k) (n)

and

det
(
M (k) (n) ◦R

)
=

m−1∑
i=1

a(k) (i) .

Let C (c1, c2, . . . , cv) be a v × v companion matrix as follows:

C (c1, c2, . . . , cv) =


c1 c2 · · · cv
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0


.

See [17, 18] for more information about the companion matrix.

Theorem 2.6. (Chen and Louck [3]). The (i, j) entry c
(n)
i,j (c1, c2, . . . , cv) in the

matrix Cn (c1, c2, . . . , cv) is given by the following formula:

c
(n)
i,j (c1, c2, . . . , cv) =

∑
(t1,t2,...,tv)

tj + tj+1 + · · ·+ tv
t1 + t2 + · · ·+ tv

×
(
t1 + · · ·+ tv
t1, . . . , tv

)
ct11 · · · ctvv (5)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv =

n− i+ j,
(
t1+···+tv
t1,...,tv

)
= (t1+···+tv)!

t1!···tv ! is a multinomial coefficient, and the coefficients in

(5) are defined to be 1 if n = i− j.

Then we can give other combinatorial representations than for the Padovan-circulant
Hurwitz sequences of the first, second, third and fourth kind by the following Corol-
lary.

Corollary 2.7. Let a(k) (α) be the αth the Padovan-circulant Hurwitz sequences of
the first, second, third and fourth kind.

(i) For k = 1, 2,

a(k) (α) =
∑

(t1,t2...,tk+3)

tk+3

t1 + t2 + · · ·+ tk+3

(
t1 + · · ·+ tk+3

t1, . . . , tk+3

)
(−1)

t3

where the summation is over nonnegative integers satisfying t1+2t2+· · ·+(k + 3) tk+3 =
α.

(ii) For k = 3, 4,

a(k) (α) =
∑

(t1,t2...,t6)

t6
t1 + t2 + · · ·+ t6

(
t1 + · · ·+ t6
t1, . . . , t6

)
(−1)

tk

=
∑

(t1,t2...,t6)

t5 + t6
t1 + t2 + · · ·+ t6

(
t1 + · · ·+ t6
t1, . . . , t6

)
(−1)

tk
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where the summation is over nonnegative integers satisfying t1 + 2t2 + · · ·+ 6t6 = α.

Proof. (i) Let us consider k = 1. In Theorem 2.6, if we take i = j = 4, c1 = 0, c2 = 1,

c3 = −1 and c4 = 1, then the proof is immediately seen from
(
PH(1)

)α
.

(ii) The proof is similar to the above and is omitted. �

Now we consider the sums of Padovan-circulant Hurwitz numbers of first, second,
third and fourth kind.

Let

Sα =

α∑
i=1

a(k) (i)

for i ≥ 1 and k = 1, 2, 3. Suppose that
(
T (k)

)α
are the (k + 3)× (k + 3) matrices such

that

T (k) =


1 0 · · · 0
1
0 PH(k)

...
0


.

Then it can be shown by induction that:

(
T (k)

)α
=



1 0 0 · · · 0 0
Sα+k+2

Sα+k+1

...
(
PH(k)

)α
Sα+1

Sα


.
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