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Abstract. The aim of this paper is to present some applications of the Neumann Laplacian
in image processing, along with the necessary mathematical background. We prove weak and

strong versions of the maximum principle for weak solutions of elliptic and parabolic problems

and apply them to a Fisher K.P.P.-type equation. The original contribution lies in the applica-
tion of this equation in image processing, where various diffusion-like effects can be achieved.

Additionally, a review of the basics of linear and nonlinear PDEs with Neumann boundary

conditions is provided, along with updated bibliography and recent qualitative results. There
are also some new theoretical results developed in this work.
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1. Introduction and notations

The Fisher equation is primarily used in population dynamics models. However, due
to its rich properties, such as global boundedness, it is also well-suited for applications
in image processing.

In this research article, we will conduct a thorough study of the following semilinear
evolution problem:

∂u

∂t
− d∆u = αu ·

(
r(x)− p(x)u

)
, (t, x) ∈ (0, T )× Ω

∂u

∂ν
= 0, (t, x) ∈ (0, T )× ∂Ω

u(0, x) = u0(x), x ∈ Ω

(1)

The problem is set up in a domain Ω ⊂ RN , N ≥ 2. Of particular interest will be
the case when N = 2, especially considering its relevance to applications in image
processing.

Simulating PDEs on images can provide valuable insights into how differential
operators behave and their specific characteristics.

Engineers commonly refer to Neumann boundary conditions as natural conditions,
whereas in image processing, they are termed reflective conditions and are suitable for
applying PDEs to images. These conditions describe an isolated domain where there
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is no flux through the boundary. They are notable because, in formulating weak
versions of PDEs, the space of test functions is not constrained by the boundary
conditions, unlike in the case of Dirichlet conditions.

This section begins by proving weak versions of the maximum principle for elliptic
and parabolic PDEs, which will serve as the main results applied in this work. Com-
plete proofs are provided since they may not be readily available in basic monographs
on this subject.

In Section 2, we address linear heat equations with Neumann boundary conditions
and lay the groundwork necessary for Section 3, where we study a semilinear para-
bolic equation with a logistic term. We emphasize the importance of strong forms of
the maximum principle, enabling analysis of our solutions in terms of the problem’s
parameters. Here, we utilize an elegant functional method involving the notion of
almost interior points, introduced by J. Glück and M. Weber in [13].

Sections 4 and 5 are devoted to studying the steady-states of the parabolic problem.
Subsequently, in Section 6, we present the main result of the paper: the uniform
asymptotic stability of the only nontrivial steady state of our main problem.

Finally, we discuss how the gathered results can be applied to modify images and
develop an algorithm implemented using Matlab R2023b, capable of transforming one
picture into another using diffusion. Additionally, we explore the application of diffu-
sion for two more purposes: causing an image to dissapear or gradually transforming
it into a mathematical solution of (1).

There are some new results like Theorem 2.1 (5) and Lemma 3.5 (2),(4),(5),(6),(7)
and many non-obvious details and tricks that fill the existent gaps in the proofs of
some well-known results. The hypotheses in which we work are very general: we use
Lipschitz domains and weak solutions for PDEs.

Concluding remarks are provided, along with suggestions for further research and
improvement.

In the Appendix, we compile some non-standard definitions and results, including
proofs for some of them.

Throughout the paper, we will use the notations: Lp(Ω)+ = {f ∈ Lp(Ω) | f(x) ≥
0, for a.a. x ∈ Ω} where p ∈ [1,∞] and H1(Ω)+ = {f ∈ H1(Ω) | f(x) ≥ 0, for a.a. x ∈
Ω}.

1.1. The weak minimum principle for elliptic and parabolic problems.

Theorem 1.1 (Weak Minimum Principle for elliptic problems). Fix some open

and bounded set Ω ⊂ RN and let c ∈ Lp(Ω) for some p satisfying


p > 1 if N=2

p ≥ N

2
if N > 2

,

with c ≥ 0 a.e. on Ω. If u ∈ H1(Ω) satisfies in the weak sense the following
inequalities:

−∆u+ c(x)u ≥ 0, x ∈ Ω

∂u

∂ν
(x) ≥ 0, x ∈ ∂Ω

i.e.

∫
Ω

∇u(x) · ∇φ(x) + c(x)u(x)φ(x) dx ≥ 0 (2)
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for all test functions φ ∈ H1(Ω) with φ ≥ 0 a.e. on Ω1 then exactly one of the
following two situations takes place:
(1) u ≥ 0 a.e. on Ω;
(2) u is a constant strict negative function and c ≡ 0.

Proof. First, let’s explain why the integral inequality from the statement is well-
defined. Since∇u,∇ϕ ∈ L2(Ω;RN ), from Cauchy inequality we deduce that∇u·∇ϕ ∈
L1(Ω). If N = 2 from Sobolev embedding theorem2 u, φ ∈ H1(Ω) ↪→ Lr(Ω) for each
r ≥ 1. Setting r = 2p′ = 2p

p−1 > 2 we obtain first from Cauchy inequality that

uφ ∈ Lp′(Ω) and then from Hölder inequality that cuφ ∈ L1(Ω). IfN > 2 from Sobolev

embedding theorem we have that u, φ ∈ H1(Ω) ↪→ L
2N

N−2 (Ω). So uφ ∈ L
N

N−2 (Ω) from
Cauchy inequality. Now, since p ≥ N

2 ⇒ p′ ≤ N
N−2 . Being in a bounded domain

we deduce from Hölder inequality that uφ ∈ L
N

N−2 (Ω) ⊂ Lp
′
(Ω) (see [17, page 240]).

Applying one more time Hölder inequality we will get that cuφ ∈ L1(Ω).
Now we can start the proof. Write u = u+ − u−, where u+ = max{u, 0} ≥ 0
and u− = −min{u, 0} ≥ 0 a.e. on Ω. From [18, Theorem 2.2] we know that

u+, u− ∈ H1(Ω)+ and moreover ∇u+ =

{
∇u, a.e. on {x ∈ Ω | u(x) > 0}
0, a.e. on {x ∈ Ω | u(x) ≤ 0}

, ∇u− ={
∇u, a.e. on {x ∈ Ω | u(x) < 0}
0, a.e. on {x ∈ Ω | u(x) ≥ 0}

. So u+u− = 0 and ∇u+ · ∇u− = 0 a.e. on Ω.

Choose φ = u− ∈ H1(Ω)+ as test function. Then (2) becomes:∫
Ω

(
∇u+ −∇u−

)
· ∇u− dx+

∫
Ω

c(u+ − u−) · u− dx ≥ 0

⇒
∫

Ω

∇u+ · ∇u− − |∇u−|2 dx+

∫
Ω

c(x)u+u− − c(u−)2 dx ≥ 0

⇒
∫

Ω

|∇u−|2 dx+

∫
Ω

c(u−)2 ≤ 0.

Knowing that c ≥ 0 a.e. on Ω we get that ∇u− = 0 a.e. on Ω. Taking into account
that Ω is a connected domain we deduce that there is a constant k ∈ R with u− = k
a.e. on Ω. If k ≤ 0 then 0 ≤ u− = k ≤ 0 ⇒ u− = 0 and u = u+ ≥ 0. If k > 0 then

k = u− = −min{u, 0} = −u ⇒ u = −k < 0 and

∫
Ω

c dx = 0. Therefore c = 0 a.e.

on Ω as claimed. �

Theorem 1.2 (Weak Minimum Principle for parabolic problems). Let any
d, T > 0 and c ∈ L∞((0, T ) × Ω). If u ∈ C([0, T ];L2(Ω)) ∩ H1

loc((0, T );L2(Ω)) ∩
L2((0, T );H1(Ω)) satisfies in the weak sense the inequalities:

∂u

∂t
− d∆u+ c(t, x)u ≥ 0, (t, x) ∈ (0, T )× Ω

∂u

∂ν
≥ 0, (t, x) ∈ (0, T )× ∂Ω

i.e. (3)

1This definition is adapted from [33, pages 212-213].
2A proof can be found in [1, Theorem 4.51 and Theorem 6.3] or in [22, Theorem 12.17 and

Theorem 12.18].
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Ω

∂u

∂t
(t, ·)φ dx+ d

∫
Ω

∇u(t, ·) · ∇φ dx +

∫
Ω

c(t, ·)u(t, ·)φ dx ≥ 0 (4)

for a.a. t ∈ (0, T ), for all φ ∈ H1(Ω) with φ ≥ 0 a.e. on Ω and: u(0, x) ≥ 0 for a.a.
x ∈ Ω then u(t, x) ≥ 0 for a.a. (t, x) ∈ (0, T )× Ω.

Proof. First consider, if needed, some real constant M ≥ 0 with ess inf
(0,T )×Ω

c + M ≥ 0

and let v = e−Mt · u. Then, since u(t, ·) ∈ H1(Ω) and t 7→ e−Mt is a smooth
mapping we deduce that v(t, ·) ∈ H1(Ω) ⊂ L2(Ω), ∀ t ∈ [0, T ], from [18, Lemma
1.12 (5), page 9]. Observe that for any t, t + h ∈ [0, T ] we have that ‖v(t + h, ·) −
v(t, ·)‖L2(Ω) ≤ e−Mt‖u(t+h, ·)e−Mh−u(t, ·)‖L2(Ω) ≤ ‖u(t+h, ·)e−Mh−u(t, ·)‖L2(Ω) ≤
‖u(t + h, ·) − u(t, ·)‖L2(Ω) + |1 − e−Mh| · ‖u(t+ h, ·)‖L2(Ω)︸ ︷︷ ︸

≤‖u‖C((0,T );L2(Ω))

h→0→ 0, which shows that

v is continuous from [0, T ] to L2(Ω). Since ‖v(t, ·)‖L2(Ω) = e−Mt‖u(t, ·)‖L2(Ω) ≤
‖u(t, ·)‖L2(Ω) for any t ∈ [0, T ] we deduce that v ∈ C([0, T ], L2(Ω)). In the same

manner
∫ T

0
‖v(t, ·)‖2H1(Ω) ≤

∫ T
0
‖u(t, ·)‖2H1(Ω) = ‖u‖L2((0,T );H1(Ω)) < ∞, so v ∈

L2((0, T );H1(Ω)). Because u ∈ H1([a, b];L2(Ω)) for any [a, b] ⊂ (0, T ), we have

in particular that
∂u

∂t
∈ L2((a, b);L2(Ω)) which means by definition that the two

Bochner integrals verify:

∫ b

a

u(t, ·)ψ′(t) dt = −
∫ b

a

∂u

∂t
(t, ·)ψ(t) dt, ∀ ψ ∈ C∞c ([a, b]).

By checking the same definition of the weak derivative we obtain immediately that

v ∈ H1([a, b];L2(Ω)) and
∂v

∂t
= e−Mt

(
−Mu+

∂u

∂t

)
. From the AM-GM inequality

one gets:

‖v‖H1([a,b];L2(Ω)) =

(∫ b

a

‖v(t, ·)‖2L2(Ω) +

∥∥∥∥∂v∂t (t, ·)
∥∥∥∥2

L2(Ω)

)1/2

≤
√

2M2 + 2 · ‖u‖H1([a,b];L2(Ω)) <∞.

This proves that v ∈ H1
loc((0, T );L2(Ω)). Notice that v satifies in the weak sense the

inequalities: 
∂v

∂t
− d∆v + (c(t, x) +M)v ≥ 0, (t, x) ∈ (0, T )× Ω

∂v

∂ν
≥ 0, (t, x) ∈ (0, T )× ∂Ω

(5)

and v(0, x) = u(0, x) ≥ 0 a.e. on Ω. If we show that v(t, x) = e−Mt︸ ︷︷ ︸
>0

u(t, x) ≥ 0 a.e.

on (0, T )× Ω then we are done.
For an arbitrary t ∈ (0, T ) we know that v(t, ·) ∈ H1(Ω) and we may write v(t, ·) =
v+(t, ·) − v−(t, ·), where v+(t, ·) = max{v(t, ·), 0} and v−(t, ·) = −min{v(t, ·), 0} lie
both in H1(Ω) and are a.e. positive on Ω. By choosing φ = v−(t, ·) ∈ H1(Ω) as test
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function we obtain that:∫
Ω

∂v

∂t
v−(t, ·) dx+ d

∫
Ω

∇v(t, ·) · ∇v−(t, ·) dx+

∫
Ω

(c(t, ·) +M)v(t, ·)v−(t, ·) dx ≥ 0

⇒ −
∫

Ω

∂v

∂t
v−(t, ·) dx+ d

∫
Ω

|∇v−(t, ·)|2 dx+

∫
Ω

(c(t, ·) +M)︸ ︷︷ ︸
≥0

(v−)2 dx ≤ 0,

where we have used that ∇v+(t, ·) · ∇v−(t, ·) = 0 and v+(t, ·)v−(t, ·) = 0 a.e. on Ω.

We deduce that

∫
Ω

−∂v
∂t

(t, ·)v−(t, ·) dx ≤ 0 for a.a. t ∈ (0, T ).

We know that for any 0 < a < b < T , v ∈ H1([a, b];L2(Ω)). So, from [19, Corollary
5.18] we have that v+, v− ∈ H1([a, b], L2(Ω)) and moreover:

∂v+

∂t
(t, ·) =


∂v

∂t
(t, ·), a.e. on {x ∈ Ω | v(t, x) > 0}

0, a.e. on {x ∈ Ω | v(t, x) ≤ 0}

∂v−

∂t
(t, ·) =


−∂v
∂t

(t, ·), a.e. on {x ∈ Ω | v(t, x) < 0}

0, a.e. on {x ∈ Ω | v(t, x) ≥ 0}
.

Thenceforth: 0 ≥
∫

Ω

−∂v
∂t

(t, ·)v−(t, ·) dx =

∫
Ω

−∂v
+

∂t
(t, ·)v−(t, ·)+∂v−

∂t
(t, ·)v−(t, ·) dx

=

∫
Ω

∂v−

∂t
(t, ·)v−(t, ·) dx for a.a. t ∈ (0, T ). As v− ∈ H1([a, b];L2(Ω)) we infer that

∞ > ‖v−‖2H1([a,b];L2(Ω)) =

∫ b

a

∫
Ω

(v−)2+

(
∂v−

∂t

)2

dx dt
AM-GM
≥ 2

∫ b

a

∫
Ω

∣∣∣∣∂v−∂t v−
∣∣∣∣ dx dt.

Now from Lemma 10.1 we deduce that

∫ b

a

∂v−

∂t
·v−dt =

1

2

(
v−(b)2−v−(a)2

)
. Applying

Fubini-Tonelli theorem3 we finally reach to:

0 ≥
∫ b

a

∫
Ω

∂v−

∂t
·v− dx dt =

∫
Ω

∫ b

a

∂v−

∂t
·v− dt dx =

1

2

∫
Ω

v−(b, x)2−v−(a, x)2 dx. (6)

Define the function h : [0, T ] → R by h(t) =

∫
Ω

v−(t, x)2 dx, ∀t ∈ [0, T ]. Thus

for any 0 < a < b < T we have that h(a) ≥ h(b), i.e. h is decreasing on (0, T ).
Note that, because v(0, ·) ≥ 0 a.e. on Ω, we get that v−(0, ·) = 0 a.e. on Ω and
therefore h(0) = 0. Now it’s time to use the fact that v ∈ C([0, T ];L2(Ω)). It
is easy to check that v+, v− ∈ C([0, T ];L2(Ω))4. In particular h is continuous at
t0 = 0. This is because lim

t→0+
v−(t, ·) = v−(0, ·) = 0 in L2(Ω), which means that

lim
t→0+

h(t) = lim
t→0+

∫
Ω
v−(t, x)2 dx = 0 = h(0). Let any t ∈ (0, T ) and consider a

sequence (tn)n≥1 ⊂ (0, T ] that converges to 0. There is some index nt ≥ 1 such that

3See [10, Theorem 4.4 and 4.5, page 91].
4Just observe that ‖v(t + h, ·) − v(t, ·)‖2

L2(Ω)
= ‖v+(t + h, ·) − v+(t, ·)‖2

L2(Ω)
+

‖v−(t + h, ·) − v−(t, ·)‖2
L2(Ω)

+ 2

∫
Ω
v+(t+ h, ·)v−(t, ·) + v−(t+ h, ·)v+(t, ·)︸ ︷︷ ︸

≥0

dx and

‖v+(t, ·)‖L2(Ω), ‖v−(t, ·)‖L2(Ω) ≤ ‖v(t, ·)‖L2(Ω), for all t ∈ [0, T ].
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t > tn for each n ≥ nt. Therefore 0 ≤ h(t) ≤ h(tn), ∀ n ≥ nt. Passing to the
limit gives us that 0 ≤ h(t) ≤ lim

n→∞
h(tn) = h(0) = 0 ⇒ h(t) = 0. In conclusion

v−(t, x) = 0 for a.a. t ∈ (0, T ) and for a.a. x ∈ Ω. The proof is complete. �

2. Heat equation with Neumann boundary conditions - a review

Let d, λ > 0 and f ∈ L2((0, T ), L2(Ω)), v0 ∈ L2(Ω) be fixed. Consider the following
problem: 

∂v

∂t
− d∆v + λv = f(t, x), (t, x) ∈ (0, T )× Ω

∂v

∂ν
= 0, (t, x) ∈ (0, T )× ∂Ω

v(0, x) = v0(x), x ∈ Ω

(7)

Definition 2.1. We say that v ∈ C([0, T ];L2(Ω)) ∩ H1
loc((0, T );L2(Ω)) ∩ L2((0, T );

H1(Ω)) is a weak solution of (7) if for almost all t ∈ (0, T ) and each φ ∈ H1(Ω) the
following equality holds:∫

Ω

∂v

∂t
(t, ·)φ dx+ d

∫
Ω

∇v(t, ·) · ∇φ dx+ λ

∫
Ω

v(t, ·)φ dx =

∫
Ω

fφ dx. (8)

Let
(
Sλ(t)

)
t≥0

be the λ–translated C0-semigroup associated to the Neumann Lapla-

cian on the Lipschitz domain Ω, i.e. Sλ(t) : L2(Ω)→ L2(Ω) with Sλ(t)u = v, where:

∂v

∂t
− d∆v + λv = 0, (t, x) ∈ (0,∞)× Ω

∂v

∂ν
= 0, (t, x) ∈ (0,∞)× ∂Ω

v(0, x) = u(x), x ∈ Ω

in the weak sense. (9)

We will write S(t) = S0(t) for any t ≥ 0. Notice that Sλ(t) = e−λtS(t), ∀ t ≥ 0. The
following important theorem takes place:

Theorem 2.1. For any T > 0 problem (7) has a unique weak solution that has the
following properties:
(1) v is also a mild solution5 of (7), i.e. v ∈ C

(
[0, T ];L2(Ω)) and v(t, ·) =

Sλ(t)v0 +

∫ t

0

Sλ(t − s)f(s, ·) ds = e−λtS(t)v0 +

∫ t

0

e−λ(t−s)S(t − s)f(s, ·) ds

for any t ∈ [0, T ].
(2) If v0 ∈ L∞(Ω) and f ∈ L∞

(
(0, T )× Ω

)
then v ∈ L∞

(
(0, T )× Ω

)
and:

min

{
ess inf

Ω
v0,

1

λ
ess inf
(0,T )×Ω

f

}
≤ v(t, x) ≤ max

{
ess sup

Ω
v0,

1

λ
ess sup
(0,T )×Ω

f

}
, a.e. on (0, T )×Ω.

In particular ‖v‖L∞((0,T )×Ω) ≤ max

{
‖v0‖L∞ ,

1

λ
‖f‖L∞((0,T )×Ω)

}
.

5See [27, Definition 2.3, page 106].
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(3) If f ≡ 0, for D =

N, if N ≥ 3

any constant strictly bigger than 2, if N ∈ {1, 2}
then

there is a constant C > 0 depending on Ω and D, d, λ such that ‖v(t, ·)‖L∞(Ω) ≤
C · eλT · t−D/4 · ‖v0‖L2(Ω), ∀ t ∈ (0, T ].

(4) If v0 ∈ L2(Ω)+ \ {0} and ess inf
(0,T )×Ω

f ≥ 0 then ess inf
Ω

v(t, ·) > 0 for any t ∈ (0, T ].

(5) If v0 ∈ L2(Ω)+ \ {0} and ess inf
(0,T )×Ω

f ≥ 0 then for any t0 ∈ (0, T ) we have that

ess inf
(t0,T )×Ω

v > 0.6

(6) If v0 ∈ L2(Ω)+ \ {0} has the property that ess inf
Ω

v0 > 0 and ess inf
(0,T )×Ω

f ≥ 0 then

we have that ess inf
(0,T )×Ω

v > 0.

Proof. (Sketch) The existence follows via Galerkin Method (see [9, Theorem 4.2.1,
page 190] and [4, Lemma A.2.7, page 187]) or using variational methods (as a reference
see [23, Theorem 68, page 67]). Moreover we have that for any t ∈ [0, T ] the following
formula holds:

v(t, ·) =

∞∑
n=1

vn(t) · ϕn, where vn(t)

=e−(dλn+λ)t(v0, ϕn)L2(Ω) +

∫ t

0

e−(dλn+λ)(t−s)(f(s, ·), ϕn)L2(Ω) ds, (10)

for any n ≥ 1, where the set {ϕn | n ≥ 1} is an orthonormal basis of the Hilbert space
L2(Ω) formed by the eigenfunctions of the Neumann Laplacian, i.e.

−∆ϕn = λnϕn, x ∈ Ω

∂ϕn
∂ν

= 0, x ∈ ∂Ω
,

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → ∞ being the Neumann eigenvalues on Ω counted
with their multiplicities.7

The uniqueness also follows with ease: let v1, v2 be two weak solutions of (7) and
denote v = v1 − v2. For a.a. s ∈ [0, T ] we can choose as a test function φ = v(s, ·) ∈
H1(Ω) and obtain that:

d

ds

∫
Ω

v2(s, ·) dx+ d

∫
Ω

|∇v(s, ·)|2 dx+ λ

∫
Ω

v2(s, ·) dx = 0, for a.a. s ∈ [0, T ].

6This is the best we can hope since ess inf
(0,T )×Ω

v > 0 is not true in general even for domains with

smooth boundary, unless ess inf
Ω

v0 > 0.

7Note that if Ω = (0, a) × (0, b) is a 2D-rectangle as it is image processing it is known that the
spectrum of the Neumann Laplacian is given by λ0 = 1 and for each pair (m,n) ∈ Z∗

+ × Z∗
+ we

have that λm,n =
(mπ
a

)2
+
(nπ
b

)2
. The corresponding eigenfunctions are φ0(x, y) =

1
√
ab

and

φm,n(x, y) =
2
√
ab

cos
(mπx

a

)
cos
(nπy

b

)
for each (x, y) ∈ Ω. For further details see [14].
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Integrating on [0, t] will result in:∫
Ω

v2(t, ·) dx+ d

∫ t

0

∫
Ω

|∇v(s, ·)|2 dx+ λ

∫ t

0

∫
Ω

v2(s, ·) dx =

∫
Ω

v2(0, ·) dx = 0,

for a.a. t ∈ [0, T ]. So for a.a. t ∈ [0, T ] we deduce that v(t, ·) = 0 a.e. on Ω, which is
the same as saying that v ≡ 0 on (0, T )×Ω, i.e. v1 ≡ v2. (1) Just use (10) combined
with the following formula:8

S(t)w =
∞∑
n=1

e−dλnt · (w,ϕn)L2(Ω)ϕn, ∀ w ∈ L2(Ω). (11)

(2) It follows immediately from the weak parabolic minimum principle. (3) See the
proof of Lemma 10.2 from the Appendix. Note that v(t, ·) = Sλ(t) for any t ∈ [0, T ].
(4) Because f ≥ 0 a.e. on (0, T )×Ω we get from the weak parabolic minimum principle
that v ≥ ṽ := Sλ(·)v0 a.e. on (0, T ) × Ω. For any fixed t ∈ (0, T ] the bounded
linear operator Sλ(t) : L2(Ω) → L∞(Ω) (here we have used the ultracontractivity
property of the Neumann Laplacian, see Lemma 10.2 from the Appendix) is a positive
operator, meaning that for any w ∈ L2(Ω)+ we have that Sλ(t)w ∈ L∞(Ω)+ (it
follows from the weak parabolic minimum principle). Moreover the constant function
1Ω ∈ L∞(Ω) which associates 1 to any x ∈ Ω has the property that Sλ(t)1Ω = e−λt ⇒
ess inf

Ω
Sλ(t)1Ω > 0.9 Hence 1Ω ∈ L2(Ω)+ is mapped by Sλ(t) into an almost interior

point10 of L∞(Ω)+ and it is an almost interior point of both L2(Ω)+ and L∞(Ω)+. So,
applying Proposition 10.3 we get that any almost interior point of L2(Ω)+ is mapped
by Sλ(t) into an almost interior point of L∞(Ω)+.
Now, since v0 ∈ L2(Ω)+ \{0}, we have that ṽ(t/2, ·) = Sλ(t/2)v0 is an almost interior
point of L2(Ω)+ because

[
Sλ(t/2)v0

]
(x) = ṽ(t/2, x) > 0 for a.a. x ∈ Ω (see Remark

10.2). 11 Henceforth ṽ(t, ·) = Sλ(t)v0 = Sλ(t/2)Sλ(t/2)v0 is an almost interior point
of L∞(Ω)+. Putting all together we conclude that ess inf

x∈Ω
v(t, ·) ≥ ess inf

x∈Ω
ṽ(t, ·) > 0

for any t ∈ (0, T ].
(5) From the weak parabolic minimum principle we know that v ≥ Sλ(·)v0 := ṽ a.e.
on (0, T )× Ω.
Fix some t0 ∈ (0, T ) and choose some δ ∈ (0, t0). We define the following operator:
S : L2(Ω) → L∞((t0 − δ, T − δ) × Ω) by Sw := Sλ(·)w i.e. [Sw](t, x) = [Sλ(t)w](x)
for (t, x) ∈ (t0 − δ, T − δ)× Ω.
It is easy to see that S is a linear operator. Using Lemma 10.2 from the Appendix
we deduce that for each t ∈ (t0 − δ, T − δ):

‖Sλ(t)w‖L∞(Ω) ≤ C · t−D/4 · ‖w‖L2(Ω) ≤ C · (t0 − δ)−D/4 · ‖w‖L2(Ω). (12)

Thus ‖Sw‖L∞((t0−δ,T−δ)×Ω) = ess sup
t∈(t0−δ,T−δ)

‖Sλ(t)w‖L∞(Ω) ≤ C·(t0−δ)−D/4·‖w‖L2(Ω).

This shows that S is a bounded linear operator. From the weak parabolic mini-
mum principle we obtain that S is a positive operator, i.e. if w ∈ L2(Ω)+ then

8See Theorem 7.14 from [5].
9The Neumann boundary condition was essential here in order to compute Sλ(t)1Ω because we

can consider solutions that do not depend on the spatial variable.
10See Definition 10.1 and Remark 10.2 from the appendix.
11This follows from the irreducibility of the semigroup associated to the Neumann Laplacian.

See Definition 2.8 and then Theorem 4.5 in [25].
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Sw ∈ L∞((t0 − δ, T − δ) × Ω)+. Thanks to the Neumann boundary conditions we
can compute [S1Ω](t, x) = e−λt > e−λ(T−δ) > 0 for (t, x) ∈ (t0 − δ, T − δ) × Ω. So:{

1Ω ∈ L2(Ω)+ is an almost interior point of L2(Ω)+

S1Ω is an almost interior point of L∞((t0 − δ, T − δ)× Ω)+
⇒ S maps any al-

most interior point of L2(Ω)+ into an almost interior point of L∞((t−δ, T −δ)×Ω)+,
from [13, Proposition 2.21]. Now, since v0 ∈ L2(Ω)+ \ {0} it follows from (4) that
Sλ(δ)v0 ∈ L∞(Ω)+ is an almost interior point of L∞(Ω)+. In particular Sλ(δ)v0 will
be also an almost interior point of L2(Ω)+. Thus S will map Sλ(δ)v0 into an almost
interior point of L∞((t0 − δ, T − δ) × Ω)+. All we have to observe at this point is
that for each t ∈ (t0, T ) we have that t− δ ∈ (t0 − δ, T − δ) and from the semigroup
property:

[S(Sλ(δ)v0)](t− δ, ·) = Sλ(t− δ)
(
Sλ(δ)v0

)
= Sλ(t)v0 = ṽ(t, ·). (13)

In conclusion:

ess inf
(t0,T )×Ω

v ≥ ess inf
(t0,T )×Ω

ṽ = ess inf
(t0,T )×Ω

[S(Sλ(δ)v0)](t−δ, x) = ess inf
(t0−δ,T−δ)×Ω

S(Sλ(δ)v0) > 0.

(14)
(6) Let c = ess inf

Ω
v0 > 0 and consider the problem

∂ṽ

∂t
− d∆ṽ + λṽ = 0, (t, x) ∈ (0, T )× Ω

∂ṽ

∂ν
= 0, (t, x) ∈ (0, T )× Ω

ṽ(0, x) = c, x ∈ Ω

.

We know that ṽ(t, x) = c · e−λt ≥ c · e−λT > 0 for any (t, x) ∈ (0, T ) × Ω. If we de-

note w = v− ṽ we obtain that



∂w

∂t
− d∆w + λw = f(t, x) ≥ 0, (t, x) ∈ (0, T )× Ω

∂w

∂ν
= 0 ≥ 0, (t, x) ∈ (0, T )× Ω

w(0, x) = v0 − c ≥ 0, x ∈ Ω

.

Thus, from the weak parabolic minimum principle it follows that v ≥ ṽ ≥ c · e−λT > 0
a.e. on (0, T )× Ω. So ess inf

(0,T )×Ω
v > 0. The proof of the theorem is now complete. �

3. The parabolic problem

We will study in this section problem (1). We consider the following hypotheses:
(H1) Ω is an open, connected and bounded Lipschitz domain;
(H2) T > 0 is the final time under consideration;
(H3) r, p ∈ L∞(Ω) are some heterogeneous parameters regarding the domain Ω with

0 < ρ := ess inf
Ω

r ≤ r(x) ≤ 1 and r(x) ≤ p(x) for almost all x ∈ Ω

(H4) d > 0 is the diffusion coefficient;
(H5) α > 0 is a strict positive real constant;
(H6) u0 ∈ U :=

{
w ∈ L∞(Ω) | 0 ≤ w ≤ 1, a.e. on Ω};
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Definition 3.1. We say that u ∈ C([0, T ];L2(Ω)) ∩H1
loc((0, T );L2(Ω)) ∩ L2((0, T );

H1(Ω)) ∩ L∞((0, T );L∞(Ω)) is a weak solution of (1) if for any φ ∈ H1(Ω) the
following identity takes place:∫

Ω

∂u

∂t
(t, ·)φ dx+ d

∫
Ω

∇u(t, ·) · ∇φ dx =

∫
Ω

αu(t, ·)
(
r − pu(t, ·)

)
φ dx. (15)

Theorem 3.1 (Uniqueness). If u1 and u2 are both weak solutions of (1) then
u1 ≡ u2.

Proof. Let v = u1−u2. Then c = α(p(u1+u2)−r) ∈ L∞((0, T )×Ω), because u1, u2 ∈

L∞((0, T )× Ω) and:



∂v

∂t
− d∆v + c(t, x)v = 0

{
≥ 0

≤ 0
, (t, x) ∈ (0, T )× Ω

∂v

∂ν
= 0

{
≥ 0

≤ 0
, (t, x) ∈ (0, T )× Ω

v(0, x) = 0

{
≥ 0

≤ 0
, x ∈ Ω

.

From the weak parabolic minimum principle we get that v ≥ 0 and v ≤ 0 a.e. on
(0, T )× Ω, and hence v ≡ 0 as needed. �

In the following three results, we establish some lower and upper bounds for the
solution of (1).

Proposition 3.2 (Global boundedness). If u is a weak solution of problem (1)
then 0 ≤ u ≤ 1 a.e. on (0, T )× Ω.

Proof. Notice that



∂u

∂t
− d∆u+ c(t, x)u = 0 ≥ 0, (t, x) ∈ (0, T )× Ω

∂u

∂ν
= 0 ≥ 0, (t, x) ∈ (0, T )× ∂Ω

u(0, x) = u0(x) ≥ 0, x ∈ Ω

where c =

α(pu − r) ∈ L∞((0, T ) × Ω). From the weak parabolic minimum principle we obtain
that u ≥ 0 a.e. on (0, T ) × Ω. Similarly, if we denote w = 1 − u, we arrive at:

∂w

∂t
− d∆w + α(2p− r)︸ ︷︷ ︸

∈L∞

w = α (p− r)︸ ︷︷ ︸
≥0

+αpw2 ≥ 0, (t, x) ∈ (0, T )× Ω

∂w

∂ν
= 0 ≥ 0, (t, x) ∈ (0, T )× ∂Ω

w(0, x) = 1− u0(x) ≥ 0, x ∈ Ω

. Using one

more time the weak parabolic minimum principle we get that w ≥ 0 a.e. on (0, T )×
Ω. �

Proposition 3.3 (Thresholds). Consider that u is a weak solution of (1).

(1) If u0 ≤ U :=

∥∥∥∥rp
∥∥∥∥
L∞(Ω)

a.e. on Ω then u ≤ U a.e. on (0, T )× Ω.

(2) If u0 ≥ U := ess inf
Ω

r

p
a.e. on Ω then u ≥ U a.e. on (0, T )× Ω.
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Proof. (1) Let w = U − u. Proceeding as above we get that:

∂w

∂t
− d∆w + α(2pU − r)︸ ︷︷ ︸

∈L∞(Ω)

w = αUp

(
U − r

p

)
︸ ︷︷ ︸

≥0

+αpw2 ≥ 0, (t, x) ∈ (0, T )× Ω

∂w

∂ν
= 0 ≥ 0, (t, x) ∈ (0, T )× ∂Ω

w(0, x) = U − u0(x) ≥ 0, x ∈ Ω

.

From the weak parabolic minimum principle we get that w ≥ 0 a.e. on (0, T )× Ω.
(2) Set w = u− U ∈ L∞((0, T )× Ω). Then:

∂w

∂t
− d∆w + α(2pU − r + pw)︸ ︷︷ ︸

∈L∞(Ω)

w = αUp

(
r

p
− U

)
︸ ︷︷ ︸

≥0

≥ 0, (t, x) ∈ (0, T )× Ω

∂w

∂ν
= 0 ≥ 0, (t, x) ∈ (0, T )× ∂Ω

w(0, x) = u0(x)− U ≥ 0, x ∈ Ω

.

From the same weak parabolic minimum principle we conclude that w ≥ 0 a.e. on
(0, T )× Ω. �

Remark 3.1. Let r̃, p̃ > 0 and c ≥ 0 be any three constants.12 Consider the problem:

∂v

∂t
− d∆v = αv ·

(
r̃ − p̃v

)
, (t, x) ∈ (0, T )× Ω

∂v

∂ν
= 0, (t, x) ∈ (0, T )× ∂Ω

v(0, x) = c ≥ 0, x ∈ Ω

(16)

It can be easily checked that v(t) =
cr̃

e−αr̃t(r̃ − cp̃) + cp̃
, t ∈ [0, T ] is a solution of

(16), that we shall denote by v(r̃, p̃, c), with the property that:
c ≤ v(t) ≤ r̃

p̃
, if c ≤ r̃

p̃

c ≥ v(t) ≥ r̃

p̃
, if c ≥ r̃

p̃

, ∀ t ∈ [0, T ]

and moreover:
c < v(t) <

cr̃

e−αr̃T (r̃ − cp̃) + cp̃
<
r̃

p̃
, if c <

r̃

p̃

c > v(t) >
cr̃

−e−αr̃T (cp̃− r̃) + cp̃
>
r̃

p̃
, if c >

r̃

p̃

, for all t ∈ (0, T ]. (17)

Proposition 3.4 (Barrier functions). Consider u to be a solution of the problem
(1). The following properties take place:
(1) v(ρ, ‖p‖L∞(Ω), ess inf

Ω
u0) ≤ u ≤ v(‖r‖L∞(Ω), ess inf

Ω
p, ‖u0‖L∞(Ω)) a.e. on (0, T )×

Ω.

12The same procedure of solving Bernoulli’s equation can be applied if we take r̃ = r̃(t) and

p̃ = p̃(t) (depending only on t ∈ [0, T ]).
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(2) If ‖u0‖L∞(Ω) ≤ U then: u ≤ v

(
‖r‖L∞(Ω),

‖r‖L∞(Ω)

U
, ‖u0‖L∞(Ω)

)
a.e. on

(0, T )× Ω.

(3) If ess inf
Ω

u0 ≥ U then: u ≥ v
(
‖p‖L∞(Ω)U, ‖p‖L∞(Ω), ess inf

Ω
u0

)
a.e. on (0, T )×Ω.

Proof. (Sketch) (1) First note that if w = u− v(r̃, p̃, c) then:

∂w

∂t
− d∆w + α

[
p(u+ v)− r

]︸ ︷︷ ︸
∈L∞(Ω)

·w = αv︸︷︷︸
≥0

[
r − r̃ + v(p̃− p)

]
, (t, x) ∈ (0, T )× Ω

∂w

∂ν
= 0, (t, x) ∈ (0, T )× ∂Ω

w(0, x) = u0 − c, x ∈ Ω

.

(18)

If


r̃ = ρ

p̃ = ‖p‖L∞(Ω)

c = ess inf
Ω

u0

, then


r − r̃ + v(p̃− p) = r − ρ︸ ︷︷ ︸

≥0

+v (‖p‖L∞(Ω) − p)︸ ︷︷ ︸
≥0

≥ 0, (t, x) ∈ (0, T )× Ω

u0 − c = u0 − ess inf
Ω

u0 ≥ 0, x ∈ Ω

.

Hence, from the weak parabolic minimum principle we obtain that

u ≥ v
(
ρ, ‖p‖L∞(Ω), ess inf

Ω
u0

)
a.e. on (0, T )× Ω.

(3) If


r̃ = ‖p‖L∞(Ω)U

p̃ = ‖p‖L∞(Ω)

c = ess inf
Ω

u0 ≥
r̃

p̃

, then from Remark 3.1 we know that v ≥ U a.e. on

(0, T )× Ω and:
r − r̃ + v(p̃− p) = r − ‖p‖L∞(Ω)U + v (‖p‖L∞(Ω) − p)︸ ︷︷ ︸

≥0

≥ p
(
r

p
− U

)
≥ 0

u0 − c = u0 − ess inf
Ω

u0 ≥ 0

.

From the weak parabolic minimum principle we get that

u ≥ v
(
‖p‖L∞(Ω)U, ‖p‖L∞(Ω), ess inf

Ω
u0

)
a.e. on (0, T )× Ω.

Similarly, the other two inequalities can be proved and they are left to the reader. �

Fix some λ ≥ 2α‖p‖L∞(Ω) and define the function f : Ω × [0, 1] → R, f(x, u) =
αu(r(x) − p(x)u) + λu, for any (x, u) ∈ Ω × [0, 1]. Notice that for any fixed x ∈ Ω

we have that
∂f

∂u
= αr(x) + λ − 2αp(x)u ≥ αρ > 0 for all u ∈ [0, 1]. For any

u ∈ V :=
{
w ∈ L∞((0, T )× Ω)| 0 ≤ w(t, x) ≤ 1, for a.a. (t, x) ∈ (0, T )× Ω

}
let v be
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the unique weak solution (see Theorem 2.1) of the problem:

∂v

∂t
− d∆v + λv = f(x, u(t, x)), (t, x) ∈ (0, T )× Ω

∂v

∂ν
= 0, (t, x) ∈ (0, T )× ∂Ω

v(0, x) = u0(x), x ∈ Ω

(19)

Since f is increasing in the second argument, and u ∈ V, we immediately get that
0 ≤ f(x, 0) ≤ f(x, u(t, x)) ≤ f(x, 1) = λ − α(p − r) for a.a. (t, x) ∈ (0, T ) × Ω.
Applying Theorem 2.1 (2) we obtain that for a.a. (t, x) ∈ (0, T )× Ω:

0 ≤ min

{
ess inf

Ω
u0,

1

λ
· 0
}
≤ v(t, x) ≤ max

{
ess sup

Ω
u0, 1− α(p− r)

λ

}
≤ 1. (20)

This allows us to define the nonlinear operator F : V → V given by F (u) = v. Next,
we give some of the properties of F .

Lemma 3.5. The nonlinear operator F has the following properties:
(1) F is a monotone operator;
(2) If u1, u2 ∈ V with u1 ≤ u2 a.e. on (0, T ) × Ω and u1 6≡ u2 then for each t0 ∈

(t∗, T ), where t∗ = sup
{
t̃ ∈ (0, T ) | u1(t, x) = u2(t, x), for a.a. (t, x) ∈ (0, t̃)×Ω

}
we have that: ess inf

(t0,T )×Ω
F (u2)− F (u1) > 0.

(3) F is Lipschitz continuous with respect to the norms of L2((0, T );L2(Ω)) and
L∞((0, T );L∞(Ω));

(4) If u0 ≤ U a.e. on Ω and u ≤ U a.e. on (0, T ) × Ω then F (u) ≤ U a.e. on
(0, T ) × Ω and if in addition at least one of the following two conditions holds:{
u0 6≡ U
r
p is not constant

then for each t0 ∈ (0, T ) we have ess inf
(t0,T )×Ω

U − F (u) > 0.

Additionally, in case u0 ≡ U ≡ r

p
, if u 6≡ U , then for each t0 ∈ (t∗, T ) where

t∗ = sup
{
t̃ ∈ (0, T ) | u(t, x) = U for a.a. (t, x) ∈ (0, t̃) × Ω

}
, we have that

ess inf
(t0,T )×Ω

U − F (u) > 0.

(5) If u0 ≥ U a.e. on Ω and u ≥ U a.e. on (0, T ) × Ω then F (u) ≥ U a.e. on
(0, T ) × Ω and if in addition at least one of the following two conditions holds:{
u0 6≡ U
r
p is not constant

then for each t0 ∈ (0, T ) we have ess inf
(t0,T )×Ω

F (u)− U > 0.

Moreover, in case u0 ≡ U ≡ r

p
, if u 6≡ U , then for each t0 ∈ (t∗, T ) where

t∗ = sup
{
t̃ ∈ (0, T ) | u(t, x) = U for a.a. (t, x) ∈ (0, t̃) × Ω

}
, we have that

ess inf
(t0,T )×Ω

F (u)− U > 0.

(6) If u0 6≡ 0 then for any t0 ∈ (0, T ) we have that ess inf
(t0,T )×Ω

F (u) > 0.

In case u0 ≡ 0, if u 6≡ 0, then for any t0 ∈ (t∗, T ) where t∗ = sup
{
t̃ ∈

(0, T ) | u(t, x) = 0 for a.a. (t, x) ∈ (0, t̃)× Ω
}

, we have that ess inf
(t0,T )×Ω

F (u) > 0.
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(7) If at least one of the two following three conditions is true:

{
u0 6≡ 1

p 6≡ r
then for

any t0 ∈ (0, T ) we have that ess inf
(t0,T )×Ω

1− F (u) > 0.

In case u0 ≡ 1 and r ≡ p, if u 6≡ 1, then for any t0 ∈ (t∗, T ) where t∗ = sup
{
t̃ ∈

(0, T ) | u(t, x) = 1 for a.a. (t, x) ∈ (0, t̃)×Ω
}

, we have that ess inf
(t0,T )×Ω

1−F (u) > 0.

Proof. (1) Let u1, u2 ∈ V with u1 ≤ u2 a.e. on (0, T )×Ω. Set v1 = F (u1), v2 = F (u2)
and v = v2 − v1. Then, from the monotony of f we get that:

∂v

∂t
− d∆v = f(x, u2(t, x))− f(x, u1(t, x)) ≥ 0, (t, x) ∈ (0, T )× Ω

∂v

∂ν
= 0 ≥ 0, (t, x) ∈ (0, T )× ∂Ω

v(0, x) = 0, x ∈ Ω

. (21)

We may conclude, from the weak parabolic minimum principle that v ≥ 0 a.e. on
(0, T )× Ω.
(2) Consider in addition now that u1 6≡ u2. It is obvious to remark that t∗ < T .
Let’s denote A =

{
t̃ ∈ (0, T ) | u1(t, x) = u2(t, x), for a.a. (t, x) ∈ (0, t̃) × Ω

}
. If

t∗ ∈ A then u1(t, x) = u2(t, x), for a.a. (t, x) ∈ (0, t∗) × Ω. If t∗ /∈ A then there is a
strictly increasing sequence (tn)n≥1 ⊂ A that tends to t∗. Let B =

{
(t, x) ∈ (0, t∗)×

Ω | u1(t, x) 6= u2(t, x)
}

and for each n ≥ 1, Bn =
{

(t, x) ∈ (0, tn) × Ω | u1(t, x) 6=
u2(t, x)

}}
. So LN+1(Bn) = 0, ∀ n ≥ 1, because (tn)n≥1 ⊂ A. Moreover Bn ⊂ B

for n ≥ 1 and: LN+1(B) = LN+1(B) − LN+1(Bn) = LN+1
(
B \ Bn

)
. Now, since

B \ Bn ⊂ (tn, t
∗) × Ω, we deduce that: LN+1

(
B \ Bn

)
≤ LN+1

(
(tn, t

∗) × Ω
)

=

L1
(
(tn, t

∗)
)
· LN (Ω) = (t∗ − tn) · LN (Ω)

n→∞−→ 0, Ω being a bounded set from RN .

Thus LN+1(B) = 0 which means that t∗ ∈ A.
Consider some t0 ∈ (t∗, T ). We introduce the set C =

{
t ∈ (t∗, t0) | u1(t, ·) 6≡ u2(t, ·)

}
.

We want to show that C has a strictly positive measure. Suppose that L1(C) = 0.
This means that for a.a. t ∈ (t∗, t0) we have that u1(t, x) = u2(t, x) for a.a. x ∈ Ω. If
D =

{
(t, x) ∈ (t∗, t0) × Ω | u1(t, x) 6= u2(t, x)

}
⊂ (t∗, t0) × Ω and for each t ∈ (t∗, t)

we set Dt =
{
x ∈ Ω | u1(t, x) 6= u2(t, x)

}
. Thus for a.a. t ∈ (t∗, t0) we have that

LN (Dt) = 0. Now from Tonelli’s theorem we get that:

LN+1(D) =

∫
(t∗,t0)×Ω

1D(t, x) d(t, x) =

∫
(t∗,t0)

(∫
Ω

1Dt
(x) dx

)
dt

=

∫
(t∗,t0)

LN (Dt) dt = 0. (22)

This shows that u1(t, x) = u2(t, x) for a.a. (t, x) ∈ (t∗, t0) × Ω. But, since t∗ ∈ A
we also have that u1(t, x) = u2(t, x) for a.a. (t, x) ∈ (0, t∗) × Ω. We can conclude
that u1(t, x) = u2(t, x) for a.a. (t, x) ∈ (0, t0) × Ω. Since t0 > t∗ we have reached
a contradiction to the definition of t∗. So L1(C) > 0, and in any interval (t∗, t0) we
have a subset of strictly positive measure for which u1(t, ·) 6≡ u2(t, ·).
Therefore we may choose some δ > 0 with t0−δ ∈ (t∗, t0) and u1(t0−δ) 6≡ u2(t0−δ, ·).
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Going further we have that

f(x, u2(t, x))− f(x, u1(t, x)) = (u2 − u1) ·
[
αr + λ− αp(u1 + u2)︸ ︷︷ ︸

≥0

]
≥ αρ(u2 − u1) 6≡ 0

a.e. on (0, T )×Ω. This shows in particular that v(t0 − δ, ·) 6≡ 0, thence v(t0 − δ, ·) ∈
L∞(Ω)

+ \ {0} ⊂ L2(Ω)
+ \ {0}. Applying a translated version of Theorem 2.1 (5)

with t0 − δ as initial value, for t0 > t0 − δ we deduce that: ess inf
(t0,T )×Ω

v > 0.

(3) Let u1, u2 ∈ V, v1 = F (u1), v2 = F (u2) and v = v2− v1. From Theorem 2.1 (2),
since v(0, ·) ≡ 0, we have that:

‖F (u2)− F (u1)‖L∞((0,T )×Ω) = ‖v‖L∞((0,T )×Ω) ≤
1

λ
‖f(x, u2)− f(x, u1)‖L∞((0,T )×Ω)

≤
(

1 +
α‖r‖L∞(Ω)

λ

)
‖u2 − u1‖L∞((0,T )×Ω).

For the continuity with respect to L2((0, T )×Ω)–norm, we know from Definition 2.1
that for a.a. t ∈ (0, T ), choosing the test function φ = v(t, ·) ∈ H1(Ω) and integrating
on [0, t], the following inequality holds:

1

2

∫
Ω

v2(t, x) dx+ λ

∫ t

0

∫
Ω

v2(s, x) dx ds ≤
∫ t

0

∫
Ω

(
f(x, u2)− f(x, u1)

)
v(s, x) dx ds

(Cauchy inequality)

≤ (α‖r‖L∞(Ω) + λ) · ‖u2 − u1‖L2((0,t)×Ω) · ‖v‖L2((0,t)×Ω) (23)

We define the real functions g, h : [0, T ] → R, g(t) = (α‖r‖L∞(Ω) + λ) · ‖u2 −
u1‖L2((0,t)×Ω) and h(t) = ‖v‖L2((0,t)×Ω). We have that g(0) = h(0), both g and h

are increasing and continuous. Moreover [h2(t)]′ =
∫

Ω
v2(t, x) dx for t ∈ [0, T ]. Let

t0 = max
{
t ∈ [0, T ] | h(s) = 0 for s ∈ [0, t]

}
. Clearly for t ∈ (t0, T ] (if any) we will

have that h(t) > 0. The inequality (23) rewrites as:

1

2

d

dt

[
h2(t)

]
+ λh2(t) ≤ g(t) · h(t) ⇒ h′(t) + λh(t) ≤ g(t),∀ t ∈ (t0, T ]. (24)

So (eλτh(τ))′ ≤ g(τ)eλτ for τ ∈ (t0, T ]. Integrating on [t0 + ε, t] ⊂ [0, T ] leads us

to: eλth(t) − eλ(t0+ε)h(t0 + ε) ≤
∫ t
t0+ε

g(τ)eλτ dτ ≤
∫ t

0
g(τ)eλτ dτ ≤ g(t)

∫ t
0
eλτ =

1

λ
g(t) · (eλt − 1). Making ε→ 0+ and using the continuity of h will give us that:

h(t) ≤ 1

λ
g(t) · (1− e−λt) ≤ 1

λ
g(t) =

(
1 +

α‖r‖L∞(Ω)

λ

)
‖u2 − u1‖L2((0,t)×Ω), (25)

for any t ∈ (t0, T ]. But since h(t) = 0 for t ∈ [0, t0] the same inequality holds for any
t ∈ [0, T ]. Setting t = T will give us the desired continuity of F .
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(4) Just put w = U − F (u) and observe that:

∂w

∂t
− d∆w + λw = λU − f(x, u(t, x))

≥ λU − f(x, U) = αUp

(
U − r

p

)
≥ 0, on (0, T )× Ω

∂w

∂ν
= 0, on (0, T )× ∂Ω

w(0, x) = U − u0(x) ≥ 0, on Ω

. (26)

From the weak parabolic minimum principle we get that F (u) ≤ U a.e. on (0, T )×Ω.

Notice that λU − f(x, u) = f(x, U) − f(x, u) + αUp

(
U − r

p

)
≥ αρ(U − u) +

αUp

(
U − r

p

)
. Fix any T > t0 > δ > 0. If any of the three conditions is sat-

isfied then we will have that w(δ, ·) 6≡ 0, and thus w(δ, ·) ∈ L2(Ω)+ \ {0}. From
Theorem 2.1 (5) it follows that ess inf

(t0,T )×Ω
w > 0.

Now, if u0 ≡ U ≡
r

p
then

∂w

∂t
− d∆w + λw = λU − f(x, u(t, x)) = (λ− αup)︸ ︷︷ ︸

≥α‖p‖L∞(Ω)>0

(U − u), on (0, T )× Ω

∂w

∂ν
= 0, on (0, T )× ∂Ω

w(0, x) = 0, on Ω

.

With the same measure-theoretic approach that we have used in (2) we can prove
that there is δ > 0 with t0 − δ ∈ (t∗, t0) such that w(t0 − δ, ·) 6≡ 0. Taking this as an
initial value and using Theorem 2.1 (5) for t0 > t0 − δ it follows that ess inf

(t0,T )×Ω
w > 0.

(5) The proof is similar to (4).

(6) Note that for v = F (u) then



∂v

∂t
− d∆v + λv ≥ αρu, (t, x) ∈ (0, T )× Ω

∂v

∂ν
= 0, (t, x) ∈ (0, T )× Ω

v(0, x) = u0(x), x ∈ Ω

. The

conclusion follows as in (4).
(7) Just observe that if w = 1− F (u) then

∂w

∂t
− d∆w + λw ≥ αρ(1− u) + α(p− r), (t, x) ∈ (0, T )× Ω

∂w

∂ν
= 0, (t, x) ∈ (0, T )× Ω

w(0, x) = 1− u0(x), x ∈ Ω

.

We can proceed as in (4) to conclude. �

Now we have all we need in order to prove the main result of this section:
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Theorem 3.6. For each T > 0 problem (1) has a unique weak solution u ∈ V.

Proof. (Existence) Consider the following recurrence:13{
un+1 = F (un), n ≥ 1

u1 ∈ V
. (27)

Choosing u1 ≡ 1 ∈ V we have that F (1) ≤ 1 a.e. on (0, T )×Ω. Using the monotony of
F we obtain by an immediate induction that 1 = u1 ≥ u2 ≥ · · · ≥ un ≥ · · · ≥ 0. a.e.
on (0, T )×Ω. For a.a. (t, x) ∈ (0, T )×Ω the sequence of real numbers

(
un(t, x)

)
n≥1

is bounded between 0 and 1 and decreasing. Hence it is convergent to some number
u(t, x) ∈ [0, 1]. Thus un → u pointwise a.e. on (0, T ) × Ω. Since for each n ≥ 1
one has that: |un| = un ≤ 1 ∈ L2((0, T ) × Ω), we deduce from Lebesgue dominated
convergence theorem that u ∈ L2((0, T ) × Ω) ' L2((0, T );L2(Ω)) and un → u in
L2((0, T ) × Ω). Now using the continuity of F (see Lemma 3.5 (3)) we deduce that
un+1 = F (un) → F (u) in L2((0, T ) × Ω). But un+1 → u in L2((0, T ) × Ω). We
conclude that u = F (u). Regarding f(t, u(t, x)) as a function of (t, x) we may apply
Theorem 2.1 to conclude that u is a weak solution of the problem (7) and thence
u ∈ C([0, T ];L2(Ω)) ∩ H1

loc((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)). Being also bounded,
we conclude that u is a weak solution of (1).The uniqueness was proved before in
Theorem 3.1. �

4. Poisson-type problems with Neumann boundary conditions - a review

For Ω being a Lipschitz, open, bounded and connected domain from RN , any λ > 0
and any f ∈ L2(Ω) we consider the following problem:

−d∆V (x) + λV = f(x), x ∈ Ω

∂V

∂ν
(x) = 0, x ∈ ∂Ω

(28)

Definition 4.1. We call V ∈ H1(Ω) a weak solution of (28) if a(V, φ) = b(φ), ∀ φ ∈
H1(Ω), where:

a : H1(Ω)×H1(Ω)→ R, a(V, φ) = d

∫
Ω

∇V · ∇φ dx+ λ

∫
Ω

V φ dx, ∀ V, φ ∈ H1(Ω)

b : H1(Ω)→ R, b(φ) =

∫
Ω

fφ dx, ∀ φ ∈ H1(Ω) (29)

We have the following result:

Theorem 4.1. Problem (28) has a unique weak solution V ∈ H1(Ω) and moreover
V satisfies the following properties:

(1) ‖V ‖L2(Ω) ≤
1

λ
‖f‖L2(Ω).

(2) ‖V ‖H1(Ω) ≤
1

min{d, λ}
· ‖f‖L2(Ω).

13See [30, Section 10.6.1].
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(3) V ∈ L∞(Ω) and if f ∈ L∞(Ω) then:
1

λ
ess inf

Ω
f ≤ V (x) ≤ 1

λ
ess sup

Ω
f for a.a.

x ∈ Ω. In particular ‖V ‖L∞(Ω) ≤
1

λ
‖f‖L∞(Ω).

(4) ∆V ∈ L2(Ω) and ‖∆V ‖L2(Ω) ≤
1

d
· ‖f‖L2(Ω).

(5) There is some δ ∈ (0, 1) with V ∈ Cδ(Ω), i.e. V is Hölder continuous with
exponent δ up to the boundary.

(6) If Ω is an open, bounded and convex set then: V ∈ H2(Ω) and there is a constant
C > 0 depending only on Ω and λ such that: ‖V ‖H2(Ω) ≤ C · ‖f‖L2(Ω).

(7) If f ≥ 0 a.e. on Ω then V ≥ 0 a.e. on Ω and there is a constant C depending

only on Ω and λ such that:

∫
Ω

V dx ≤ C · ess inf
Ω

V . In particular V ≡ 0 or

ess inf
Ω

V > 0.

Proof. (Sketch) It is easy to remark that a is a bilinear form and from Cauchy in-
equality |a(V, φ)| ≤ max{d, λ} · ‖V ‖H1(Ω) · ‖φ‖H1(Ω), for any V, φ ∈ H1(Ω)14 which

shows that a is continuous. Moreover a(φ, φ) ≥ min{d, λ} · ‖φ‖2H1(Ω), ∀ φ ∈ H
1(Ω)

i.e. a is coercive. Since from Cauchy inequality |b(φ)| ≤ ‖f‖L2(Ω) · ‖φ‖L2(Ω) ≤
‖f‖L2(Ω) · ‖φ‖H1(Ω), ∀ φ ∈ H1(Ω) we get that b is a continuous linear functional.

Applying the Lax-Milgram theorem15 we get that there is a unique V ∈ H1(Ω) such
that a(V, φ) = b(φ), ∀ φ ∈ H1(Ω).
(1) and (2): Choosing φ = V in (29) we get that{

λ‖V ‖2L2(Ω)

min{d, λ}‖V ‖2H1(Ω)

≤ d
∫

Ω

|∇V |2 dx+ λ

∫
Ω

V 2 dx

=

∫
Ω

fV dx ≤

{
‖f‖L2(Ω) · ‖V ‖L2(Ω)

‖f‖L2(Ω) · ‖V ‖H1(Ω)

.

(3) The fact that V ∈ L∞(Ω) for each f ∈ L2(Ω) follows from [33, Theorem 4].
Assume now that f ∈ L∞(Ω). Setting c = 1

λess inf
Ω

f we have that −d∆(V − c) +

λ(V − c) = f − λc = f − ess inf
Ω

f ≥ 0 on Ω and
∂(V − c)

∂ν
= 0, on ∂Ω. Since λ > 0 we

get from the weak minimum principle that V ≥ c. The other inequality follows in an
analogue fashion.
(4) From a(V, φ) = b(φ), ∀ φ ∈ H1(Ω) using Green’s identity16 we get that∫

Ω

V∆φ dx = −
∫

Ω

∇V · ∇φ dx =
1

d

∫
Ω

(λV − f) · φ dx

for any φ ∈ H1(Ω) which means in particular that ∃ ∆V = λV−f
d ∈ L2(Ω). So

we have that −d∆V = f − λV as functions from L2(Ω). Thus ‖∆V ‖2L2(Ω) =

− 1
d

∫
Ω
f∆V dx + λ

d

∫
Ω
V∆V dx

Green
= 1

d2

∫
Ω
f · (f − λV ) dx − λ

dλ
∫

Ω
|∇V |2 dx =

1
d2 ‖f‖2L2(Ω) −

λ
d2

∫
Ω
fV dx − λ

dλ
∫

Ω
|∇V |2 dx ≤ 1

d2 ‖f‖2L2(Ω). Here we have used the

fact that
∫

Ω
fV dx = b(V ) = a(V, V ) ≥ 0.

14In fact ‖a‖ = max{d, λ}.
15For a proof, see [10, Corollary 5.8, page 140].
16For more details see [7, Proposition 7.6.1, pages 323-325].
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(5) This is a well-known regularity result that can be obtained by the classical De
Giorgi–Nash–Moser theory17. The proof can be found here: [33, Theorem 4] or with
complete details in [24, Theorem 3.1.5, page 50].
(6) This result can be found in the monograph [15, Theorem 3.2.1.3, page 149].
The idea is to use the well-known H2-regularity results for domains of class C2 by
approximating such domains from the inside and from the outside with C2 domains.
(7) This is a version of the strong minimum principle for weak solutions satisfying
Neumann boundary conditions given by G. Lieberman in [21, Lemma 2.1]. For further
details see [34, Theorems 8.18 and 8.19] and [33, Theorem 4]. �

5. The elliptic problem

In this section we will study the steady-states associated to problem (1).
−d∆U = αU ·

(
r(x)− p(x)U

)
, x ∈ Ω

∂U

∂ν
= 0, x ∈ Ω

U(x) ≥ 0, x ∈ Ω

(30)

Definition 5.1. We say that U ∈ H1(Ω) is a weak solution of (30) if U ≥ 0 a.e.

on Ω and d

∫
Ω

∇U · ∇φ dx =

∫
Ω

αU ·
(
r(x)− p(x)U

)
φ dx for any φ ∈ H1(Ω).

We say that U ∈ H1(Ω) is a weak subsolution (or weak supersolution) of (30)

if U ≥ 0 a.e. on Ω and d

∫
Ω

∇U · ∇φ dx−
∫

Ω

αU ·
(
r(x)− p(x)U

)
φ dx ≤ (or ≥) 0 for

any φ ∈ H1(Ω) with φ ≥ 0 a.e. on Ω.

Remark 5.1. It is straightforward to see that U ≡ 0 is a weak solution of (30). This
will be called from now on the trivial solution. Moreover it is an unstable solution.
Indeed, if we take some ε <

ρ

‖p‖L∞(Ω)
, then for any δ > 0 if we take u0 ≡ δ we have

from Proposition 3.4 (1) that: u(t, x) ≥ ρδ

exp(−αρt) · (ρ− δ‖p‖L∞(Ω)) + δ‖p‖L∞(Ω)

for a.a. (t, x) ∈ (0,∞) × Ω. But as t −→ ∞ the right hand side tends to
ρ

‖p‖L∞(Ω)
.

So no matter how small is the norm of the initial data ‖u0‖L∞(Ω) we have that

‖u‖L∞((0,∞)×Ω) > ε. This shows that the trivial solution U ≡ 0 is unstable.18

Remark 5.2. Problem (30) cannot have weak solutions with U ≤ 0 a.e. on Ω and
U 6≡ 0. Indeed: suppose that U ≤ 0 a.e. on Ω. Then: −d∆U = α U︸︷︷︸

≤0

· (r − pU)︸ ︷︷ ︸
≥r≥ρ

≤

αρU . Thus: 0 = d
∫

Ω
∇U · ∇1 dx

Green
= −d

∫
Ω

1 · ∆U dx ≤ αρ︸︷︷︸
>0

∫
Ω
U dx. So 0 =∫

Ω
0 dx ≥

∫
Ω
U dx ≥ 0 ⇒

∫
Ω
U︸︷︷︸
≤0

dx = 0 ⇒ U = 0 a.e. on Ω, which is impossible.

17For further details we recommend the monograph [16, Chapters 3 and 4].
18For two definitions of stability see [28, Page 9] and [29, Page 126].
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Remark 5.3. Problem (30) can have weak sign-changing (nodal) solutions. For

example consider the problem

−U
′′ = U ·

(
0.4 +

1

3
cos(x)− U

)
, x ≥ 0

U(0) = 0.5, U ′(0) = 0

. As we

can notice in fig. 1 we might have U ≥ r

p
on a subset of Ω having strict positive

measure even though U ≤ U =

∥∥∥∥rp
∥∥∥∥
L∞(Ω)

a.e. on Ω. In order to have Neumann

boundary conditions we consider the problem on the x-axis interval between points
A and B.

0 1 2 3 4 5 6 7 8 9 10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. A one-dimesional counterexample

Proposition 5.1. If U ∈ H1(Ω) is a weak solution of (30) then U ≤ U =

∥∥∥∥rp
∥∥∥∥
L∞(Ω)

≤

1 a.e. on Ω.

Proof. Set W = U − U . We have that:

−d∆W = d∆U = −αU(r − pU) = −α(U −W )(r − pU + pW )

= αU(pU − r)− α(2pU − r)W + αpW 2 ⇒
−d∆W + α(2pU − r)︸ ︷︷ ︸

≥0

W = αU(pU − r)︸ ︷︷ ︸
≥0

+αpW 2︸ ︷︷ ︸
≥0

≥ 0

We have used that 2pU −r ≥ pU −r = p

(
U − r

p

)
= p

(∥∥∥∥rp
∥∥∥∥
L∞(Ω)

− r

p

)
≥ 0 a.e. on

Ω. Since
∂W

∂ν
= −∂U

∂ν
= 0 ≥ 0 on ∂Ω we deduce from the weak minimum principle

that W ≥ 0 a.e. on Ω which means that U ≤ U a.e. on Ω. �
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Theorem 5.2. Problem (30) has a unique nontrivial weak solution U ∈ H1(Ω).
Moreover ess inf

Ω
U > 0.

Proof. Let λ ≥ 2α‖p‖L∞(Ω) be a constant. Define the function f : Ω × [0, 1] →
R, f(x, U) = αU(r(x) − p(x)U) + λU , for any (x, U) ∈ Ω × [0, 1]. Notice that

for any fixed x ∈ Ω we have that
∂f

∂U
= αr(x) + λ − 2αp(x)U ≥ αρ > 0 for all

U ∈ [0, 1]. Thus f(x, ·) is a strictly increasing function for any x ∈ Ω. Moreover for
any U ∈ U = {W ∈ L∞(Ω) | 0 ≤ W ≤ 1} we have that 0 ≤ f(x, 0) ≤ f(x, U(x)) ≤
f(x, 1) = λ−α(p(x)− r(x)) ≤ λ for a.a. x ∈ Ω which means that U 3 U 7→ f(·, U) :=
αU(r − pU) + λU ∈ L∞(Ω)+ ⊂ L2(Ω) (because Ω is bounded). Let us denote by V
the unique solution (see Theorem 4.1) of the following elliptic problem:


−d∆V + λV = f(x, U(x)), x ∈ Ω

∂V

∂ν
= 0, x ∈ ∂Ω

(31)

Since −d∆V + λV = f(x, U(x)) ≥ 0 on Ω and
∂V

∂ν
= 0 ≥ 0 on ∂Ω we deduce

from the weak minimum principle that V ≥ 0 a.e. on Ω. In a similar manner:
−d∆(1 − V ) + λ(1 − V ) = λ − (−d∆V + λV ) = λ − f(x, U(x)) ≥ 0 on Ω and
∂(1− V )

∂ν
= −∂V

∂ν
= 0 ≥ 0 on ∂Ω. Hence from the weak minimum principle that

1 ≥ V a.e on Ω. This proves that V ∈ U .
Now we can define the following mapping S : U → U given by: S(U) = V . Next, we
will point out some of the properties of S.
(Fact 1): S is a monotone operator. Let U1, U2 ∈ U with U1 ≤ U2 a.e. on Ω and
S(U1) = V1, S(U2) = V2. Consider V = V2 − V1 Then:

−d∆V + λV = f(x, U2(x))− f(x, U1(x)) = α (U2 − U1)︸ ︷︷ ︸
≥0

(
r +

λ

α
− p(U1 + U2)

)
≥ α(U2 − U1)

(
ρ+ 2‖p‖L∞(Ω) − 2p

)
≥ αρ(U2 − U1) ≥ 0

Having also that
∂V

∂ν
= 0 ≥ 0 on ∂Ω we get from the weak minimum principle that

V ≥ 0 a.e. on Ω, i.e. V1 = S(U1) ≤ V2 = S(U2) a.e. on Ω.
(Fact 2): S is a strongly monotone operator. We have to show here that for any
U1, U2 ∈ U with U2 ≥ U1 and U1 6≡ U2 then ess inf

Ω
S(U2)− S(U1) > 0. Setting V =

S(U2)−S(U1), as we have proved above we get that −d∆V +λV ≥ αρ(U2−U1) ≥ 0

on Ω and
∂V

∂ν
= 0 on ∂Ω. Applying Theorem 4.1 (7) we obtain that there is a

constant C(Ω, λ) with
∫

Ω
V dx ≤ C(Ω, λ) · ess inf

Ω
V . Suppose that ess inf

Ω
V = 0.

Then
∫

Ω
V dx = 0 and since V ≥ 0 a.e. on Ω it follows that V ≡ 0. But this will

imply that 0 = −d∆V +λV ≥ αρ(U2−U1) ≥ 0, i.e. U1 = U2 a.e. on Ω which is false.
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(Fact 3): S is Lipschitz-continuous with respect to the norms of L2(Ω) and
L∞(Ω). Let any U1, U2 ∈ U . Then:

−d∆V + λV = f(x, U2(x))− f(x, U1(x)), x ∈ Ω

∂V

∂ν
= 0, x ∈ ∂Ω

,

where V = S(U2)− S(U1). Using Theorem 4.1 (1) we obtain that:

‖S(U2)− S(U1)‖L2(Ω) ≤
1

λ
‖f(·, U2)− f(·, U1)‖L2(Ω)

=
1

λ
‖(U2 − U1)(αr + λ− αp(U1 + U2))‖L2(Ω)

≤ 1

λ
‖U2 − U1‖L2(Ω) · ‖αr + λ− αp(U1 + U2)︸ ︷︷ ︸

≥αρ>0

‖L∞(Ω)

≤ 1

λ
‖U2 − U1‖L2(Ω) · (α‖r‖L∞(Ω) + λ)

=

(
1 +

α‖r‖L∞(Ω)

λ

)
‖U2 − U1‖L2(Ω)

From Theorem 4.1 (3) we deduce that the same relations as above hold by replacing

L2(Ω) with L∞(Ω). So: ‖S(U2)−S(U1)‖L∞(Ω) ≤
(

1 +
α‖r‖L∞(Ω)

λ

)
‖U2−U1‖L∞(Ω).

(Fact 4) If U ≤ U =

∥∥∥∥rp
∥∥∥∥
L∞(Ω)

a.e. on Ω then S(U) ≤ U a.e. on Ω and if in

addition U 6≡ U or
r

p
is not constant then ess inf

Ω
U − S(U) > 0.19

Indeed if V = S(U) then −d∆
(
U − V

)
+ λ

(
U − V

)
= λU − f(x, U(x)) = λU −

f(x, U)+f(x, U)−f(x, U(x)) = λU−αU(r−pU)−λU+(U−U)(αr+λ−αp(U+U)) ≥

αpU
(
U − r

p

)
+ αρ(U − U) ≥ 0 on Ω and

∂(U − V )

∂ν
= 0 ≥ 0 on ∂Ω. Thus from the

weak minimum principle we get that V ≤ U a.e. on Ω. Moreover, if U 6≡ U or
r

p
is

not constant, then from Theorem 4.1 (7), we obtain that ess inf
Ω

U − V > 0.

(Fact 5) If U ≥ U = ess inf
Ω

r

p
≥ ρ

‖p‖L∞(Ω)
> 0 a.e. on Ω then S(U) ≥ U a.e. on

Ω and if in addition U 6≡ U or
r

p
is not constant then ess inf

Ω
S(U)− U > 0.20

Set V = S(U). Then −∆(V − U) + λ(V − U) = f(x, U(x)) − λU = f(x, U(x)) −
f(x, U) + f(x, U)− λU = (U −U)(αr+ λ− αp(U +U)) + αU(r− pU) + λU − λU ≥

αρ(U − U) + αUp
(
r
p − U

)
≥ 0 on Ω and

∂(V − U)

∂ν
= 0 ≥ 0. Using again the weak

minimum principle we get that V ≥ U a.e. on Ω. Moreover, if U 6≡ U or
r

p
is not

constant, then from Theorem 4.1 (7), we obtain that ess inf
Ω

V − U > 0.

(Fact 6) If U ≥ 0 and U 6≡ 0 then ess inf
Ω

S(U) > 0.

19In particular, from U ≤ U a.e. on Ω we have that S(U) ≤ U .
20In particular, from U ≥ U a.e. on Ω we have that S(U) ≥ U .
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Notice that −d∆V +λV = f(x, U(x)) ≥ αρU ≥ 0 and 6≡ 0. So from Theorem 4.1 (7)
we obtain the above statement.
(Fact 7) If U 6≡ 1 or r 6≡ p then ess inf

Ω
1− S(U) > 0.

Observe that −d∆(1 − V ) + λ(1 − V ) = λ − f(x, U(x)) = λ − f(x, 1) + f(x, 1) −
f(x, U(x)) ≥ α(p − r) + αρ(1 − U) ≥ 0 and 6≡ 0. Thence from Theorem 4.1 (7) we
get the conclusion.

We have all ingredients to start the proof. It is obvious that 0 < U ≤ r

p
≤ U ≤ 1

a.e. on Ω and the equality U = U holds iff
r

p
is a constant function a.e. on Ω (not

necessarily equal to 1).
(Existence) We introduce the following recurrence:Un+1 = S(Un), n ≥ 0

U0 ∈ U
. (32)

If we choose U0 ≡ 1 then, from U 3 S(1) ≤ 1 a.e. on Ω we get inductively using the
monotony of S that U0 = 1 ≥ S(1) = U1 ≥ S(S(1)) = U2 ≥ · · · ≥ Un ≥ . . . . Now,
since 1 ≥ ess inf

Ω

r
p = U , using Fact 5 we easily see inductively that Un ≥ U > 0 a.e.

on Ω for any n ≥ 0. For a.a x ∈ Ω the sequence
(
Un(x)

)
n≥0

is decreasing and bounded

below, hence convergent to some U(x) ∈ [U, 1]. Moreover, because Un(x) ≤ 1 for any
n ≥ 0 and a.a. x ∈ Ω, we deduce from Lebesgue dominated convergece theorem, taking
into account that 1 ∈ L2(Ω) (Ω is bounded), that Un → U in L2(Ω). But, from Fact
2 we know that S is continuous with respect to the norm ‖ · ‖L2(Ω) which means that

Un+1 = S(Un) → S(U) in L2(Ω). Since Un+1 → U in L2(Ω) we get that S(U) = U ,
i.e. U is a weak nontrivial solution of (30) and ess inf U

Ω
≥ U > 0. The existence part

is now completed.
(Uniqueness) Suppose that Ũ ∈ H1(Ω), Ũ ≥ 0 a.e. on Ω, Ũ 6≡ 0 and Ũ 6≡ U

is another nontrivial solution of (30). From the definition 5.1, knowing that U, Ũ ∈
H1(Ω) we obtain that:

∫
Ω

∇U · ∇Ũ dx = α

∫
Ω

UŨ(r − pU) dx∫
Ω

∇Ũ · ∇U dx = α

∫
Ω

ŨU(r − pŨ) dx

⇒
∫

Ω

pUŨ · (U − Ũ) dx = 0. (33)

From Proposition 5.1 we have that 1 ≥ Ũ a.e. on Ω, so Ũ ∈ U . Thus, from the
monotony of S we infer that U1 = S(1) ≥ S(Ũ) = Ũ and inductively Un ≥ Ũ a.e. on

Ω for each n ≥ 0. Passing to the limit (pointwise) we get that U ≥ Ũ a.e. on Ω.

Henceforth relation (33) gives us that pUŨ(U − Ũ) = 0 a.e. on Ω. But p ≥ r ≥ ρ > 0

and U ≥ U > 0 and this means that Ũ(U − Ũ) = 0. Since Ũ 6≡ 0 and Ũ 6≡ U we have

that Ũ(x) =

{
0, x ∈ ω
U(x), x ∈ Ω \ ω

for some subset ω ⊂ Ω. Because Ũ ∈ H1(Ω) we get

that ω = Ũ−1(0) which is a measurable set with strict positive measure. We mention

that Ω \ ω has strict positive measure too. Again, from Ũ ∈ H1(Ω) and U ∈ H1(Ω)

we have that min{Ũ , U} = U · χΩ\ω ∈ H1(Ω) ⇒ χΩ\ω ∈ H1(Ω) (see [18, Remarks
2.3, page 27]). So ∇χΩ\ω = 0 a.e. on Ω. Using now that Ω is connected we deduce
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that χΩ\ω must be a constant a.e. on Ω which is clearly false. The uniqueness is
completely proved. �

6. Asymptotic behaviour of u

In this section we further assume that Ω is convex. Let U ∈ H1(Ω) be the unique
nontrivial solution of (30). We introduce the following linear eigenvalue problem:

−d∆Ψ− αrΨ + 2αpUΨ = λΨ, x ∈ Ω

∂Ψ

∂ν
= 0, x ∈ ∂Ω

(34)

For any ζ > α‖2pU − r‖L∞(Ω) and any f ∈ L2(Ω) we can show, as in Theorem

4.1, that the problem


−d∆ψ + (ζ − αr + 2αpU)ψ = f(x), x ∈ Ω

∂ψ

∂ν
= 0, x ∈ ∂Ω

has a unique

solution ψf ∈ H2(Ω) and there is a constant c > 0 depending only on Ω and ζ
such that ‖ψf‖H2(Ω) ≤ c‖f‖L2(Ω). From Rellich-Kondrachov theorem21 we know that

H2(Ω)
c
↪→ C(Ω) ↪→ L∞(Ω). So there is a constant c1 > 0 depending only on Ω

such that ‖φ‖C(Ω) ≤ c1 · ‖φ‖H2(Ω), ∀ φ ∈ H2(Ω). These facts allows us to define

the linear operator T : L∞(Ω) → L∞(Ω), T f := ψf , ∀ f ∈ L∞(Ω). We introduce
K := L∞(Ω)+ =

{
f ∈ L∞(Ω) | f ≥ 0, a.e. on Ω

}
which is a total order cone on

L∞(Ω) with int(K) =
{
f ∈ L∞(Ω) | ess inf

Ω
f > 0

}
6= ∅.

Lemma 6.1. The linear operator T has the following properties:
(1) T is bounded;
(2) T is a compact operator;
(3) T is strongly positive;22

Proof. (1) For any f ∈ L∞(Ω) we have that: ‖T f‖L∞(Ω) = ‖T f‖C(Ω) ≤ c1‖T f‖H2(Ω)

≤ c1c‖f‖L2(Ω) ≤ c1c
√
LN (Ω) · ‖f‖L∞(Ω). Thus T is bounded.

(2) If (fn)n≥1 is a bounded sequence from L∞(Ω), then (T fn)n≥1 is a bounded

sequence from H2(Ω) since ‖T fn‖H2(Ω) ≤ c‖fn‖L2(Ω) ≤ c
√
LN (Ω) · ‖f‖L∞(Ω), ∀ n ≥

1.
Because the embedding H2(Ω)

c
↪→ C(Ω) is compact, we know that the identity op-

erator I : H2(Ω) → C(Ω) is compact. So the H2(Ω)-bounded sequence (T fn)n≥1 is
mapped by I into a sequence (itself) that has a convergent subsequence to an element
of C(Ω) ⊂ L∞(Ω). Thus T is compact.
(3) The positivity of T follows from the weak minimum principle in a standard
manner. The strong positivity follows from [21, Lemma 2.1]. �

Now we are in position to apply Krein-Rutman’s theorem for T and deduce that
r(T ) > 0 is a simple eigenvalue of T with some eigenfunction Ψ1 ∈ L∞(Ω) with
ess inf

Ω
Ψ1 > 0 and ‖Ψ1‖L2(Ω) = 1. Define the principal eigenvalue of the problem (34)

21For the proof, see [1, Theorem 6.3, page 168] and [30, Theorem 7.97, page 491].
22For the definition see the statement of Theorem 10.4 from the appendix.
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by λ1 :=
1

r(T )
− ζ. It is easy to check that Ψ = Ψ1 and λ = λ1 is a solution to the

eigenvalue problem (34). Moreover from the Rayleigh-Ritz variational caracterization
of the principal eigenvalue23 we have that:

λ1 = min
ψ∈H1(Ω)\{0}

d

∫
Ω

|∇ψ|2 dx+ α

∫
Ω

(2pU − r)ψ2 dx∫
Ω

ψ2(x) dx

(35)

Remark 6.1. Taking ψ = 1Ω in (35) we get that λ1 ≤ α

∫
Ω

2pU − r dx. Moreover,

since the first term in the numerator is positive, we easily obtain that λ1 ≥ α ·
ess inf

Ω
2pU − r. So if U < 2U then λ1 > 0.

Remark 6.2. For the trivial steady-state U ≡ 0 we get that λ1 ≤ −α
∫

Ω

r(x) dx ≤

−αρLN (Ω) < 0. This shows one more time that the trivial steady-state is unstable.

Theorem 6.2. Let u be the solution of (1). If λ1 > 0, then for any u0 ∈ U with u0 6≡

0 we have that for σ :=
1

ess inf
Ω

Ψ1
and t0 :=

2

λ1
ln

(
2ασ‖Ψ1‖L∞(Ω)

λ1

)
the following

inequality holds:

‖u(t, ·)− U‖L∞(Ω) ≤ σ exp

(
−λ1t

2

)
· ‖Ψ1‖L∞(Ω), ∀ t > t0. (36)

In particular lim
t→∞

‖u(t, ·)− U‖L∞(Ω) = 0.24

Remark 6.3. Note the crucial fact that the convergence speed (i.e., the right-hand
side of the inequality) does not depend on the choice of u0, as neither σ, λ1, Ψ1, nor
t0 depend on u0.

Proof. Define for (t, x) ∈ (0,∞) × Ω: u(t, x) = U(x) + σ exp(−λ1t) · Ψ1(x) and
u(t, x) = U(x)− σ exp

(
−λ1t

2

)
·Ψ1(x). By direct computation we get that:

∂u

∂t
− d∆u− αu(r − pu) = αpσ2 exp(−2λ1t)Ψ

2
1 ≥ 0

∂u

∂ν
= 0, (t, x) ∈ (0,∞)× Ω

u(0, x) = U(x) + σΨ1(x) ≥ U(x) + 1, x ∈ Ω

. (37)

For any T > 0, setting w = u−u it will follow for c = α(p(u+u)−r) ∈ L∞((0, T )×Ω)
that:

∂w

∂t
− d∆w + cw = αpσ2 exp(−2λ1t)Ψ

2
1 ≥ 0, (t, x) ∈ (0, T )× Ω

∂w

∂ν
= 0 ≥ 0, (t, x) ∈ (0,∞)× Ω

w(0, x) = U(x) + σΨ1(x)− u0(x) ≥ U(x) + 1− u0(x) ≥ 0, x ∈ Ω

. (38)

23See [30, Theorem 7.76, page 412].
24The idea is taken from [26, Theorem 6.3, page 209].
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From the weak parabolic minimum principle we deduce that w ≥ 0 a.e. on (0, T )×Ω
for any T > 0. Thus u ≥ u a.e. on (0,∞)× Ω.
Similarly one can get that:

∂u

∂t
− d∆u− αu(r − pu) = − 1

2σ exp(−λ1t)Ψ1 · (λ1 − 2ασ exp(−λ1t/2)Ψ1) ≤ 0

∂u

∂ν
= 0, (t, x) ∈ (0,∞)× Ω

u(0, x) = U(x)− σΨ1(x), x ∈ Ω

(39)

if λ1 ≥ 2ασ exp(−λ1t/2)Ψ1 ⇔ t ≥ 2

λ1
ln

(
2ασΨ1

λ1

)
. This inequality is true for

a.a. (t, x) ∈ (t0,∞) × Ω. So for any T > t0, denoting w = u − u we obtain for
c = α(u− u)(p(u+ u)− r) ∈ L∞((0, T )× Ω) that:

∂w

∂t
− d∆w + cw = 1

2σ exp(−λ1t)Ψ1 · (λ1 − 2ασ exp(−λ1t/2)Ψ1) ≥ 0

∂w

∂ν
= 0 ≥ 0, (t, x) ∈ (t0, T )× Ω

w(0, x) = u0(x)− U(x) + σΨ1(x) ≥ 1 + u0(x)− U(x) ≥ 0, x ∈ Ω

. (40)

From the weak parabolic minimum principle we deduce that w ≥ 0 a.e. on (t0, T )×Ω
for any T > t0. Thus u ≥ u a.e. on (t0,∞)× Ω. Therefore we may write:

U + σe−λ1t/2Ψ1 ≥ U + σe−λ1tΨ1 ≥ u(t, ·) ≥ U − σe−λ1t/2Ψ1. (41)

This is the same as ‖u(t, ·)− U‖L∞(Ω) ≤ σe−λ1t/2‖Ψ1‖L∞(Ω) for t > t0. �

7. Applications in digital image processing

In the rest of the paper we consider Ω to be a 2D rectangle, i.e. Ω = (0, a)× (0, b). It
is well known that PDE’s and Calculus of Variations have many applications in image
processing (such as segmentation, restoration, etc.) – as a good introduction in this
subject we recommend [8]. Other good sources are the book [31] and the free video
lectures available online at https://www.coursera.org/learn/image-processing

both provided by professor Guillermo Sapiro.

7.1. Deforming an image in an other given image. Let’s say that we have
two grayscale images with the same sizes: the initial one which is represented by
u0 : Ω → [0, 1] and the final one that is given by U : Ω → [0, 1]. We associate 0 to
black and 1 to white. We shall also modify U such that it will not contain pure black
pixels. From Theorem 6.2 we expect that u(t, ·) ≈ U for large enough t.
We want U to be the unique nontrivial solution of the problem (30), i.e.:

−d∆U = αU(r − pU), x ∈ Ω

∂U

∂ν
= 0, x ∈ ∂Ω

. (42)

Note that the Neumann boundary condition is well-suited for our situation, since the
last two layers of pixels are pretty much the same for each picture in the normal

https://www.coursera.org/learn/image-processing
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direction. From (42) we get that p =
r

U
+
d∆U

αU2
. We can choose α big enough such

that p ≥ r on Ω. In this model r is taken as a mathematical function which creates
some particular effect in the way in which u0 is transformed into U via diffusion.
Equation (1) was discretized using an explicit finite difference scheme with 5 nodes
with respect to the time variable and using the 9-points formula for the Laplacian.25

We took into account the Neumann boundary condition to determine the values for
the last layer of pixels. All the M-files and mp4 files (videos exported from Matlab
to see how diffusion acts) are freely available at: https://github.com/MaxDBog/

Neumann-Laplacian-on-images. The main idea of the algorithm used is described
below.

Algorithm 1 The conceptual algorithm

1: Read the two images Initial and Final with the same resolution as matrices
2: Convert Initial and Final into grayscale images if necessary
3: Divide by 255 in order to obtain two matrices u0 and U with all entries from

[0, 1]
4: Modify the final image so that it is taken apart from pure black pixels. For

example: U may be replaced by 0.8 · U + 0.2
5: Setting dx (the distance between two consecutive pixels), the timestep dt, the

number of time iterations Nt and the meshgrid of pixels.
6: Define the effect function r ≥ ρ > 0 that we want to try

7: Compute p =
r

U
+
d∆U

αU2
as a matrix. In practice it is better to set p =

r

U
.

8: Initialization – define the constants of the system α, d, the initial data u(:, :, 1) =
u0 and the initial source f(:, :, 1) = αu0(r − pu0)

9: for k = 1 : Nt− 1 do
10: u(:, :, k + 1) = formula in terms of u(:, :, k)
11: f(:, :, k + 1) = αu(:, :, k)(r − pu(:, :, k))
12: end for
13: Show the diffused images u(:, :, k) for some values of k or even make a mp4 video.

As k grows u(:, :, k) ≈ U
14: Compute PSNR(u(:, :, k), U) and PSNRgrad(u(:, :, k), U)

For definitions and further details about the noise estimator, PSNR and PSNRgrad
we refer to [2]. This method can be easily adapted for RGB images by applying
the same steps to each color channel—red, green, and blue—and then combining the
results into a single three-dimensional matrix.
The simulations were performed on Matlab R2023b. The parameters I have used in
these simulations are d = 0.1, α = 5. Now let’s see some diffusion effects in just 200
iterations:

(a) Sinusoidal effect for r(x, y) = 2.5−sin
( x

10

)
−cos

( y
10

)
. We get PSNR(U, u(:, :

, 200)) = 30.53. See Figure 3 and the video image to image sinusoidal effect.mp4 .

(b) Vertical effect for r(x, y) = 1.75 − sin
(x

5

)
. We get PSNR(U, u(:, :, 200)) =

30.33. See Figure 4 and the video image to image vertical effect.mp4 .

25See [11, Section 4.1] and [32].

https://github.com/MaxDBog/Neumann-Laplacian-on-images
https://github.com/MaxDBog/Neumann-Laplacian-on-images
https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/image_to_image_sinusoidal_effect.mp4
https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/image_to_image_vertical_effect.mp4
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(a) Initial image: cameraman (b) Final image: house

Figure 2. The two original images

(a) 1 iteration (b) 10 iterations (c) 30 iterations

(d) 70 iterations (e) 100 iterations (f) 200 iterations

Figure 3. Cameraman transformed into a house - Sinusoidal effect

(c) Horizontal effect for r(x, y) = 1.75− sin
(y

5

)
. We get PSNR(U, u(:, :, 200)) =

30.15. See Figure 5 and the video image to image horizontal effect.mp4 .

(d) Diagonal effect for r(x, y) = 1.75+sin

(
x+ y

5

)
We get PSNR(U, u(:, :, 200)) =

30.38. See Figure 6 and the video image to image diagonal effect.mp4 .

https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/image_to_image_horizontal_effect.mp4
https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/image_to_image_diagonal_effect.mp4
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(a) 1 iteration (b) 10 iterations (c) 30 iterations

(d) 70 iterations (e) 100 iterations (f) 200 iterations

Figure 4. Cameraman transformed into a house - Vertical effect

(a) 1 iteration (b) 10 iterations (c) 30 iterations

(d) 70 iterations (e) 100 iterations (f) 200 iterations

Figure 5. Cameraman transformed into a house - Horizontal effect
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(a) 1 iteration (b) 10 iterations (c) 30 iterations

(d) 70 iterations (e) 100 iterations (f) 200 iterations

Figure 6. Cameraman transformed into a house - Diagonal effect

(e) Dotted effect for r(x, y) = 1.5 − sin
(x

5

)
· cos

(y
5

)
. We get PSNR(U, u(:, :

, 200)) = 30.08. See Figure 7 and the video image to image dotted effect.mp4 .
(f) Fancy effect for r(x, y) = 1.5 − sin(x2 + y2). We get PSNR(U, u(:, :, 200)) =

30.14. See Figure 8 and the video image to image fancy effect.mp4 .
Typical values for the PSNR in image compression are between 30 and 40, so we have
good results, but not excellent.

7.2. Making images to dissapear with Neumann diffusion. We have some
initial image u0 that will converge toward the final image U ≡ 1. So we may choose

the effect r as we want and put p ≡ r =
r

U
+
d∆U

αU2
. Choosing r(x, y) = 3 −

sin
( x

10

)
− cos

( y
10

)
we get the resuts illustrated in Figure 9. To watch a video with

this simulation go here disappearing image.mp4 .
Computing the PSNR between U (complete white) and u(:, :, 200) we obtain 96.98.
So our image trully disappeared. Also PSNRgrad is equal to 93.37.

7.3. Deforming grayscale images with Neumann diffusion. Rather than defin-
ing p in terms of an image, we can express it as a mathematical function. Next, we
will observe how the two images used above converge toward the same mathematical
solution U of (30).
For d = 0.3, α = 0.5, r(x, y) = 1−0.4·sin(x/20)−0.4·cos(y/20) and p(x, y) = 2 we get
the results presented in Figures 10 and 11. You can watch the video files associated to
these figures at neumann diffusion cameraman.mp4 and neumann diffusion house.mp4 .

https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/image_to_image_dotted_effect.mp4
https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/image_to_image_fancy_effect.mp4
https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/disappearing%20image.mp4
https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/neumann_diffusion_cameraman.mp4
https://github.com/MaxDBog/Neumann-Laplacian-on-images/blob/main/neumann_diffusion_house.mp4
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(a) 1 iteration (b) 10 iterations (c) 30 iterations

(d) 70 iterations (e) 100 iterations (f) 200 iterations

Figure 7. Cameraman transformed into a house - Dotted effect

(a) 1 iteration (b) 10 iterations (c) 30 iterations

(d) 70 iterations (e) 100 iterations (f) 200 iterations

Figure 8. Cameraman transformed into a house - Fancy effect
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(a) 1 iteration (b) 5 iterations (c) 15 iterations

(d) 30 iterations (e) 45 iterations (f) 60 iterations

(g) 75 iterations (h) 90 iterations (i) 200 iterations

Figure 9. The disappearance of the cameraman

The PSNR between the images obtained after 5000 iterations is equal to 140.39. So
they both end up to the same thing.

8. Conclusion

Further investigations have to be made in order to improve the numerical algorithm.
Also I believe that the asymptotic stability holds in the case when Ω is not assumed
to be convex.
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(a) 1 iteration (b) 80 iterations (c) 200 iterations

(d) 300 iterations (e) 500 iterations (f) 5000 iterations

Figure 10. The diffusion of the cameraman

(a) 1 iteration (b) 80 iterations (c) 200 iterations

(d) 300 iterations (e) 500 iterations (f) 5000 iterations

Figure 11. The diffusion of the house
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10. Appendix

The following result is an adapted version of Corollary 8.10 from [10, page 215], taking
into account that in Theorem 3.15 from [19] it is shown that: H1([a, b];L2(Ω)) ↪→
L∞([a, b];L2(Ω)) and in [19, Corollary 3.12] that C∞([a, b];L2(Ω)) is dense in
H1([a, b];L2(Ω)). See also [3, Proposition V.2.4.7, page 304] or [23, Theorem 35, page
21].

Lemma 10.1. If u, v ∈ H1([a, b], L2(Ω)), where a < b are real numbers, then
∂(u · v)

∂t
∈ L2([a, b];L1(Ω)) and:

∂(uv)

∂t
=
∂u

∂t
v + u

∂v

∂t
. (43)

Furthermore, the formula for integration by parts holds:∫ t1

t0

∂u

∂t
v dt = u(t1, ·)v(t1, ·)− u(t0, ·)v(t0, ·)−

∫ t1

t0

u
∂v

∂t
dt, ∀ a ≤ t0 < t1 ≤ b. (44)

Lemma 10.2 (Ultracontractivity of the Neumann Laplacian on Lipschitz
domains). Let any T, λ > 0 and

(
S(t)

)
t∈[0,T ]

be the C0-semigroup associated to the

Neumann Laplacian on the Lipschitz domain Ω. Then for each u ∈ L2(Ω) and any
t ∈ (0, T ] we have that S(t)u ∈ L∞(Ω) and moreover there is a constant C > 0
depending only on Ω and D, d, λ such that:

‖S(t)u‖L∞(Ω) ≤ C · eλT · t−
D
4 · ‖u‖L2(Ω). (45)

Here D = N if N ≥ 3 and D > 2 is any constant we want in case N ∈ {1, 2}.

Proof. From the Sobolev embedding theorem we know that for Lipschitz domains

like Ω we have that H1(Ω) ↪→ L
2D

D−2 (Ω). Now we will use [25, Theorem 6.4, page
158] for the unbounded linear operator −d∆N + λI associated with the form a :
H1(Ω) × H1(Ω) → R, a(u, v) = d

∫
Ω
∇u · ∇v dx + λ

∫
Ω
uv dx, ∀ u, v ∈ H1(Ω).

So there is some C > 0 depending on Ω and D, d, λ such that for any u ∈ L2(Ω)

we have that ‖Sλ(t)u‖L∞(Ω) = ‖w(t, ·)‖L∞(Ω) ≤ C · t−D
4 · ‖u‖L2(Ω), ∀ t ∈ (0, T ],

where:



∂w

∂t
− d∆w + λw = 0, (t, x) ∈ (0, T )× Ω

∂w

∂ν
= 0, (t, x) ∈ (0, T )× ∂Ω

w(0, x) = u(x), x ∈ Ω

in the weak sense. Now just

simply observe that w(t, ·) = e−λtv(t, ·) where v(t, ·) = S(t)u, ∀ t ∈ [0, T ]. So

e−λT ‖v(t, ·)‖L∞(Ω) ≤ ‖e−λtv(t, ·)‖L∞(Ω) = ‖w(t, ·)‖L∞(Ω) ≤ C · t−D
4 · ‖u‖L2(Ω) for

any t ∈ (0, T ] and we are done. �
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Remark 10.1. It is straightforward to demonstrate that ‖S(t)u‖L2(Ω) ≤ ‖u‖L2(Ω)

for any u ∈ L2(Ω) (just take φ = v(t, ·) in the weak formulation of the problem)
and ‖S(t)u‖L∞(Ω) ≤ ‖u‖L∞(Ω) for each u ∈ L∞(Ω) (follows from the weak parabolic
minimum principle).

Definition 10.1. We say that f ∈ L2(Ω) with f ≥ 0 is an almost interior point

of L2(Ω)+ if for every φ ∈ L2(Ω)+ \ {0} we have that

∫
Ω

f(x)φ(x) dx > 0.

Similarly we say that f ∈ L∞(Ω) with f ≥ 0 is an almost interior point of L∞(Ω)+

if for every ϕ ∈ (L∞(Ω)∗)
+ \ {0} we have that ϕ(f) > 0.

Remark 10.2. • Ω being a bounded domain f ∈ L2(Ω)+ is an almost interior point
of L2(Ω)+ iff f(x) > 0 for almost all x ∈ Ω.
• f ∈ L∞(Ω)+ is an almost interior point of L∞(Ω)+ iff of there is some ε > 0 such
that f(x) ≥ ε for almost all x ∈ Ω. This is a very important distinction between the
two cases.26

The following proposition is the key ingredient in proving strong positivity of the
solution for parabolic problems. It is taken from [13, Proposition 2.21]. Here is its
statement:

Proposition 10.3. Let X and Y be two ordered Banach spaces and T : X → Y
a bounded, linear and positive operator between them. Then the following two
statements are equivalent:
(1) There is some x ∈ X+ such that Tx is an almost interior point of Y +.
(2) T maps all almost interior points of X+ to almost interior points of Y +.

Theorem 10.4 (Krein-Rutman). Let X be a Banach space and K ⊂ X a total
order cone with int(K) 6= ∅. For any compact linear operator T : X → X that is
strongly positive, i.e. T x ∈ int(K) for any x ∈ K \ {0X}, the following statements
are true:27

(1) The spectral radius of T is strictly positive, i.e. r(T ) > 0.
(2) r(T ) is a simple eigenvalue of T that has an eigenvector v ∈ int(K).
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