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Refinement of convergence rates for tail probabilities

Aurel Spătaru

Abstract. Let X1, X2, ... be i.i.d. random variables, and put Sn = X1 + ... + Xn. We find
necessary and sufficient moment conditions for

R∞
ε f(xq)dx < ∞, ε > δ, where δ ≥ 0 and

q > 0, and f(x) =
P

n anP (|Sn| > xbn) with an > 0 and bn is either n1/p, 0 < p < 2,
√

n log n

or
√

n log log n. The series f(x) we deal with are classical series studied by Hsu and Robbins,
Erdős, Spitzer, Baum and Katz, Davis, Lai, Gut, etc.
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1. Introduction

Let X1, X2, ... be i.i.d. random variables with P (X 6= 0) > 0 and EX = 0, and
consider the random walk S0 = 0, Sn = X1 + ... + Xn, n ≥ 1. The main pur-
pose of this communication is to find necessary and sufficient moment conditions for∫∞

ε
f(xq)dx < ∞, ε > δ, where δ ≥ 0 and q > 0, and f(x) =

∑
n anP (|Sn| > xbn)

with an > 0 and bn is either n1/p, 0 < p < 2,
√

n log n or
√

n log log n. The results
offer refined rates of convergence for the tail probabilities P (|Sn| > xbn) concerning
either the law of large numbers, moderate deviations or the law of the iterated loga-
rithm. The series f(x) we deal with are classical series studied by Hsu and Robbins
(1947), Erdős (1949,1950), Spitzer (1956), Baum and Katz (1965), Davis (1968), Lai
(1974), Gut (1980), etc.

For x > 0, define An = {|Sn| > xn}, n ≥ 1, consider the random series Nx =∑
n≥1 I(An) = the number of exits of Sn beyond the boundary ±xn, and set Dx =

{(n, y) : |y| ≤ xn}. With this notation, we may rephrase the Kolmogorov strong law
of large numbers, and the complete convergence theorem as follows.

STRONG LLN (A. N. KOLMOGOROV (1930)): E |X| < ∞ ⇐⇒ Nx < ∞ a.s.,
x > 0 ⇐⇒ whatever x > 0, Sn ∈ Dx a.s. for all but finitely many n.

COMPLETE CONVERGENCE THEOREM (P. L. HSU and H. ROBBINS (1947);
P. ERDŐS (1949,1950)): EX2 < ∞ ⇐⇒ f(x) := ENx =

∑
n≥1 P (|Sn| > xn) < ∞

for any x > 0.
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Figure 1. Random walk Sn with boundary ±xn

We see that f is a nonincreasing function. Moreover, since P (X 6= 0) > 0,
limx↘0 f(x) =

∑
n≥1 P (Sn 6= 0) = ∞ by the Borel-Cantelli lemma. The exact

asymptotics of f(x) as x ↘ 0 was established by Heyde.

C. C. HEYDE (1975): EX2 < ∞ =⇒ x2ENx → EX2 i.e. f(x) ∼ x−2EX2) as
x ↘ 0.

This means that
∫∞
0

f(x)dx = ∞. What about Iδ :=
∫∞

δ
f(x)dx for some δ > 0? The

impetus to study the convergence of Iδ comes from the theory of branching processes,
more precisely from the following theorem.

K. B. ATHREYA (1988): Let Z0 = i, (Zn)n≥1 be a critical Galton-Watson process
such that EZ2

1 < ∞, and put Mn = max0≤k≤n Zk. Then EMn/ log n → i as n →∞.

Athreya considered a random walk (Sn)n≥0 generated by the random variable
X = the number of offspring produced by a single parent particle, with offspring
distribution (pj)j≥0 such that

∑
j≥1 jpj = 1 and

∑
j≥1 j2pj < ∞. He proved that

∑

n≥1

∫

{ |Sn|
n >δ}

|Sn|
n

dP < ∞ for any δ > 0.

This statement is in fact a result of the form Iδ < ∞. Inspection of Athreya’s proof
made possible the next strengthening of the complete convergence theorem under full
generality.

A. SPĂTARU (1990): EX2 < ∞⇐⇒ Iδ =
∫∞

δ
f(x)dx =

∫∞
δ

(∑
n≥1 P (|Sn| > xn)

)
dx <

∞, δ > 0.

Actually, in accordance with the Hsu-Robbins-Erdős theorem, this means that
∑

n≥1

P (|Sn| > xn) < ∞, x > 0 ⇐⇒ EX2 < ∞⇐⇒
∑

k≥1

∑

n≥1

P (|Sn| > kn) < ∞.

An even more general result has been recently obtained by Li and Spătaru.



REFINEMENT OF CONVERGENCE RATES FOR TAIL PROBABILITIES 223

D. LI and A. SPĂTARU (2005): For q > 0, we have

∫ ∞

δ

f(xq)dx < ∞, δ > 0 ⇐⇒




E|X|1/q < ∞ if q < 1/2
E[X2 log+ |X|] < ∞ if q = 1/2

EX2 < ∞ if q > 1/2
.

Other important boundaries such as±xn1/p, 0 < p < 2, ±x
√

n log n, ±x
√

n log log n
will be considered in what follows.

2. The boundary ±xn1/p, 0 < p < 2, (Large deviations)

For x > 0 and 0 < p < 2, define An = {|Sn| > xn1/p}, n ≥ 1, and put Nx =∑
n≥1 I(An) = the number of exits of Sn beyond the boundary ±xn1/p. For r ≥ 1,

consider also the random series Mx =
∑

n≥1 nr−2I(An), x > 0. Set Dx = {(n, y) :
|y| ≤ xn1/p}, x > 0. With this notation, the Marcinkiewicz-Zygmund strong law
of large numbers, and the Hsu-Robbins/Erdős/Spitzer/Baum-Katz theorem may be
rephrased as follows.

Figure 2. Random walk Sn with boundary ±xn1/p, 0 < p < 2

STRONG LLN (J. MARCINKIEWICZ and A. ZYGMUND (1937)): E |X|p <
∞ ⇐⇒ Nx < ∞ a.s., x > 0 ⇐⇒ whatever x > 0, Sn ∈ Dx a.s. for all but finitely
many n.

THE HSU-ROBBINS/ERDŐS/SPITZER/BAUM-KATZ THEOREM: E |X|pr
<

∞⇐⇒ f(x) := EMx =
∑

n≥1 nr−2P (|Sn| > xn1/p) < ∞ for any x > 0.

(For p = 1 and r = 2 this is the complete convergence theorem due to Hsu and
Robbins, and Erdős. For p = r = 1 the result was proved by Spitzer (1956). In the
general form stated here the theorem was obtained by Baum and Katz (1965).)

f is nonincreasing. Since X is not degenerated at 0, lim
x↘0

f(x) = lim
x↘0

∑
n≥1 nr−2P (|Sn| >

xn1/p) =
∑

n≥1 nr−2P (Sn 6= 0) ≥ ∑
n≥1

1
nP (Sn 6= 0) = ∞ by the translation invari-

ance theorem (see, e.g., Loève (1977), p. 398). The behaviour of f(x) as x ↘ 0 was
also investigated.
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A. GUT and A. SPĂTARU (2000): If 1 ≤ p < 2 and EX2 < ∞, then
∑

n≥1
1
nP (|Sn| >

xn1/p) ∼ log( 1
x ) 2p

2−p as x ↘ 0.

The next strengthening of the H-R/E/S/B-K theorem has been obtained.

D. LI and A. SPĂTARU (2005): For q > 0, we have

∫ ∞

δ

f(xq)dx < ∞, δ > 0 ⇐⇒




E|X|1/q < ∞ if q < 1/pr
E[|X|pr log+ |X|] < ∞ if q = 1/pr

E|X|pr < ∞ if q > 1/pr
.

3. The boundary ±x
√

n log n (Moderate deviations)

For x > 0 and r > 1, define Mx =
∑

n≥1 nr−2I{|Sn| > x
√

n log n} = the number of
exits of Sn over the boundary ±x

√
n log n with the ”weights” nr−2. The next theorem

involving moderate deviations is due to Lai.

T. L. LAI (1974): Put f(x) = EMx =
∑

n≥1 nr−2P (|Sn| > x
√

n log n), x > 0.

(i) If E[|X|2r(log+ |X|)−r] < ∞ and EX2 = σ2, then f(x) < ∞, x > σ
√

2r − 2.
(ii) If f(x) < ∞ for some x > 0, then E[|X|2r(log+ |X|)−r] < ∞.

The following strengthening of Lai’s theorem was proved.

D. LI and A. SPĂTARU (2005): Let q > 0.

(i)
{

E|X|1/q < ∞ if q ≤ 1/2r
E[|X|2r(log+ |X|)−r] < ∞ if q > 1/2r

and EX2 = σ2 imply
∫∞

δ
f(xq)dx <

∞, δ > (σ
√

2r − 2)1/q.

(ii)
∫∞

δ
f(xq)dx < ∞ for some δ > 0 implies

{
E|X|1/q < ∞ if q ≤ 1/2r

E[|X|2r(log+ |X|)−r] < ∞ if q > 1/2r
.

Consider now the series f(x) =
∑

n≥1
1
nP (|Sn| > x

√
n log n), x > 0, corresponding

to the limiting case r = 1 above. There are no simple necessary and sufficient moment
conditions for the convergence of this series, in which connection see Spătaru (2000).
Nevertheless the next strengthening is possible.

D. LI and A. SPĂTARU (2005): Let q > 0.

(i)





E|X|1/q < ∞ if q < 1/2
E[X2 log+ log+ |X|] < ∞ if q = 1/2

E[X2(log+ log+ |X|)/ log+ |X|] < ∞ if q > 1/2
implies

∫∞
δ

f(xq)dx < ∞, δ >

0.

(ii)
∫∞

δ
f(xq)dx < ∞ for some δ > 0 implies





E|X|1/q < ∞ if q < 1/2
E[X2 log+ log+ |X|] < ∞ if q = 1/2

E[X2/ log+ |X|] < ∞ if q > 1/2
.

Notice this result exhibits a slight distance between the necessary and sufficient con-
ditions when q > 1/2. It should also point out that it led to the proof of the next
general statement.

D. LI and A. SPĂTARU (2005): Let {bn; n ≥ 1} be a sequence of positive non-
decreasing numbers such that bn → ∞ and 1 < c ≤ b2n/b2n−1 ≤ C < ∞, n ≥ 1.
Then

Sn

bn
→ 0 a.s. ⇐⇒

∑

n≥1

1
n

P (|Sn| > xbn) < ∞, x > 0.
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This result has been known in some special cases. Thus, for 0 < p < 2, Sn/n1/p −→ 0
a.s. ⇐⇒ E|X|p < ∞ ⇐⇒ ∑

n≥1
1
nP (|Sn| > xn1/p) < ∞, x > 0. The former

equivalence here is the Marcinkiewicz-Zygmund strong law of large numbers, while
the latter one is the Baum-Katz theorem.

4. The boundary ±x
√

n log log n (Law of the iterated logarithm)

For x > 0, define Mx =
∑

n≥e
1
nI{|Sn| > x

√
n log log n} = the number of exits

of Sn over the boundary ±x
√

n log log n with the ”weights” 1
n . Set f(x) = EMx =∑

n≥e
1
nP (|Sn| > x

√
n log log n), x > 0. Part (i) of the following theorem, related to

the law of the iterated logarithm, was proved by Davis, and part (ii) is due to Gut.

J. A. DAVIS (1968); A. GUT (1980):
(i) If EX2 = σ2 < ∞, then f(x) < ∞, x > σ

√
2.

(ii) If f(x) < ∞ for some x > 0, then EX2 < ∞.

The next strengthening of the above results has been obtained.

D. LI and A. SPĂTARU (2005): Let q > 0.

(i)





E|X|1/q < ∞ if q < 1/2
E[X2(log+ |X|)/ log+ log+ |X|] < ∞ if q = 1/2

EX2 < ∞ if q > 1/2
and EX2 = σ2 imply

∫∞
δ

f(xq)dx <

∞, δ > (σ
√

2)1/q.

(ii)
∫∞

δ
f(xq)dx < ∞ for some δ > 0 implies





E|X|1/q < ∞ if q < 1/2
E[X2(log+ |X|)/ log+ log+ |X|] < ∞ if q = 1/2

EX2 < ∞ if q > 1/2
.
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