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Multiplicity Results for the (p(x),q(x))−Kirchhoff Equations

Azhar Saeed, Mohsen Alimohammady, and Asieh Rezvani

Abstract. We study the existence and multiplicity of weak solutions for the following equa-

tion involving variable exponents:−4
k̃p

p(x)
u(x)−4k̃q

q(x)
u(x) + |u|p(x)−2u+ |u|q(x)−2u = λf(x, u(x)), in Ω

u = 0 on ∂Ω,

where Ω is a bounded domain of RN with smooth enough boundary which is subject to

Dirichlet boundary condition, λ is a positive real parameter and p is real continuous function
on Ω̄. Using a variational method, we would show the existence and multiplicity of the

solutions. To this purpose, we would focus on a generalized variable exponent Lebesgue-

Sobolev space.
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1. Introduction

In this paper, we study the following problem:{
−4k̃pp(x)u(x)−4k̃qq(x)u(x) + |u|p(x)−2u+ |u|q(x)−2u = λf(x, u(x)) in Ω

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain of RN with smooth enough boundary. Let λ be a
positive real parameter and p and q be real continuous functions on Ω̄. The nonlocal

Kirchhoff type term k̃(r, u) is k̃(r, u) = ar + br
∫

Ω

1

r(x)
|∇u|r(x)dx, where ar and br

are positive constants. Moreover, we consider k(r, u) instead of k̃(r, u) in the problem

(1) such that k(r, u) := ar − br
∫

Ω

1

r(x)
|∇u|r(x)dx. Here, it is considered the sum of

two such Kirchhoff type operators −4k̃pp(x)u(x) := −k̃(p, u)4p(x)u and −4k̃qq(x)u(x) :=

−k̃(q, u)4q(x)u, in which 1 < q(x) < p(x) < p∗(x), where p∗(x) =
Np(x)

N − p(x)
and

p(x) < N for all x ∈ Ω̄. ∆p(x)u := div(|∇u|p(x)−2∇u) denote the p(x)-Laplacian
operator (for details, see [2, 3, 11]). In [5], authors studied the following p(x)-Kirchhoff

Received May 15, 2024. Accepted August 9, 2025.

358



MULTIPLICITY RESULTS FOR THE (p(x),q(x))−KIRCHHOFF EQUATIONS 359

problem, under some suitable superliner conditions:−
(
a− b

∫
Ω

1

p(x)
|∇u|p(x)dx

)
4p(x)u = f(x, u), in Ω,

u = 0, on ∂Ω.
(2)

They introduced a new method to show the boundedness of Cerami sequences. By
using the mountain pass Lemma and the symmetric mountain pass Lemma, they
proved that (2) has infinitely many weak solutions. In [9], M. K. Hamdani, by using
the theory of variable exponent Sobolev spaces, established the existence of nontrivial
weak solutions for the following p(x)-Kirchhoff problem:

−
(
a− b

∫
Ω

1

p(x)
|∇u|p(x)dx

)
div
(
|∇u|p(x)−2∇u

)
= λ|u|p(x)−2u+ g(x, u), in Ω,

u = 0, on ∂Ω.

(3)

In [8], the authors studied the existence of weak solutions and strong generalized
solutions, using topological tools, for the following problem:{

−4kpp(x)u(x)−4kqq(x)u(x) = f(x, u(x),∇u(x)), in Ω,

u = 0, on ∂Ω.
(4)

Here, in section 3 we consider the existence of three weak solutions for the problem
(1) by using the three critical point theorem. In section 4, we will show the existence
of two solutions for the problem (16).

2. Preliminaries

We recall some necessary definitions and propositions concerning the Lebesgue and
Sobolev spaces. Let Ω be a bounded domain of RN . Set

C+(Ω) := {s ∈ C(Ω̄); s(x) > 1,∀x ∈ Ω̄}.

For any continuous function s : Ω→ (1,∞),

s− := inf
x∈Ω

s(x) and s+ := sup
x∈Ω

s(x).

For s ∈ C+(Ω̄)

Ls(x)(Ω) := {u : Ω→ R is a measurable function :

∫
Ω

|u|s(x)dx < +∞}.

Endowed with the norm:

‖u‖s(x) := inf

{
µ > 0 :

∫
Ω

∣∣∣u(x)

µ

∣∣∣s(x)

dx ≤ 1

}
.

It is well known that Ls(x)(Ω) is a separable reflexive Banach space [1, 4, 15].
The modular of the Ls(x)(Ω) is defined by

σs(x)(u) :=

∫
Ω

|u(x)|s(x)dx.
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Proposition 2.1. [7] (Ls(x)(Ω), ‖.‖s(x)) is separable, uniformly convex, reflexive
Banach space and its conjugate space is (Ls′(x)(Ω), ‖.‖s′(x)), where

1

s(x)
+

1

s′(x)
= 1, ∀x ∈ Ω.

For all u ∈ Ls(x)(Ω) and w ∈ Ls′(x)(Ω), we have

|
∫

Ω

uwdx| ≤ (
1

s−
+

1

s′−
)‖u‖s(x)‖w‖s′(x) ≤ 2‖u‖s(x)‖w‖s′(x). (5)

Proposition 2.2. [10] Suppose that u, un ∈ Ls(x)(Ω), we have

‖u‖s(x) < 1⇒ ‖u‖s
+

s(x) ≤ σs(x)(u) ≤ ‖u‖s
−

s(x).

‖u‖s(x) > 1⇒ ‖u‖s
−

s(x) ≤ σs(x)(u) ≤ ‖u‖s
+

s(x).

‖u‖s(x) < 1(resp,= 1;> 1)⇔ σs(x)(u) < 1(resp,= 1;> 1). (6)

‖un‖s(x) → 0(resp,→ +∞)⇔ σs(x)(un)→ 0(resp,→ +∞).

lim
n→∞

‖un − u‖s(x) = 0⇔ lim
n→∞

σs(x)(un − u) = 0. (7)

The Sobolev space W 1,s(x)(Ω) is defined by

W 1,s(x)(Ω) :=
{
u ∈ Ls(x)(Ω) : |∇u| ∈ Ls(x)(Ω)

}
.

It is separable and reflexive Banach spaces with norm:

‖u‖1,s(x) = ‖u‖s(x) + ‖∇u‖s(x).

On W
1,s(x)
0 (Ω), we may consider the following equivalent norm ‖u‖s(x) = ‖∇u‖s(x),

where W
1,s(x)
0 (Ω) is the closure of C∞0 (Ω) with respect to the following norm:

‖u‖ = inf

{
µ > 0 :

∫
Ω

(∣∣∣∇u(x)

µ

∣∣∣s(x)
)
dx ≤ 1

}
.

It is well known that

W
1,s(x)
0 (Ω) :=

{
u; u

∣∣∣
∂Ω

= 0, u ∈ Ls(x)(Ω), |∇u| ∈ Ls(x)(Ω)
}
.

For more details, we refer to [2, 11].

Proposition 2.3. (Sobolev Embedding [7]) For s, s′ ∈ C+(Ω̄) and 1 < s′(x) < s∗(x)
for all x ∈ Ω̄, there is a continuous compact embedding

W
1,s(x)
0 (Ω) ↪→ Ls′(x)(Ω).

Therefore, there is a constant c′s > 0 such that

‖u‖s′(x) ≤ c′s‖u‖.

Proposition 2.4. (Poincare Inequality [11]) There is a constant c > 0 such that

‖u‖s(x) ≤ C‖∇u‖s(x), (8)

for all u ∈W 1,s(x)
0 (Ω).

Remark 2.1. From Proposition 2.4, ‖∇u‖s(x) and ‖u‖1,s(x) are equivalent norm on

W
1,s(x)
0 (Ω).
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Remark 2.2. [15] If N < s− ≤ s(x) for any x ∈ Ω̄, by Theorem 2.2 in [7] and

Remark 1 in [13], we deduce that W
1,s(x)
0 (Ω) is continuously embedded in W 1,s−

0 (Ω).

Since N < s−, it follows that W
1,s(x)
0 (Ω) is compactly embedded in C(Ω̄). Defining

‖u‖∞ = supx∈Ω̄|u(x)|, we find that there exists a positive constant c5 > 0 such that

‖u‖∞ ≤ c5‖u‖,

for all u ∈W 1,s(x)
0 (Ω).

Remark 2.3. [6] A : W
1,p(x)
0 (Ω) → R defined by A(u) :=

∫
Ω

1

s(x)
|∇u|s(x)dx is

convex. The derivative A′ : W
1,s(x)
0 (Ω)→ (W

1,s(x)
0 (Ω))′ is strictly monotone, bounded

continuous and of (S+) type, i.e., if un ⇀ u as n→∞ and lim supn→∞〈A′(un), un −
u〉 ≤ 0 implies un → u.

3. Main results

Definition 3.1. u ∈W 1,p(x)
0 (Ω) is called a weak solution for (1) if

〈−4k̃pp(x)u,w〉+ 〈−4k̃qq(x)u,w〉+

∫
Ω

|u|p(x)−2uwdx+

∫
Ω

|u|q(x)−2uwdx

− λ
∫

Ω

f(x, u)wdx = 0,

for all w ∈W 1,p(x)
0 (Ω). Hence,

〈−4k̃pp(x)u, u〉 =

(
ap + bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)dx

and

〈−4k̃qq(x)u, u〉 =

(
aq + bq

∫
Ω

1

q(x)
|∇u|q(x)dx

)∫
Ω

|∇u|q(x)dx.

Let f : Ω̄× R→ R be a caratheodory function and

F (x, t) :=

∫ t

0

f(x, s)ds. (9)

For u ∈ W 1,p(x)
0 (Ω), define Ψ : W

1,p(x)
0 (Ω)→ R by Ψ(u) := −

∫
Ω
F (u, u(x))dx. Then

Ψ ∈ C1(W
1,p(x)
0 (Ω),R) and has compact derivative such that

〈Ψ′(u), w〉 := −
∫

Ω

f(x, u(x))w(x)dx, for all u,w ∈W 1,p(x)
0 (Ω).

The energy functional associated to problem (1) can be obtained by

J(u) := ap

∫
Ω

1

p(x)
|∇u|p(x)dx+

bp
2

(

∫
Ω

1

p(x)
|∇u|p(x)dx)2 + aq

∫
Ω

1

q(x)
|∇u|q(x)dx

+
bq
2

(

∫
Ω

1

q(x)
|∇u|q(x)dx)2 +

∫
Ω

1

p(x)
|u|p(x)dx

+

∫
Ω

1

q(x)
|u|q(x)dx− λ

∫
Ω

F (x, u)dx,
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for all u ∈W 1,p(x)
0 (Ω). It is well defined, C1 functional and for all u,w ∈W 1,p(x)

0 (Ω),

〈J ′(u), w〉 =

(
ap + bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2∇u∇wdx

+

(
aq + bq

∫
Ω

1

q(x)
|∇u|q(x)dx

)∫
Ω

|∇u|q(x)−2∇u∇wdx

+

∫
Ω

|u|p(x)−2uwdx+

∫
Ω

|u|q(x)−2uwdx− λ
∫

Ω

f(x, u)wdx.

Therefore, critical points of this energy functional are week solutions for the problem
(1). As usual we consider Ω ⊂ RN (N > 3) a bounded domain with smooth boundary
and p ∈ C+(Ω) such that

1 < α− ≤ α(x) ≤ α+ < q− ≤ q(x) ≤ q+ < p− ≤ p(x) ≤ p+ < 2q− < 2p− < p∗(x)
(10)

and p(x) < N for any x ∈ Ω̄. We consider the following conditions:
(B1) f : Ω̄×R→ R a continuous function such that |f(x, t)| ≤ a1 +a2|t|α(x)−1, for all

t ∈ R and for all x ∈ Ω̄, where a1, a2 are two positive constants and α ∈ C(Ω̄)
such that 1 < α(x) < p∗(x).

(B2) (i) f(x, t) < 0 for all (x, t) ∈ Ω× R, and |t| ∈ (0, 1),
(ii) f(x, t) ≥ k > 0, when |t| ∈ (t0,∞), t0 > 1.

(B3) lims→0
f(x, s)

|s|p(x)−2s
= 0.

Theorem 3.1. [14] Let X be a separable reflexive real Banach space, Φ : X →
R a continuous Gateaux differentiable and sequentially weakly lower semicontinuous
functional whose Gateaux derivative admits a continuous inverse on X ′, Ψ : X → R
is a continuous Gateaux differentiable functional whose Gateaux derivative and is
compact. Suppose that the following assertions hold:
(i) lim‖u‖→∞(Φ(u) + λΨ(u)) = ±∞, for all λ > 0,

(ii) There exist e ∈ R and u0, u1 ∈ X such that Φ(u0) < e < Φ(u1),

(iii) infu∈Φ−1(−∞,e] Ψ(u) >
(Φ(u1)− e)Ψ(u0) + (e− Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
.

Then there exist an open interval Λ ⊂ (0,+∞) and a positive real number γ such that
Φ′(u) + λΨ′(u) = 0 admits at least three weak solutions in X whose norms are less
than γ, for all λ ∈ Λ.

Theorem 3.2. If (10), B1 and B2 hold then there exist an open interval Λ ⊂ (0,+∞)
and a positive real number γ such that for any λ ∈ Λ, (1) has at least three solutions

in W
1,p(x)
0 (Ω) whose norms are less than γ.

Proposition 3.3. [8] Let Φ : W
1,p(x)
0 (Ω)→ R be a functional defined by

Φ(u) := ap

∫
Ω

1

p(x)
|∇u|p(x)dx+

bp
2

(

∫
Ω

1

p(x)
|∇u|p(x)dx)2 + aq

∫
Ω

1

q(x)
|∇u|q(x)dx

+
bq
2

(

∫
Ω

1

q(x)
|∇u|q(x)dx)2 +

∫
Ω

1

p(x)
|u|p(x)dx+

∫
Ω

1

q(x)
|u|q(x)dx,

for all u ∈W 1,p(x)
0 (Ω). Then
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(i) Φ : W
1,p(x)
0 (Ω) → R is sequentially weakly lower semi-continuous, since χ :=∫

Ω

1

p(x)
|∇u|p(x)dx and σp(x)(u) :=

∫
Ω
|u(x)|p(x)dx are sequentially weakly lower

semi-continuous and Φ ∈ C1(W
1,p(x)
0 (Ω),R). Moreover, its derivative Φ′ satisfies

in:

〈Φ′(u), w〉 =

(
ap + bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2∇u∇wdx

+

(
aq + bq

∫
Ω

1

q(x)
|∇u|q(x)dx

)∫
Ω

|∇u|q(x)−2∇u∇wdx

+

∫
Ω

|u|p(x)−2uwdx+

∫
Ω

|u|q(x)−2uwdx.

for all u,w ∈W 1,p(x)
0 (Ω).

(ii) Φ′ : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))′ is a continuous, bounded and strictly monotone

operator.

(iii) Φ′ : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))′ is of (S+) type.

(iv) Φ′ : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))′ is a homeomorphism.

Proof of Theorem 3.2. To prove this theorem, we first verify the condition (i) of
Theorem 3.1

Φ(u) = ap

∫
Ω

1

p(x)
|∇u|p(x)dx+

bp
2

(

∫
Ω

1

p(x)
|∇u|p(x)dx)2 + aq

∫
Ω

1

q(x)
|∇u|q(x)dx

+
bq
2

(

∫
Ω

1

q(x)
|∇u|q(x)dx)2x+

∫
Ω

1

p(x)
|u|p(x)dx+

∫
Ω

1

q(x)
|u|q(x)dx

≥ ap
∫

Ω

1

p(x)
|∇u|p(x)dx+ aq

∫
Ω

1

q(x)
|∇u|q(x)dx

+

∫
Ω

1

p(x)
|u|p(x)dx+

∫
Ω

1

q(x)
|u|q(x)dx

≥ ap
p+

∫
Ω

|∇u|p(x)dx+
aq
q+

∫
Ω

|∇u|q(x)dx+
1

p+

∫
Ω

|u|p(x)dx+
1

q+

∫
Ω

|u|q(x)dx.

Set C2 = min{ ap
p+
,

1

p+
} and C3 = min{ aq

q+
,

1

q+
}. If σp(x)(u) :=

∫
Ω
|u(x)|p(x)dx and

σp(x)(u) > 1, by proposition 2.4, proposition 2.2 and (10)

Φ(u) ≥ C2‖u‖p
−

+ C3‖u‖q
−
. (11)

On the other hand,

Ψ(u) = −
∫

Ω

F (x, u(x))dx.

By the compact embedding W
1,s(x)
0 (Ω) ↪→ L1(Ω) and W

1,s(x)
0 (Ω) ↪→ Lα(x)(Ω), there

exist c1, cα > 0, such that

−Ψ(u) = a1

∫
Ω

|u(x)|dx+
a2

α−

∫
Ω

|u(x)|α(x)dx ≤ a1c1‖u‖+
a2

α−
cα‖u‖α

+

.
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If σp(x)(u) > 1, by Proposition 2.2, Proposition 2.3 and (10)

Ψ(u) ≥ −a1c1‖u‖ −
a2

α−
cα‖u‖α

+

. (12)

By (11), (12) and for any λ > 0

Φ(u) + λΨ(u) ≥ C2‖u‖p
−

+ C3‖u‖q
−
− λ(a1c1‖u‖+

a2

α−
cα‖u‖α

+

).

According to (10), lim‖u‖→∞(Φ(u) + λΨ(u)) = ∞, for all λ > 0 and (i) of Theorem

3.1 is verified. Due to
∂F (x, t)

∂t
= f(x, t) and (B2), it is easy to see that F (x, t) is

increasing for t ∈ (t0,∞), t0 > 1 respect to x ∈ Ω and decreasing in (0, 1) respect to
x ∈ Ω. Since F (x, t) ≥ kt uniformly for x, so F (x, t)→ +∞ as t→ +∞. Now, from
(B2) we can choose δ > 1 such that F (x, t) > 0 for all t > δ, x ∈ Ω. Then using (B2)

F (x, t) > 0 = F (x, 0) ≥ F (x, ω), for all t > δ, ω ∈ (0, 1). (13)

Let m,n be two real numbers such that 0 < m < min{1, c5}, where c5 is given in

Remark 3.1 and n > δ(n > 1) satisfies np
− |Ω| > 1. It follows from (13) that∫

Ω

sup
0≤t≤m

F (x, t)dx ≤ 0 <

∫
Ω

F (x, n)dx.

Choosing k < nq
− |Ω| < np

− |Ω|, 0 < e <
k

p+
, u0(x) = 0 and u1(x) = n such that

n > 1, then Φ(u0) = Ψ(u0) = 0 and

Φ(u1) =

∫
Ω

1

p(x)
np(x)dx+

∫
Ω

1

q(x)
nq(x)dx ≥ np

−

p+
|Ω| > e.

Thus, Φ(u0) < e < Φ(u1). Then (ii) of Theorem 3.1 is verified.
On the other hand, by (B2), (10), n > 1,

− (Φ(u1)− e)Ψ(u0) + (e− Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
= −eΨ(u1)

Φ(u1)

= −e
−
∫

Ω
F (x, n)dx∫

Ω

1

p(x)
np(x)dx+

∫
Ω

1

q(x)
nq(x)dx

> 0. (14)

Let u ∈W 1,p(x)
0 (Ω) such that Φ(u) ≤ e and e < C2. From (11) and Proposition 2.2,

C2‖u‖p
−
< C2‖u‖p

−
+ C3‖u‖q

−
≤ Φ(u) ≤ e,

so ‖u‖ ≤ (
e

C2
)

1

p− < 1. From (13)

− inf
u∈Φ−1(−∞,e]

Ψ(u) = sup
u∈Φ−1(−∞,e]

−Ψ(u) ≤
∫

Ω

sup
0≤t≤m

F (x, t)dx ≤ 0. (15)

Then (14) and (15) imply that

− inf
u∈Φ−1(−∞,e]

Ψ(u) < − (Φ(u1)− e)Ψ(u0) + (e− Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
,
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and

inf
u∈Φ−1(−∞,e]

Ψ(u) >
(Φ(u1)− e)Ψ(u0) + (e− Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
.

This completes the proof. �

4. Case of negative Kirchhoff term

In this section, we study the following problem:{
−4kpp(x)u(x)−4kqq(x)u(x) + |u|p(x)−2u+ |u|q(x)−2u = λf(x, u(x)) in Ω

u = 0 on ∂Ω,
(16)

where Ω is a bounded domain of RN with smooth enough boundary. Let λ be a
positive real parameter and p and q be real continuous functions on Ω̄. The nega-

tive Kirchhoff term is k(r, u) = ar − br
∫

Ω

1

r(x)
|∇u|r(x)dx, such that ar and br are

positive constants related to r. Here, we have the sum of two Kirchhoff type oper-

ators −4kpp(x)u(x) := −k(p, u)4p(x)u and −4kqq(x)u(x) := −k(q, u)4q(x)u, such that

1 < q(x) < p(x) < p∗(x),

Definition 4.1. u ∈W 1,p(x)
0 (Ω) is called a weak solution for (16) if

〈−4kpp(x)u,w〉+ 〈−4kqq(x)u,w〉+

∫
Ω

|u|p(x)−2uwdx+

∫
Ω

|u|q(x)−2uwdx

− λ
∫

Ω

f(x, u)wdx = 0,

for all w ∈W 1,p(x)
0 (Ω), such that

〈−4kpp(x)u, u〉 =

(
ap − bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)dx

and

〈−4kqq(x)u, u〉 =

(
aq − bq

∫
Ω

1

q(x)
|∇u|q(x)dx

)∫
Ω

|∇u|q(x)dx.

Then energy functional associated to problem (16) can be obtained by

I(u) := ap

∫
Ω

1

p(x)
|∇u|p(x)dx− bp

2
(

∫
Ω

1

p(x)
|∇u|p(x)dx)2

+ aq

∫
Ω

1

q(x)
|∇u|q(x)dx− bq

2
(

∫
Ω

1

q(x)
|∇u|q(x)dx)2

+

∫
Ω

1

p(x)
|u|p(x)dx+

∫
Ω

1

q(x)
|u|q(x)dx− λ

∫
Ω

F (x, u)dx,
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for all u ∈W 1,p(x)
0 (Ω). It is well defined, C1 functional and for all u,w ∈W 1,p(x)

0 (Ω),

〈I ′(u), w〉 =

(
ap − bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2∇u∇wdx

+

(
aq − bq

∫
Ω

1

q(x)
|∇u|q(x)dx

)∫
Ω

|∇u|q(x)−2∇u∇wdx

+

∫
Ω

|u|p(x)−2uwdx+

∫
Ω

|u|q(x)−2uwdx− λ
∫

Ω

f(x, u)wdx.

Therefore, critical points of this energy functional are week solutions for the problem
(16).

Proposition 4.1. [8] Let us define the functional τ : W
1,p(x)
0 (Ω)→ R by

τ(u) := ap

∫
Ω

1

p(x)
|∇u|p(x)dx− bp

2
(

∫
Ω

1

p(x)
|∇u|p(x)dx)2 + aq

∫
Ω

1

q(x)
|∇u|q(x)dx

− bq
2

(

∫
Ω

1

q(x)
|∇u|q(x)dx)2 +

∫
Ω

1

p(x)
|u|p(x)dx+

∫
Ω

1

q(x)
|u|q(x)dx,

for all u ∈W 1,p(x)
0 (Ω). Then

(i) τ ∈ C1
(
W

1,p(x)
0 (Ω),R

)
.

(ii) τ : W
1,p(x)
0 (Ω) → R is a continuously Gateaux differentiable functional. More-

over, the derivative operator τ ′ is:

〈τ ′(u), w〉 =

(
ap − bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2∇u∇wdx

+

(
aq − bq

∫
Ω

1

q(x)
|∇u|q(x)dx

)∫
Ω

|∇u|q(x)−2∇u∇wdx

+

∫
Ω

|u|p(x)−2uwdx+

∫
Ω

|u|q(x)−2uwdx.

for all u,w ∈W 1,p(x)
0 (Ω).

(iii) The mapping τ ′ : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))′ is of (S+) type.

Definition 4.2. [6] The functional I satisfies in the Palais-Smale condition at the

level c, (PS)c, if any sequence {un} ⊂W 1,p(x)
0 (Ω) satisfying

I(un)→ c and I ′(un)→ 0 as n→∞,
has a convergence subsequence.

Theorem 4.2. [12] Let X be a real Banach space, τ, ψ : X → R be two con-
tinuously Gateaux differentiable functional such that τ(0) = ψ(0) = 0. Fix r >

0 and assume that, for any λ ∈
]
0,

r

supu∈τ−1(]−∞,r[)ψ(u)

[
, the functional Iλ :=

τ − λψ satisfies (PS)c condition and it is unbounded from below. Then, for each

λ ∈
]
0,

r

supu∈τ−1(]−∞,r[)ψ(u)

[
, Iλ admits at least two distinct critical points.

We obtain the existence of two weak solutions for the problem (16) by applying
Theorem 4.2 in case r = 1.
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Theorem 4.3. Let f satisfies (B1), F be in (9), and there exist β > p+ and r > 0
such that

0 < βF (x, t) ≤ tf(x, t), (17)

for each x ∈ Ω and for |t| ≥ r. Then, for λ ∈ ]0, λ∗[, the problem (16) admits two
weak solutions, where

λ∗ :=
1

a1c1

(
p+

(ap − bp) + (aq − bq)

) 1

p+
+
a2

α−
[cα]α

(
p+

(ap − bp) + (aq − bq)

)α+

p+

,

where c1 and cα denote respectively the constants of the embeddings W
1,s(x)
0 (Ω) ↪→

L1(Ω) and W
1,s(x)
0 (Ω) ↪→ Lα(x)(Ω).

Proof. Suppose that τ is defined by Proposition 4.2 and ψ : W
1,p(x)
0 (Ω) → R is

ψ(u) :=
∫

Ω
F (x, u)dx. We prove the following steps:

Step 1: We prove that I := τ −λψ satisfies (PS)c condition. Let {un} ⊂W 1,p(x)
0 (Ω)

be a (PS)c sequence. First we prove that {un} is bounded in W
1,p(x)
0 (Ω). Assume

by contradiction, passing eventually to a subsequence, ‖un‖ → +∞ as n→ +∞. We

choose θ, such that max{ p+

2(p−)2
,

q+

2(q−)2
} < θ < min{ 1

p+
,

1

q+
}. By Definition 4.2 for

large enough n

C + ‖un‖ ≥ I(un)− θ〈I ′(un), un〉

= ap

∫
Ω

1

p(x)
|∇un|p(x) dx− bp

2

(∫
Ω

1

p(x)
|∇un|p(x) dx

)2

+ aq

∫
Ω

1

q(x)
|∇un|q(x) dx− bq

2

(∫
Ω

1

q(x)
|∇un|q(x) dx

)2

+

∫
Ω

1

p(x)
|un|p(x) dx+

∫
Ω

1

q(x)
|un|q(x) dx− λ

∫
Ω

F (x, un) dx

− θ
(
ap − bp

∫
Ω

1

p(x)
|∇un|p(x) dx

)∫
Ω

|∇un|p(x) dx

− θ
(
aq − bq

∫
Ω

1

q(x)
|∇un|q(x) dx

)∫
Ω

|∇un|q(x) dx

− θ
∫

Ω

|un|p(x) dx− θ
∫

Ω

|un|q(x) dx+ θλ

∫
Ω

f(x, un)un dx

≥ ap
p+

∫
Ω

|∇un|p(x) dx− bp
2(p−)2

(∫
Ω

|∇un|p(x) dx

)2

+
aq
q+

∫
Ω

|∇un|q(x) dx− bq
2(q−)2

(∫
Ω

|∇un|q(x) dx

)2

+
1

p+

∫
Ω

|un|p(x) dx+
1

q+

∫
Ω

|un|q(x) dx− λ
∫

Ω

F (x, un) dx

− θap
∫

Ω

|∇un|p(x) dx+
θbp
p+

(∫
Ω

|∇un|p(x) dx

)2
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− θaq
∫

Ω

|∇un|q(x) dx+
θbq
q+

(∫
Ω

|∇un|q(x) dx

)2

− θ
∫

Ω

|un|p(x) dx− θ
∫

Ω

|un|q(x) dx+ θλ

∫
Ω

f(x, un)un dx

= ap

(
1

p+
− θ
)∫

Ω

|∇un|p(x) dx+ aq

(
1

q+
− θ
)∫

Ω

|∇un|q(x) dx

+ bp

(
θ

p+
− 1

2(p−)2

)(∫
Ω

|∇un|p(x) dx

)2

+ bq

(
θ

q+
− 1

2(q−)2

)(∫
Ω

|∇un|q(x) dx

)2

+

(
1

p+
− θ
)∫

Ω

|un|p(x) dx+

(
1

q+
− θ
)∫

Ω

|un|q(x) dx

− λ
[∫

Ω

F (x, un) dx− θ
∫

Ω

f(x, un)un dx

]
.

So we have

C + ‖un‖ ≥ ap
(

1

p+
− θ
)∫

Ω

|∇un|p(x) dx

+ bp

(
θ

p+
− 1

2(p−)2

)(∫
Ω

|∇un|p(x) dx

)2

+

(
1

p+
− θ
)∫

Ω

|un|p(x) dx− λc6|Ω|,

where |Ω| =
∫

Ω
dx. Thus, the last inequality together with (8) imply that

C + ‖un‖ ≥ (ap + 1)

(
1

p+
− θ
)
‖un‖p

−

+ bp

(
θ

p+
− 1

2(p−)2

)(
1

p+
− θ
)
‖un‖2p

−
− λc6|Ω|.

By (10), it is a contradiction if ‖un‖ → ∞ as n → ∞. Thus {un} is bounded in

W
1,p(x)
0 (Ω). Then, we prove that {un} has a convergent subsequence in W

1,p(x)
0 (Ω).

It follows from Proposition 2.3 and reflexivity of W
1,p(x)
0 (Ω), we may assume that

un ⇀ u in W
1,p(x)
0 (Ω), un → u in Ls(x)(Ω), un(x)→ u(x), a.e. in Ω, (18)

where 1 ≤ s(x) < p∗(x).
By the virtue of conditions (B1) and (B3), one has for any ε ∈ (0, 1) there exists
cε > 0 such that

|f(x, un) dx| ≤ ε|un|p(x)−1 + cε|un|α(x)−1. (19)

From Proposition 2.1 and (19),∣∣∣∣∫
Ω

f(x, un)(un − u) dx

∣∣∣∣ ≤ ∫
Ω

(
ε|un|p(x)−1|un − u|+ cε|un|α(x)−1|un − u|

)
dx

≤ ε||un|p(x)−1| p(x)

p(x)− 1

|un − u|p(x) + cε||un|α(x)−1| α(x)

α(x)− 1

|un − u|α(x).
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Since {un} converges strongly to u in Lα(x)(Ω), that is |un − u|α(x) → 0 as n→ +∞
and similarly, |un − u|p(x) → 0 as n→ +∞, so∫

Ω

f(x, un)(un − u) dx→ 0, as n→ +∞. (20)

Similarly, by (5), ∫
Ω

|un|p(x)−2un(un − u) dx→ 0, as n→ +∞ (21)

and ∫
Ω

|un|q(x)−2un(un − u) dx→ 0, as n→ +∞. (22)

From Definition 4.2,

〈I ′(un), un − u〉 → 0.

Thus,

〈I ′(un), un − u〉 =

(
ap − bp

∫
Ω

1

p(x)
|∇un|p(x)dx

)∫
Ω

|∇un|p(x)−2∇un∇(un − u)dx

+

(
aq − bq

∫
Ω

1

q(x)
|∇un|q(x)dx

)∫
Ω

|∇un|q(x)−2∇un∇(un − u)dx

+

∫
Ω

|un|p(x)−2un(un − u)dx+

∫
Ω

|un|q(x)−2un(un − u)dx

− λ
∫

Ω

f(x, un)(un − u)dx→ 0.

From (20), (21) and (22),(
ap − bp

∫
Ω

1

p(x)
|∇un|p(x)dx

)∫
Ω

|∇un|p(x)−2∇un∇(un − u)dx

+

(
aq − bq

∫
Ω

1

q(x)
|∇un|q(x)dx

)∫
Ω

|∇un|q(x)−2∇un∇(un − u)dx→ 0. (23)

Then by (23) and Proposition 2.3, the sequence {un} converges strongly to u in

W
1,p(x)
0 (Ω). Therefore, I satisfies the (PS)c condition.

Step 2: I is unbounded from below.
First we show there exists M ∈ R+ such that for each x ∈ Ω and |t| > M

F (x, t) ≥ K|t|β . (24)

(17) implies that

0 < βF (x, %t) ≤ %tf(x, %t), for all % > 0.

Let m(x) := min|%|=M F (x, %) and gt(z) := F (x, zt) for all z > 0. Then

0 < βgt(z) = βF (x, zt) ≤ ztf(x, zt) = zg′t(z),

for all z >
M

|t|
and ∫ 1

M

|t|

g′t(z)

gt(z)
dz ≥

∫ 1

M

|t|

β

z
dz.
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Then

ln

 gt(1)

gt(
M

|t|
)

 ≤ ln

(
|t|β

Mβ

)
.

Therefore,

F (x, t) = gt(1) > F

(
x,
M

|t|
t

)
|t|β

Mβ
≥ m(x)

|t|β

Mβ
≥ K|t|β ,

so (24) is established. Fix v ∈W 1,p(x)
0 (Ω)− {0}. For each t > 1 we have

I(tv) = ap

∫
Ω

1

p(x)
|t∇v|p(x)dx− bp

2
(

∫
Ω

1

p(x)
|t∇v|p(x)dx)2

+ aq

∫
Ω

1

q(x)
|t∇v|q(x)dx− bq

2
(

∫
Ω

1

q(x)
|t∇v|q(x)dx)2

+

∫
Ω

1

p(x)
|tv|p(x)dx+

∫
Ω

1

q(x)
|tv|q(x)dx− λ

∫
Ω

F (x, tv)dx

≤ aptp
+

∫
Ω

1

p(x)
|∇v|p(x)dx− t2p

− bp
2

(

∫
Ω

1

p(x)
|∇v|p(x)dx)2

+ aqt
q+
∫

Ω

1

q(x)
|∇v|q(x)dx− t2q

− bq
2

(

∫
Ω

1

q(x)
|∇v|q(x)dx)2

+ tp
+

∫
Ω

1

p(x)
|v|p(x)dx+ tq

+

∫
Ω

1

q(x)
|v|q(x)dx− λKtβ

∫
Ω

|v|βdx− C.

From (10) and since β > p+ if t→ +∞, then I → −∞ and is unbounded from below.
Fix λ ∈ ]0, λ∗[. For each u ∈ τ−1 (]−∞, 1[) such that ‖u‖ < 1, using Proposition 2.2
and Proposition 2.4, we have

τ(u) = ap

∫
Ω

1

p(x)
|∇u|p(x)dx− bp

2
(

∫
Ω

1

p(x)
|∇u|p(x)dx)2

+ aq

∫
Ω

1

q(x)
|∇u|q(x)dx− bq

2
(

∫
Ω

1

q(x)
|∇u|q(x)dx)2

+

∫
Ω

1

p(x)
|u|p(x)dx+

∫
Ω

1

q(x)
|u|q(x)dx

≥ ap
p+

∫
Ω

|∇un|p(x) dx− bp
2(p−)2

(∫
Ω

|∇un|p(x) dx

)2

+
aq
q+

∫
Ω

|∇un|q(x) dx− bq
2(q−)2

(∫
Ω

|∇un|q(x) dx

)2

+
1

p+

∫
Ω

|un|p(x) dx+
1

q+

∫
Ω

|un|q(x) dx

≥ ap
p+
‖u‖p

+

− bp
2(p−)2

‖u‖2p
−

+
aq
q+
‖u‖q

+

− bq
2(q−)2

‖u‖2q
−

+
1

p+
‖u‖p

+

+
1

q+
‖u‖q

+
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≥ ap
p+
‖u‖p

+

− bp
2(p−)2

‖u‖2p
−

+
aq
q+
‖u‖q

+

− bq
2(q−)2

‖u‖2q
−
.

Since { p+

2(p−)2
,

q+

2(q−)2
<

1

p+
and by (10),

τ(u) ≥ ap
p+
‖u‖p

+

− bp
p+
‖u‖p

+

+
aq
p+
‖u‖p

+

− bq
p+
‖u‖p

+

,

so,

‖u‖ ≤
(

p+

(ap − bp) + (aq − bq)
τ(u)

) 1

p+
≤
(

p+

(ap − bp) + (aq − bq)

) 1

p+
. (25)

By Proposition 2.2 and Proposition 2.3,∫
Ω

|u|α(x)dx = σα(x)(u) ≤
[
‖u‖α(x)

]α ≤ [cα‖u‖]α , (26)

for u ∈W 1,p(x)
0 (Ω). By the compact embedding W

1,p(x)
0 (Ω) ↪→ L1(Ω) and

W
1,p(x)
0 (Ω) ↪→ Lα(x)(Ω), there exist c1, cα > 0 and by (B1), (17), (25) and (26)

ψ(u) =

∫
Ω

F (x, u)dx

≤ a1

∫
Ω

|u|dx+
a2

α−

∫
Ω

|u|α(x)dx

≤ a1c1‖u‖+
a2

α−
[cα‖u‖]α

≤ a1c1

(
p+

(ap − bp) + (aq − bq)

) 1

p+
+
a2

α−
[cα]

α

(
p+

(ap − bp) + (aq − bq)

)α+

p+

=
1

λ∗
<

1

λ
.

Therefore, λ <
1

supu∈τ−1(]−∞,r[)ψ(u)
. Thus by Theorem 4.2, Problem (16) admits at

least two weak solutions. �

5. Conclusion

In this article, we proved the existence of two and three weak solutions with different
conditions for the Dirichlet boundary value problem (1) and (16), involving variable
exponents by using variational method.
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