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Multiplicity Results for the (p(x),q(x))—Kirchhoff Equations

AZHAR SAEED, MOHSEN ALIMOHAMMADY, AND ASIEH REZVANI

ABSTRACT. We study the existence and multiplicity of weak solutions for the following equa-
tion involving variable exponents:

AR (@) = AR u(@) + @20+ 120 = A (@, u(@), i Q
u=20 on 092,

where Q is a bounded domain of RN with smooth enough boundary which is subject to
Dirichlet boundary condition, A is a positive real parameter and p is real continuous function
on Q. Using a variational method, we would show the existence and multiplicity of the
solutions. To this purpose, we would focus on a generalized variable exponent Lebesgue-
Sobolev space.
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1. Introduction

In this paper, we study the following problem:

T fq o)— o)— .
— Oy l@) = Bglyu(@) + a0 [uf "2 = Af(a, u(@) in Q

1
u=20 on 0f), @)

where € is a bounded domain of R with smooth enough boundary. Let A be a
positive real parameter and p and ¢ be real continuous functions on 2. The nonlocal

- ~ 1
Kirchhoff type term k(r,u) is k(r,u) = ar + b [, ﬁ|Vu|7-(ac)d337 where a, and b,
r(x

are positive constants. Moreover, we consider k(r, u) instead of l;;(r, u) in the problem

1
(1) such that k(r,u) = a, — b, [, ﬁ|Vu|r(ac)dgs. Here, it is considered the sum of
T

two such Kirchhoff type operators —Aﬁfx)u(m) = —k(p, u) A p(zyu and N u(z) =

q(z)
= N
—k(q,u)Dg(zyu, in which 1 < g(z) < p(z) < p*(z), where p*(z) = Np(flé)) and
—p(x
p(x) < N for all z € Q. A,yu = div(|Vu[P(®~2Vu) denote the p(z)-Laplacian
operator (for details, see [2, 3, 11]). In [5], authors studied the following p(z)-Kirchhoff
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problem, under some suitable superliner conditions:

1
— (a — b/Q p(x)|Vu|p(””)dx> Apzyu = f(z,u), inQ,
u =0, on 0.

(2)

They introduced a new method to show the boundedness of Cerami sequences. By
using the mountain pass Lemma and the symmetric mountain pass Lemma, they
proved that (2) has infinitely many weak solutions. In [9], M. K. Hamdani, by using
the theory of variable exponent Sobolev spaces, established the existence of nontrivial
weak solutions for the following p(x)-Kirchhoff problem:

1
—la-— b/ —|Vu p(x)dm) div (| VulP®) =2y
(=2 [ eI (19w )

= Mu[" "2+ g(, ), in Q, (3)
u =0, on 0f).
In [8], the authors studied the existence of weak solutions and strong generalized

solutions, using topological tools, for the following problem:

{—A];Z’I)u(m) - Asgw)u(m) = f(z,u(x), Vu(z)), inQ, (4)
u =0, on 0f).

Here, in section 3 we consider the existence of three weak solutions for the problem
(1) by using the three critical point theorem. In section 4, we will show the existence
of two solutions for the problem (16).

2. Preliminaries
We recall some necessary definitions and propositions concerning the Lebesgue and
Sobolev spaces. Let © be a bounded domain of RY. Set
C+(Q) == {s € C(Q);s(z) > 1,Vz € Q}.
For any continuous function s : Q — (1, 00),
s = aljrelgs(x) and s* = gsclelgs(m)
For s € C(Q)
Lg(2)(R2) := {u: Q — R is a measurable function : /Q lul* @ dz < 400}
Endowed with the norm:

llulls(a) iinf{#>0: /‘@’ dxgl}.
ol M

It is well known that L,(,)(f2) is a separable reflexive Banach space |1, 4, 15].
The modular of the L,)(f) is defined by

Tg(ay (1) = /Q Ju(z)|*@ da.
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Proposition 2.1. [7] (Ls)(2), ||.ls(x)) is separable, uniformly convex, reflexive
Banach space and its conjugate space is (Lg (z)(Q2), ||||s/(z)), where
1 1

@‘Fw:l, Yz € Q.

For all w € Ly;)(2) and w € Ly ( y(Q), we have

Proposition 2.2. [10] Suppose that u,u, € Ly (), we have

st s
”u”s(w) <l= ”u”a(x) < Us(w)( ) < Hu”s(ar)

lulls@y > 1= [[ullia) < s (w) < ull]

s(m .
lulls@) < L(resp,=1;> 1) & 0y (u) < L(resp,=1;> 1). (6)
llun|lsz) — O(resp, — +00) & g(z)(un) — O0(resp, — +00).
lim [, —ulls@) =0 & hm os(z)(un —u) = 0. (7)
n— oo

The Sobolev space W(*)(Q) is defined by
W@ (Q) = {u € Ly () : [Vu| € Loy ()} .
It is separable and reflexive Banach spaces with norm:
||UH1,S(I) = HUHS(I) + ||Vu||s(z)

On Wol’s(l')(ﬂ), we may consider the following equivalent norm ||u||s) = [[Vulls(z),

where Wol’s(x) () is the closure of C§° () with respect to the following norm:

lul| = inf{u >0 /Q OWL(‘””) Sm)) dz < 1}.

It is well known that

Wh@ () = {u; u’m =0, ue L*@(Q), |Vu| € L*@ (Q)}.

For more details, we refer to [2, 11].

Proposition 2.3. (Sobolev Embedding [7]) For s,s" € C4(Q) and 1 < §'(x) < s*(x)
for all x € Q, there is a continuous compact embedding

Wy *@(Q) < Ly () ().
Therefore, there is a constant ¢, > 0 such that
[ullsr(z) < cllull-
Proposition 2.4. (Poincare Inequality [11]) There is a constant ¢ > 0 such that
lulls@z) < ClIVulls@), (8)
for allu € W1 g(r)(Q).

Remark 2.1. From Proposition 2.4, ||Vul/s;) and |Jul|; s are equivalent norm on
Wol’s(x)(ﬂ).
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Remark 2.2. [15] If N < s= < s(z) for any z € Q, by Theorem 2.2 in [7] and
Remark 1 in [13], we deduce that Wy "™ (Q) is continuously embedded in Wg** ().

Since N < s7, it follows that W1 S(m)(ﬂ) is compactly embedded in C(§). Defining
lu]loo = supyenlu(z)|, we find that there exists a positive constant ¢; > 0 such that

[tlloo < esllull,

for all u € Wol’s(f)(Q).

Remark 2.3. [0] A : WP (Q) — R defined by A fQ |Vu|S(I)dx is

convex. The derivative A’ : W) *") (Q) — (W, ’S(w)(Q)) is strictly monotone, bounded
continuous and of (Sy) type i e if u, = v as n — oo and limsup,,_, . (A" (un), un —
u) < 0 implies u,, — u.

3. Main results
Definition 3.1. u € Wol’p(w)(Q) is called a weak solution for (1) if

<—Ak” u, w) + <—Akq w,w) + [ |uP@2uwde + [ |ul?® 2uwds
p(z) () 9 a

. )\/Qf(x,u)wdx =0,

for all w € Wol’p(x)(ﬂ). Hence,

—AI;" U, U —<a +b / Vu [P >/ Vu [P
(~8f1 i) = (a8, [ 5190 V4l

2 1
Ny U, u) = <a +b / —|Vu q(m)dx> / V|7 d.
Let f:Q xR — R be a caratheodory function and
t
F(z,t) = / f(z,s)ds. (9)
0

For u € Wl’p(x)(Q), define VU : Wol’p(x) (Q) >Rby ¥ =— [o F( ))dx. Then
e CY (WP (I)(Q) R) and has compact derivative such that

and

(v’ / Fz, u(@))w(z)dz, for all u,w € Wy’ p(x)(Q).

The energy functional associated to problem (1) can be obtained by

1 b 1 1
J(u) :=a /—Vup(z)dm—i—fp/iVup(w)de-i-a /7qu(w)d$
W:=a | SV 2 o play Vel g IVl

b 1 1
+fq/7qu(z)dx2+/7up(z)d:c
2 | QQ($)| | ) QP($)| |

1
—|—/—uq(z)dx—/\/Fx,ud:1:,
QCJ(QU)H Q (@ u)
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for all u € WP (Q). It is well defined, C! functional and for all u,w € Wy ™ (Q),
1
(J'(u),w) = (ap—i—bp/ |Vup(””)dx)/ |VulP@ =2V uVwdz
o p(T) Q

1
+ (aq+bq/ |Vu|q(x)dz>/|Vu|q(I)QVqudx
o () Q

+/ |u|p(”“')_2uwdx+/ |u|q<$)_2uwdx—)\/f(x,u)wdx.
Q Q Q

Therefore, critical points of this energy functional are week solutions for the problem
(1). As usual we consider Q C RV (N > 3) a bounded domain with smooth boundary
and p € C () such that

l<a <a(z)<a® <q <q@)<qt <p” <plr) <p' <2 <2p” <p'(a)
(10)

and p(z) < N for any = € . We consider the following conditions:
(B1) f: QxR — R a continuous function such that |f(x,t)| < a; + ag|t|/*® 1, for all

t € R and for all x € Q, where ay, ay are two positive constants and o € C(Q)

such that 1 < a(z) < p*(x).
(B2) (i) f(z,t) <0forall (z,t) € Q xR, and [t| € (0,1),

(ii) f(z,t) > k >0, when [t| € (to,00),t0 > 1.

. fla,s)
(B3) lim, o W =0
Theorem 3.1. [14] Let X be a separable reflexive real Banach space, ® : X —

R a continuous Gateaux differentiable and sequentially weakly lower semicontinuous
functional whose Gateaux derivative admits a continuous inverse on X', ¥ : X — R
is a continuous Gateaux differentiable functional whose Gateauzr derivative and is
compact. Suppose that the following assertions hold:

(1) limyy—oe(®(u) + AV (u)) = Fo0, for all X >0,

(ii) There exist e € R and ug,u; € X such that ®(ug) < e < ®(uq),

g (P(u1) — €)¥(ug) + (€ — (ug)) W (u1)
(iii) infyeqp-1(—oo,e] Y(u) > B(ur) — B (ug) .
Then there exist an open interval A C (0,+00) and a positive real number v such that
@' (u) + AN/ (u) = 0 admits at least three weak solutions in X whose norms are less
than -y, for all A € A.

Theorem 3.2. If (10), By and By hold then there exist an open interval A C (0, +00)
and a positive real number y such that for any A € A, (1) has at least three solutions

in Wol’p(z)(Q) whose norms are less than .

Proposition 3.3. [8] Let @ : Wl’p(z)(Q) — R be a functional defined by

1
®(u) :=a VulP@ dz + 2 / VulP®dz)? + a /—qu@d:c
() p/Qp()l | Ol )’ v ) qm VY

bq/ 1
[ L gup@ ) / p(z)dm+/ L@ g,
2oy gty V! 4 o a@ "

for allu € W&’p(z)(Q). Then
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(i) @ : Wol’p(w)(Q) — R is sequentially weakly lower semi-continuous, since x =
Jo m\VuV’ @dz and o,y (u) == [, |u(@)|P@dx are sequentially weakly lower

semi-continuous and ® € C* (W, p(‘r)(Q), R). Moreover, its derivative ' satisfies
in:

1
(@ (u),w) = ap—l—bp/ —— | Vu[P® dy /|Vu|p(””)_2Vqudx
o p(z) Q

+ (aq+bq/ 1|Vu|q($)dm> / | V|1 =2y Vwdz
o q(z) Q

—|—/ |u|p(x)_2uwdm+/ |u| 1@ 2 ywdz.
Q Q

for all u,w € Wol’p(z)(Q),

(i) @ : W, ’p(I)(Q) — (Wol’p(w)(Q))’ is a continuous, bounded and strictly monotone
operator.

(iii) ® : W™ (Q) = WeP™(Q)) is of (S4) type.

(iv) @ : Wol’p(I)(Q) — (Wol’p(w)(Q))’ is a homeomorphism.

Proof of Theorem 3.2. To prove this theorem, we first verify the condition (i) of
Theorem 3.1

1 b 1 1
O(u)=a /—Vup(”)dx—i——p/—Vup(”)dxz—i—a /—qu(l')dm

by 1 1
+7(/ 7|vu|q<m dz) er/ \u|p(‘”)dx+/ —— || dg:
2 q(z) p(x) o q()
1
—|Vu\p @dz +a /—|Vu|q(“")dx
/ ( " Ja a(z)
1
/ \u|p dx+/—|u|q(z)dx
o q(z)
1 1
> l/ Vup(w)dx—k&/ Vu q(””)dx—k—/ up(””)dx—k—/ u|1®dg.
@ | i o [ vu Sy 5 [

. cap 1 . Gq
Set Cy = mln{p—i,pj} and C3 = mln{q } If o) (1) == [, |u(z)[P@dz and
Op(z)(u) > 1, by proposition 2.4, proposition 2 2 and (10)
D(u) > CoflulP” + Cylul|*. (11)
On the other hand,

By the compact embedding Wol’s(x)(Q) — LY(Q) and Wol’s(x)(Q) — LY®)(Q), there
exist ¢1,co > 0, such that

—(u) = ay / u(x)|de + —= / u(@)|*Pdz < ayerful] + gl
Q « Q «
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If 0p(z)(u) > 1, by Proposition 2.2, Proposition 2.3 and (10)
() > —arenflul - “Eequl*". (12)
By (11), (12) and for any A > 0
D) + M (u) > Collull”” + Collull?” — Maner | + e,

According to (10), lim|j,|j— oo (®(u) + AW (u)) = oo, for all A > 0 and (i) of Theorem
OF (x,t)
t

3.1 is verified. Due to = f(x,t) and (B2), it is easy to see that F(z,t) is

increasing for ¢ € (tp,00), tg > 1 respect to € Q and decreasing in (0, 1) respect to
x € Q. Since F(z,t) > kt uniformly for z, so F(x,t) — +o00 as t — +o0o0. Now, from
(Bz2) we can choose § > 1 such that F(z,t) > 0 for all t > ¢, x € . Then using (Bs)

F(z,t) > 0= F(z,0) > F(z,w), forall t > §w € (0,1). (13)

Let m,n be two real numbers such that 0 < m < min{l,¢5}, where ¢5 is given in
Remark 3.1 and n > §(n > 1) satisfies n? |Q| > 1. It follows from (13) that

/ sup F(x,t)dx§0</F(x7n)dx.
Q 0<t<m Q

k
Choosing k < n? | <n? |Q, 0 <e < — +> uo(x) = 0 and u1(x) = n such that
pt
n > 1, then ®(ug) = ¥(ug) = 0 and
LEE L)
O(uy) = | —nPPde+ [ —=n?dx > —|Q| > e.
o p(z) a q(z) pt
Thus, ®(ug) < e < ®(u1). Then (ii) of Theorem 3.1 is verified.

On the other hand, by (Bs), (10), n > 1,
_ (@(u1) —e)¥(ug) + (e — P(uo))P(ua) _  W(u)
D(u1) — (uo) D(uy)
) _ef lnp_xf;;x +xfn dan(z)d:c -0 (14)
* p(z) ® q(z)

Let u € W )(Q) such that ®(u) < e and e < Cy. From (11) and Proposition 2.2,

Collull” < Coflull” + Cslull” < ®(u) <e

1
so [lul] < (c%)p_ < 1. From (13)
— inf U(u) = sup —U(u) < / sup F(x,t)dz <0. (15)
u€EP ™! (—o0,€] ueP—1(—o0,€] Q0<t<m

Then (14) and (15) imply that

, (P(u1) — €)¥(ug) + (e — P(uo)) ¥ (u1)
_u€<I>*11n(f—oo,e] \I/(U) <- @(ul) — (I)(U()) ’
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and

inf W(u) >
u€P—1(—o0,e€] ( ) ‘1)(11,1) — (I’(UO)

This completes the proof. [

4. Case of negative Kirchhoff term

In this section, we study the following problem:

(16)

—AN u() = At u(@) + [P w2y = A f (2, u(@) in Q
u=20 on 02,

where € is a bounded domain of R with smooth enough boundary. Let A be a
positive real parameter and p and ¢ be real contmuous functions on Q. The nega-

tive Kirchhoff term is k(r,u) = a, — by fQ |Vu|’”(x)d:1: such that a, and b, are

positive constants related to r. Here, we have the sum of two Kirchhoff type oper-
kp kq

ators —Ap(z)u(x) = —k(p,u)Apm)yu and —Aq(m)u(x) = —k(q,u)ANg(z)u, such that

1 < q(z) < p(x) < p*(x),

Definition 4.1. u € Wol’p(z)(Q) is called a weak solution for (16) if

wyw) + (=AM ww) + [ PO uwde + [ a9 2uwda
q(x) o 0

k
<_API(J-T)

— )\/Qf(:z:,u)wdx =0,

for all w € VVOLZD(QC)(Q)7 such that

1
YRR = <a —b /Vup(‘”)dx)/ VulP@ da

1
—AF uu) = <a —b /—vu qmdm)/ Vu|1® dz.
(=) a=ba | oIV e

Then energy functional associated to problem (16) can be obtained by

and

1 b 1
I(u) :=a -/—Vup(””)dac——p/—Vup(””)dx2

1 b 1
+a /—qu(z)dx——q/—qu(m)sz
! Q(I(m)‘ | Q(QQ($)| | )

1 1
+/—up(z)dx—k/—uq(x)da:—)\/Fz,u dz,
QP($)| | QQ($)|| Q (.u)
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for all u € WP (Q). It is well defined, C! functional and for all u,w € Wy ™ (Q),

(I'(u),w) = ap—bp/ i|Vu|p(””)dac /|Vu|p(””)*2Vqudx
a p(z) Q

1
+ <aq - bq/ |Vu|q(x)dx> / |Vu| 1™ ~2VuVwdz
o q(z) Q
—|—/ [P =2 ywdz +/ |u| 1@ =2 ywda — )\/ f(z,u)wde.
Q Q Q

Therefore, critical points of this energy functional are week solutions for the problem
(16).
Proposition 4.1. [8] Let us define the functional T : Wol’p(x)(Q) — R by

) —a | 2 iver@ar — o[ i vur®de)? +a [ v e @ de
(w) p/Qp(x)\vw d 2(/Qp(x)|V| d>+q/9q(x)|V| d
) /qu

b 1 1 1
_ l(/ —|Vu|q($)dx 2 —|u\p($)dx+/ —)|u|q(gﬂ)dx,
x Q

2 Jaa(z) q(z

for allu € WoP™(Q). Then
(i) e (Wol’p(””)(Q),R).

(ii) 7 : Wol’p(x)(ﬂ) — R is a continuously Gateauz differentiable functional. More-
over, the derivative operator T’ is:

1
(' (u),w) = ap—bp/ —— |Vu[P @ dz /|Vu|p(x)_2Vqudx
o p(z) Q

+ aq—bq/ i|Vu\q<ﬂ”)dac /|Vu|q(””)_2Vqudac
a q(z) Q

—|—/ |u|p(m)_2uwdas—|—/ || 9@ =2y dee.
Q Q

for all u,w € Wol’p(x)(Q),
(iii) The mapping 7' : Wol’p(z)(Q) — (Wol’p(x)(ﬂ))’ is of (S4) type.

Definition 4.2. [6] The functional I satisfies in the Palais-Smale condition at the
level ¢, (PS),, if any sequence {uy} C VV1 Pl () satisfying
I(uy) — c and I'(u,) — 0 as n — oo,

has a convergence subsequence.

Theorem 4.2. [12] Let X be a real Banach space, 7,9 : — R be two con-

tinuously Gateauz differentiable functional such that 7(0) = ) =0. Fizr >
r

SupuET_l(]—oo,T'[)w(u)
T — M) satisfies (PS). condition and it is unbounded from below. Then, for each

r
Ae |0, [, I\ admits at least two distinct critical points.

SupuGTfl(]foo,r[ﬂﬁ(u)

0 and assume that, for any \ € ]0, , the functional Iy =

We obtain the existence of two weak solutions for the problem (16) by applying
Theorem 4.2 in case r = 1.
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Theorem 4.3. Let f satisfies (By), F be in (9), and there exist 3 > p™ and r > 0
such that
0 <BF(z,t) <tf(zt), (17)

for each x € Q and for |t| > r. Then, for A € |0, \*[, the problem (16) admits two
weak solutions, where

A=

1 at’

““Q%—mfmfmﬂphﬁﬁMPQ%—mfwﬁ%ﬁw

where ¢1 and ¢, denote respectively the constants of the embeddings I/V1 b(l)(Q) —
LY(Q) and W™ (Q) < Lo@)(Q).

Proof Suppose that 7 is defined by Proposition 4.2 and % : Wol’p(w)(ﬂ) — R is
= Jo F(z,u)dz. We prove the following steps:

Step 1: We prove that I := 7 — A\ satisfies (P.S). condition. Let {u,} C Wol’p(z)(Q)

be a (PS). sequence. First we prove that {u,} is bounded in Wol’p(x)(Q). Assume
by contradiction, passing eventually to a subsequence, ||u,|| — +o0c as n — +oo0. We

1 1
choose 6, such that max{ } <6 <min{—, —}. By Definition 4.2 for
Pt q

A
2(p7)%" 2(¢7)?

large enough n

C+ ”un” > I(un) - 0<I/(un)7un>

o p() 2 o p()
1 b 1 2
+a / —— |V, |1 dr — 2 </ ——|Vu, 1@ da:>
"Joa@ 2 o)
1 1
—i—/—un”(w)dx—i—/—unqmdac—)\/Fx,un dx
o (@) " o (@) " o)
1
-0 (ap - bp/ —— |V, [P dw) / |V, P da
o p(x) Q
-0 (aq bq/ —\VunP(l) dx) / |V, |1 da:
q(z) Q
- 0/ | [P da — / |t 1) da + 9)\/ [z, up)uy, de
Q Q
a (@) p (@) ’
Z—p/ Vu,|P'* (/ Vu,|P'* dx)
pt Q| | -)? Q| |
b, 2
/ |V, |9®) de — </ |V, |9 dx)
2(q™)? Q
1
—|——/ unp(x)d:c—i——/ un(I(”)d:r:—)\/Fx,un dx
e Q\ | = Q| | A (2, un)
(2) 0b, @ 1)
—Oap [ |[Vu,["" de+ —= |V, |P¥) de
Q p Q
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(@) 05 @ g\
—baq [ [Vu|" dow+ —> |V, |1 dx
Q q Q

- 0/ |t [P da — 9/ |y, |92 das+9)\/ fz,un)uy, d
Q Q Q
=a, (1 - 9) / V[P dz + a, (1 - 9) / V|7 da
pt Q at Q
0 1 2 0 1 ?
() (o i) o (2 ) ([ )
PApt o 2(p7)? Q| | \at 2(q)? sz‘ |
1 1
+ —9)/unp(x)dac+<—9)/unq(x)dx
<p+ Q‘ | qt Q‘ |

—A M F(z,up) dx—ﬁ/gf(;v,un)un dm}.

So we have
1
CH+ |lunl|| > a <0)/ Vi, [P dz
Juall = e (5 =6) | 1Vl
0 1 2
+b (—) </ YV, |P®) dx)
\or "2 ) UV
+ <1+—0>/ [ |P®) dz — Aeg|Q,
p Q

where [Q] = fQ dz. Thus, the last inequality together with (8) imply that

1 _
O+ llunl) = (ap + 1) (p+ - e) NG

0 1 1 -
b (57 =5 (57 =) Il =l

By (10), it is a contradiction if ||u,| — oo as n — oco. Thus {u,} is bounded in
Wol’p(z)(Q). Then, we prove that {u,} has a convergent subsequence in Wol’p(w)(Q).
It follows from Proposition 2.3 and reflexivity of VVO1 P (x)(Q), we may assume that

Up, — u in Wol’p(x)(Q), Uy — win L*@(Q), u,(z) = u(z), a.e. in Q, (18)

where 1 < s(x) < p*(x).
By the virtue of conditions (B;) and (B3), one has for any € € (0,1) there exists
ce > 0 such that

|f (@, un) da| < elu PO 4 g |70 (19)

From Proposition 2.1 and (19),

/Qf(x,un)(un —u) dz

< €||Un|p(z)71|

= / <€|un|p(x)71|un —ul+ Ce‘“n|a(m)71|un - u|) dz
Q

p(x) [t = Ulpa) + cel[un] 7 a(z) |tn = ula(z)-

p(r) =1 a(z) -1
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Since {u,} converges strongly to u in L*®)(Q), that is |u, — Ula(z) — 0 as n — 400
and similarly, |u, — u[p) — 0 as n — 400, so

/Qf(x,un)(un —u) dr — 0, as n — +o0. (20)
Similarly, by (5),
/Q |t [P 200y, (g, — ) dz — 0, as n — 400 (21)
and
/Q |t |7 20y, (uy, — u) dz — 0, as n — +o0. (22)

From Definition 4.2,
(I' (), — u) — 0.
Thus,

(I'(up), up, — u) = (ap - bp/ ! [V, |P®) d;l:> / |V, P@ =2V, V (u, — u)da
o p(z)

1
+ | a b/ Vunq””)dac)/ Vu, |12y, v —u)dzx
(a0t [ 22519 V| o
/|u P@ =2, (4, — dx+/ [t |1 200y, (1 — )da
—)\/f(x,un)(un—u)dm—)O.
Q

From (20), (21) and (22),

1
a, —b / ——|Vu, p(z)da:) / Vi, [P 2V, V (u, — u)dz
(a0 =0 [ s Pul ) [ 19| ( — )
1
+ (aq - bq/ |Vun|q(m)dx) / IV |9®) 20, V (uy — u)dz — 0. (23)
o q(x) Q

Then by (23) and Proposition 2.3, the sequence {u,} converges strongly to u in
Wol’p(z)(Q). Therefore, I satisfies the (PS), condition.

Step 2: [ is unbounded from below.

First we show there exists M € RT such that for each z € Q and [¢t| > M

F(x,t) > K|t]°. (24)

(17) implies that
0 < BF(x,0t) < otf(z,ot), for all o > 0.
Let m(x) := minj—ps F(z, 0) and g4(2) := F(z, 2t) for all z > 0. Then

0 < Bgi(2) = BF (z, 2t) < 2tf(x, 2t) = zg,(2),

fir e fr e

]

for all z > % and

|t
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Then

In M <In m .
gt(]\j) <Mﬂ>

Therefore,
F =q(l)>F 1 i > K|t|?
(ZL’,t) - gt( ) > ‘t| t Mﬁ = m(m)M |t‘
0 (24) is established. Fix v € Wol’p x)(Q) —{0}. For each ¢t > 1 we have

1 b 1

I(tv) =a /—thp(m)dm——p/—thp(m)sz
b
2

1 1
+a / ——[tVo|1®) gy — 2 / ——[tVo]1®) dg)?
Jo )" U gtV

1
—|—/ —tvp(’”)dx—i—/ —tv‘I(z)dw—)\/Fﬂc,tv dx
o p@ " " o)

1 -b 1
< a,t? /—vaz)dm—t% —p/—va(w)dxz
" fop@ 2 o oy V)

1 -b 1
+ath*/ g Vel — q(/ Vel da)?
Q

+tp*/ L|W|P<z>dx+tq*/ 7|v|q<f dm-AKtﬁ/ lv|Pdz — C
o p(x) o q(x) Q

From (10) and since 8 > p* if ¢ — 400, then I — —occ and is unbounded from below.
Fix A € ]0, \*[. For each u € 77! (]—o00, 1) such that |ju|| < 1, using Proposition 2.2
and Proposition 2.4, we have

1 b 1
T(u) =a —Vup(x)dx——p/—Vup(m)de
) ”/Qp(w) | 2 o ol V)

1 b 1
+a /—vuq@“dgc—l/—vuq@c)d:c2
! QQ(JC)| | Q(QQ($)| | )

1 1
+/ —|u\p(x)dx+/ —— |u|?® dz
o p() o q(v)
2
ap
—- Vu,|[P® dz — P (/ VY, |P®) dx)
b 2
+ i/ |Vu" a(z) d 4 (/ |vu”|q(z) d]})
" Jo | q7)? \Ja
1 / 1
+ — | |un|P® da+ —/ U |7 dx
pt Q| | qt Q| |

b _a .
s llul?P +q%||ullq -

S 2p)?
1 + 1 +
+ pj||“||p + qj||u||q

bq
2(q7)?

a + -
—llull? ul[*
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a + b - a + b _
Zlup_ P u2p+7quq_ q U2q.
22l = sl + Sl — gl
+ +
. D q 1
Since , < — and by (10),
{2(13‘)2 2(¢7)* " pt (10)
a + b + a + b +
(w2 Sl = 2l Sl = Sl
S0,
1 1
+ — + -
p pt p pt
ull < ( )" < ( )@
(ap —bp) + (ag — by) (ap —bp) + (ag — by)
By Proposition 2.2 and Proposition 2.3,
[ 1l = 0oy ) < (o] < el (26)

for u € Wol’p(z)(Q). By the compact embedding Wol‘p(z)(Q) — LY(Q) and
Wy P (Q) < Lo (Q), there exist ¢1,¢o > 0 and by (By), (17), (25) and (26)

MW:LF@@M

Sal/ |u|dx+a—i/ |u|*®) da:
Q @ Ja

a
< axe [lul] + = [ealull]*

1 at
+ - + -
D pt | a2 o p pt
L (—
(ap —bp) + (ag — by) «Q (ap —bp) + (ag — by)
11
TN TN
1
Therefore, A < . Thus by Theorem 4.2, Problem (16) admits at
SuPueTfl(]—oo,r[)w(u>
least two weak solutions. O

5. Conclusion

In this article, we proved the existence of two and three weak solutions with different
conditions for the Dirichlet boundary value problem (1) and (16), involving variable
exponents by using variational method.
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