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ABSTRACT. In this article we have introduced the notion of lacunary statistical convergence
sequences defined by D-Orlicz function. In this article we have defined some sequence spaces
and studied some geometric, algebraic properties of these sequence spaces like D-module,
D-balanced set, D-convex set, D-absorbing set.
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1. Introduction and Background

Bi-complex numbers: Tessarine numbers with commutative quaternions were first
introduced by Cockle in [13]. In addition, Segre [19] investigated these numbers by
identifying them as bi-complex numbers. Subsequently, Price [12] conducted a thor-
ough analysis of derivatives, integrals, holomorphic functions, bi-complex numbers,
and their generalizations to higher dimensions. The bi-complex number was defined
by Segre [19] as follows:

’ !
E =2 + 1229 =71 + 1172 + 1273 + 119274,

where z;, zé € C1(i1); x1, T2, 23,24 € Cp and 41, iz are two independent units satisfying
the relations i3 = i3 = —1 and iyiy = i9i1, The set of bi-complex numbers Cs is defined
as:
Cy = {E (€= 21 + 1229, 21,29 € Cl(il)},

where C1(i1) = {x1+i122 : ©1, 22 € Cp} and Cj is set of real numbers. Cs is a vector
space over C1(i1). Other than 0 and 1, there are two more idempotent elements in Co
given by e; = l-Hlez and ey = HTW, where e; + e5 =1 and ejes = 0.
Every bi-complex number £ = z/l + izz; can be uniquely expressed as the following
form

E =2y +iszy = (20 —i129)e1 + (21 +1129)e2 = pye1 + poea,
where ) = (2, — i129) and jip = (21 + i12y).
For £ = z; + 229 € Cy, the norm is defined as

€llc, = /12117 + |2]*.
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Hyperbolic Numbers: The hyperbolic number is of the form
o = X1 +i1i029; 71,22 € Cp.
The idempotent representation of any hyperbolic number o = 1 + iqisxs is
o = vie1 + Vgea,

where v1 = 1 + 9, v2 = o — x7.
The set of hyperbolic numbers is given by

D = {vie1 + vaeq : v1,v9 € Cp}.
The set of positive hyperbolic numbers is given by
D, = {vie; + vaeq : v1,v2 > 0}
Let & € Cy, then hyperbolic norm(D- valued) norm on Cj is given by

I€|p = |p1ler + |p2les € Dy
If 5,77 S CQ, then

1€ +nlp < [€p + n|p and [En]p = [€|p|nlD-

Let S be a subset of D. Consider the two sets D; = {v1 : vie; + vaea € S} and
Dy = {’Ug 1 v1e] + v2eg € S}
Then supremum of the set S is given by

sup S = ey sup D1 + ez sup Ds.
D

Similarly, infimum of the set S is given by

i%f S = eyinf Dy + esinf Do,
The partial order relation on D is given by
o< Bifand only if 3 —a € DyVa, 8 € D.
Remark 1.1. Denote D%, by the the non negative extended hyperbolic numbers
D} = {pier + pzez, pir, pz > 0} U {oo} U{—00} U {ooes + pzea} U {p1e1 — ooea}.

Lacunary Sequence: Freedman et al.[5] did the first research on lacunary sequences
[5]. They investigated strongly Cesaro summable and strongly lacunary convergent
sequences, taken consideration of a general lacunary sequence 6 , and they discov-
ered connections among the two types’ classes of sequences. Researchers Ercan et
al. [1], Gumus[6], Dowari, and Triptahy[2, 3] have all investigated further lacunary
sequences. Recently, generalized difference lacunary weak convergence of sequences
was investigated by Tamuli and Tripathy [5].

A sequence of positive integers § = {k,.} is called lacunary if kg = 0, 0 < k. < k41
and h, = k, — k._1 — 00 as r — oco. The intervals determined by 6 will be denoted
by I, = (ky—1,k.] and ¢. = k./kr—1. The space of lacunary strongly convergent
sequences, denoted as Ny was introduced by Freedman et al. [5] and is defined as
follows:

1
Ngz{m:Tli_{IOlomzmi—M:O, forsomeL}.

i€l
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Statistical convergence: Independently, Fast [14] and Schoenberg [18] introduced
the idea of statistical convergence. It was also found in Zygmund[l]. Later on, it was
analyzed from the point of view of sequence space and connected to summability by
a number of researchers, like Fridy[15], Tripathy [20], Salat [17], Tripathy and Nath
[23], Tripathy and Sen [21], Bera and Tripathy [10, 11]. The idea depends on a certain
density of subsets of N | the set of natural numbers. A subset E of N is said to have
natural density §(E), if

N

where x g is the characteristic function on FE.
A sequence of bi-complex number (£) is said to be statistically convergent to
n € Cy with respect to the Euclidean norm on C if for every € > 0,

S({k eN:[|& —nllc, > €}) =0.

Orlicz space: An Orlicz function is a function M¢, : [0,00) — [0,00), which is
continuous, non-decreasing and convex with M¢, (0) = 0, M¢,(x) > 0, for > 0 and
M, (x) = 00, as © — oo.

Lindendstrauss and Tzafriri [7] used the idea of Orlicz function to construct the
sequence space

Oyr = {sz:ZMCO (|xpk|) < 00, forsomep>0}.

k=1

The sequence space £y, is Banach space with the norm

|z := inf{p >0:) Mg, (3”:') < 1}.

k=1
2. Definition and Preliminaries

Definition 2.1. Let (X, ®) be a commutative group. If the operations & : X x X —
X and ®: D x X — X satisfy the properties

En)©a=£0Nn©a),
E+tnoa=(E0a)®noa),
£O@@db)=((oa)d(ob),
1®a:a,(1:1+0i1i2),

for every £,m € D and a,b € X, then (X, D,®,®,+,) is called D-module.

Definition 2.2. Let A be a subset of X. Then A is said to be D-convex if (1 —\){ +
An € A, for all £&,n € A, for all 0 <A<

Definition 2.3. Let A be a subset of D-module X. Then A is said to be D-absorbing
set if for each £ € X, there exists ¢ >" 0p such that B¢ € A, whenever Op < p<e

Definition 2.4. Let A be a subset of a D-module X. Then A is called D-balanced
set if for any £ € A and 8 € Cy with ||8]|p < 1 such that 5¢ € A.
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Definition 2.5. A function Yp : D — D7 is called D-valued convex function if for
every &,m € D with 0 <" o <’ 1 such that

Tp(at+ (1 —a)p) < aTp(€) + (1 —a)Yp(n).

Definition 2.6. A convex function Yp : Dy — D7 is said to be D-Orlicz function
if it satisfies the following conditions

(i) Tp(0p) = Op;

(i) limg oo Tp(§) = 00*, where we assume that co™ = pye; + coes = coey + fioes =
ooeg + 0oeg and limg_, o, YT p(§) must exist along any line in the hyperbolic plane and
must be equal.

We denote the BC-Orlicz function by Mp.

Definition 2.7. An BC-Orlicz function Mp is said to satisfy the A% -condition de-

noted by Mp € A% if there exist some hyperbolic constants K >" 0 and &o(depending
upon K) such that

Mp((2e1 + 262)€) < KMp(€),¥ 0 < € < &.

Definition 2.8. A function gp : Co — D7 is called D-paranorm if the following
conditions are satisfied;

p1:g(&) > 0p, for all £ € Cy;

p2:g(=&) = g(lg), for all £ € Cy;

p3:g(€+n) < g(§) +g(n), for all & n € Cy;

P4 — Q, ‘fk — f‘D — OD, then ‘Oékfk — Oéf|D — OD.

A D-paranorm gp for which gp(£) = 0p implies £ = 0 is called total D-paranorm.

Definition 2.9. Let § = {k.} be a lacunary sequence, A sequence of bi-complex
numbers (&) is said to be lacunary statistically convergent to n € Cy, if for every

g >, O SLlCh tllat
6 r N LT > = 0
€ . h g .

We denote, staty — limg & = 7.
We denote the set of all lacunary statistical convergence seqences of bi-complex num-
bers by S¢, .

S 6 — €l

kel

Definition 2.10. [22] A sequence of bi-complex numbers & = (&) is said to be almost
convergent to [ € Cs if and only if

lim vg,(§) =1, uniformly in k,
p—o0

_ Setlemit Akypo
> .

where v, (§)

Definition 2.11. Let Mp be an D-Orlicz function, and () be a sequence of bi-
complex numbers, p = (px) be a sequence of positive real numbers with 0 < p; <
suppr, = H and 0 = {k,} be a lacunary sequence. Now we define the following sets
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Nale.p Mo Ip] = { (6 € 0 i L3 [y (L=l [

[e%

uniformly in k, for hyperbolic number « >0 p and for some 7 € Cg};

_ Pk
0160 M |- lo] = €. w sstaty — i [agp (1S =12) [ g,

(%

uniformly in k, for some hyperbolic number « > 0p and for some n e C’z};

Pk
316, 9,6, Mo, | - 1] = {g €' :staty —lim [MD (W&)HD)] o,

e
uniformly in k, for hyperbolic number « >0 D};
) [vep(R)liD \ 17 _
blep 0. Mo -] = {€ € ssup - > aap (111288 < o,

uniformly in k, for some hyperbolic number « >0 D}.

Lemma 2.1. Let 0 = {k.} and 0" = {k.} be two lacunary sequences and if

’

.o h
Tlgr;o inf h—;, >0, (1)
then SE, € S, and if
h//
1 Oro_ g 2
L )

then S¢, C SgQ, for each r € N.
3. Main Result

Throughout this section we consider (py) a sequence of positive real numbers.

Theorem 3.1. The sets b*[¢,p, 0, Mp,| - |b], b}l p, 0, Mp, | - |Ip] and
b5 1€, p,0, Mp, || - |p] are linear spaces over C(i1) or C(iz).

Proof. Let n = {n}, & = {&} € b5l¢,p,0, M, || - ||p] and 8, € C(ir). Then there
exist two hyperbolic numbers >0 p and oo >0 p such that

st -ty [ty (182 ",

aq

and

Pk
statg — 1iin [MD (HVICP(%)HD> ] =0p.

(&%)

Let a3 = max{2|8|a1, 2|y|az}.
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Since M p is non-decreasing and D-convex.
We have

saty — iy [ (120 2B ) TPty g ([ (Ll 1)

3 1 (3)

+ statg —lilgn ([MD (W&C)”D) ]pk> — 0p, as r — oo.

(&%)

Thus, {yn+ B} € b€, p, 0, Mp, | - ||p]. Hence b3[€, p, 8, Mp, || - | p] is a linear space.
Similarly, we can prove b*[{,p, 0, Mp, | - |[[p] and b5 [, p,0, Mp,| - || p] are linear
spaces over the field C(i1) or C(iz). O

Theorem 3.2. Let M}, and M3, be two D-valued Orlicz function satisfying A% -
condition then

(i) b°[€,p,0, M, || - || p] C b [¢,p,0, M. M, || - || p]-

(ii) B €. p.0. M. || - Ip] € b5 €. p. 6, M- M5, | - o]

(iii) b€, p,0, M, || - || p] C b[€, p, 6, Mp. M, || - || D).
Proof. If n = {ni} € b§[§,p,0, Mp,| - ||p], then we have

Pk
statg —lilgn [MD (”Vkp(Ek)HD>] =0p — 0, as r — oo.
o

Let € > 0 and choose § with 0 < § < 1 such that ML(¢) < e for 0 <t < 4.
Let n, = M3 (%) , for all £ € N.

) A= lim—1 er[ : ||1/k (fk—f)HD >/ EH
r hy " P -

A= 1im—1 {kGI Hvkp(§e — Ollp < z—:H

r hr e P :

We can write
staty — 1i}£ﬂ Mp (i) = statg rear — 111?1 Mbp (k) + state rea) — 1i£11MD (M) -
So we have
statg rear) — lilzn Mp (k) < [Mh(er + 62)}stat9(k€A/) — h,ﬁn Mp (nx)
< M5 (2e1 + 2es)|statg keary — hin Mp (i) -
Since M}, satisfies A% -condition, we can write

Mb(261 + 262)

Mp <K 5

O

Theorem 3.3. Let 0 = {k.} and 0 = {k.} be two lacunary sequences and if (1)
holds, then

NG’ [gapaMDv || . ||D] C NGK,]LMD’ H . ||D]



208 S. BERA, B. TAMULI, AND B. C. TRIPATHY

Proof. Let us assume that I, = (k. 1, k.],J, = (k._,,k.] with h, = k,._, — k., h,

oy by =

k:_l — k;/ and I, C J,, for all » € N and (1) holds. Let (§) € Ny [€,p, Mbp, || - |Ip]-
Then for hyperbolic number o >" 0, we have

Pk
1 oy (6~ o)
lim —; Mp = 0p, uniformly in k.
0 h"r‘ " «
kel
Now,
Pk
o onp (6~ o)
lim — — Mp
r—00 hT T ’ @
kel
Pk
1 oep s~
< lim —; Mp = 0, uniformly in k.
r—=00 h’r‘ " «
keIl
Thus, (k) € Ny [€,p, Mp, | - ||p] and hence the theorem. O
Theorem 3.4. The sequence space bj[€, p,0, Mp, ||-||p] is D-paranormed space with

the D-paranorm

_; B [vp(E6)llD\ 17 . :
g(&) =inf § (@) H :sup | Mp . < 1, for hyperbolic number o > 0 7,
(4)

where H = max{1,supy pr} < o0.

Proof. Clearly, g(&) = g(—¢€) and g(€) > 0, for all € € b3[¢, p,0, Mp, || - || p]-
Let &, € b3[€,p,0, Mp, || - || p]. Then

Pk
statg — 1i]£n [./\/ID (Hykp(ik)”D> } =0p and

Pk
statyg — lillcn [MD (”Vkp(nk)”D> } =0p.

«
Let

Pk
S = (a)pﬁk : sup [M (Vkp(gk—i_nk)lb> } < 1, for hyperbolic number « > O}

m\;S

aq

(Hykp &+ )l

Q2

:\§

B =

{
a={(@n
{

Pk
: sup { < [Vep (& + )l > } < 1, for hyperbolic number oy > 0}
(a2) [ ) ] </ 1, for hyperbolic number ay > 0} .

Let @ = (a1 + ag) € S,aq = vlel +1}262 € Si,ay = vjep +vye0 € Sy and a =
v1€e1 + vaea.
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Now,

a
=inf{v; : a € S}e; +inf{vy : @ € S}esy

9(§+n) Zinf{(a)pf’; : sup {MD <”V’“P(£’“+m)[’> T)k < 1}

:inf{v; IS 51}61 + il’lf{UI top € 52}61

+ inf{v; S 51}62 + inf{v; g € 52}62

:inf{vll Toy € 51}61 + inf{v; TS 51}62

+inf{v] : ag € So}ey +inf{vy : as € Sa}es

{(051)2C : sup {MD <||Vkp(§k+77k)D> r?k ¢ 1}
aq
+ {(Ozz)pf}“ : sup [MD (W)ZC)HD) :|pk g 1}

=9(§) +9(n).

Finally, we prove that the scalar multiplication is continuous. Let 8 be any bi-complex
scalar. Then

g(B€) = inf {(a)}}f :sup [M <|Vkp(ﬁ§k)”D> } < 1, for hyperbolic number « > 0} .

Let

{(a1) ™ : ares + agey € M}

taer + ages € M}, where a = aje; + ages.
Now,

g9(8E) =inf M = ey inf M7 + eg inf Mo

+inf{(a2)”ﬂ"' : sup {MD (W) rk < 1}e2
—int (181020 % s sup [ gy (1280 ) [ o 1} o
wint {18102 s [atp (L2280 )T i
<

(07

(1810 (mf{< R sup [ (Ll

ot o (23]

ﬂ
=(lI8llp) ™ g(¢

t}e

:L'i‘x-
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where, P; = i=1.2. o

Toitp? =1
Theorem 3.5. The space b’ [&,p, 0, Mp,| - ||p] is D-convezr.
Proof. Let &, € b [€, p,o Mbp, |- |Ip] and let 0 <" A <" 1. Then

I (€)I0\ 77
buloh Z Mo < oop,

kel a1

w3 [y (Lo} ™ o, o

a2

Let oo = max{ay, as}. Now

suph1 3 [MD(||Vkp()\€k+(1— )nk)HD)]Pk

" kel

< afsw e X Mo (””kp )lo)

T ke,

I
+sup - ;[ <Ilvkp |D>} )
N

< A(x\suph1 Z {MD (””’fp &k) ||D>

" kel
+(1—/\)supiz M [Vep (1)l 0 < oo
v hr kel K Q2 b

Hence, (Aé+(1-X\)n) € b2 [€,p,0, Mp, ||| p] and therefore the space b%_[¢, p, 8, Mp, ||
| p] is D-convex. r

Theorem 3.6. The spaces b*[§,p, 0, Mp, || - [|p], b5, p, 0, Mbp, || - || p] and
b* 1€, p,0, Mp, | - |Ip] are D-submodule of w*.

Proof. Asbi &, p,0, Mp, ||| p] is a subspace of w*. Now, V7 € D and Vn € b%_[£,p, 0, Mp, ||-
o]
we have

i 2 ([ (Mtite) )

k TkGIT

i g () )

" kel

<'sup - 3 ({MD (ll(ﬁ)llDllllD”)
k r a

|T|st; Z{ (Hykp)”D)]
h 2 .

< oop.
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Thus, V7 € D and Vn € b% [, p,0, Mp, || - || p], we have T € b% [, p,0, Mb, || - |Ib]-
Hence b%_[¢,p,0, Mp,| - | p] is a D-submodule of w*. Similar procedure can apply for
the other cases. O

Theorem 3.7. The D-paranorm g(§) defined in (4) is D-balanced and D-absorbing
subset of the submodule b3 [€, p, 0, Mp, || - ||p]-

Proof. Let € € g(€) and 8 € Cs, with ||8]|p < 1. We have from (5). Now

sup |:MD <”V’w(ﬁfk)|D> rk

- o oty (12t ) |

— sup [ Mo (||/3||D||ukp</sgk>||D> ]

= (IB]lp)"* sup [MD (k(ffk)”’j) }

< sup |:MD (”Vkp(ifk)”D) ]pk <1

Thus, B¢ € g(€). Hence, g(§) is D-balanced subset of b%_[£,p, 0, Mp, || - || ]
Pr
Choosing k >  0p such that sup [MD (luk’)(ff’“)lb)] < k%, Set k= % Then for

any Op S, 153 Sl €, we have

(I1B811p) # g(€)

=(8) " g(§)

9(B8)

Thus g(&) is D-absorbing subset. O
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