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Stability for damped oscillators

Cristian Vladimirescu

Abstract. The stability of the null solution to Eq. (1) below is investigated. This paper
presents the method detailed in [16] and based on some Bernoulli type differential inequalities.
Extensions to the whole real line are also discussed.
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1. Introduction

In this paper we consider the equation

x′′ + 2f (t)x′ + x + g (t, x) = 0, t ∈ IR+, (1)

where IR+ := [0, +∞), f : IR+ → IR+ and g : IR+× IR → IR are two given continuous
functions.

It is well known that (1) describes the motion of the damped nonlinear oscillator
of one degree of freedom. Many authors studied the stability questions for such
kind of equations (see, e.g., [4], [6]-[15], [18]-[20] and the references therein). For the
definitions of different concepts of stability and for standard stability theory see, e.g.,
[5] and [17].

Eq. (1) can be considered a perturbation to the linear equation

x′′ + 2f (t)x′ + x = 0, t ∈ IR+. (2)

Regarding Eq. (2), the case of large damping has been also considered in [1] wherein
the authors proved that the inequality

∫ t

0

f(s) ds ≤ C1 + C2t
2, ∀t ∈ IR+,

where C1, C2 are constant implies asymptotic stability. The difficult case is the one
of small damping. In [2] it is proved that

∫∞
0

f = ∞ is necessary and sufficient for
the asymptotic stability, provided that f is monotonous; there is no necessary and
sufficient integral condition for the general (non-monotonous) case. In [21] a necessary
and sufficient condition working both for the case of large damping in terms of the
integral of f , was given, but too difficult to check it.

In [3] the asymptotic stability of the null solution to Eq. (1) has been studied by
means of a new approach based on the Schauder fixed point Theorem.

In the present paper, some stability results are proved under assumptions more
general than those of [3] (see Remark 2.1 in Section 2). Our approach is based on
elementary arguments only, involving in particular some Bernoulli type differential
inequalities and has been detailed in [16].
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As we will see, under our assumptions f can be chosen in a larger class of functions
which allows to obtain extensions of our stability results to the whole real line IR,
obtaining in particular a strong stability result (see Section 4).

2. The main result

The following hypotheses will be required:
(i) f ∈ C1 (IR+) and f (t) > 0, for all t > 0;
(ii)

∫ +∞
0

f (t) dt = +∞;
(iii) there exist a ≥ 0 and K ∈ (0, 1) such that

∣∣f ′ (t) + f2 (t)
∣∣ ≤ Kf (t) , for all t ∈ [a,+∞) ; (3)

(iv) g ∈ C(IR+ × IR) and g is locally Lipschitzian in x;
(v) there exist M > 0 and α > 1 such that

|g (t, x)| ≤ Mf (t) |x|α , for all (t, x) ∈ IR+ × IR. (4)

An example of functions f and g is (cf. [3])

f (t) =
1

t + 1
, g (t, x) = f(t) · xα.

Indeed, these functions fulfil (i)-(v) with a ≥ 0, K ∈ (0, 1), α > 1 arbitrary, and
M = 1.

Remark 2.1. In [3] the following additional assumptions are required: lim
t→∞

f(t) = 0,

the constant a in (iii) is fixed to a = 0, and a more restrictive condition is assumed
instead of (iv), namely

|g(t, x)− g(t, y)| ≤ L(δ)f(t)|x− y|, ∀t ≥ 0, |x|, |y| ≤ δ,

with L(δ) continuous and increasing.

Remark 2.2. Regarding the discussion from Section 1, it is obvious that we are in
the case of “small damping” (see, e.g., [9], p. 415)). Indeed, by (3) it follows that f
is uniformly bounded: there exists a c > 0 such that 0 < f(t) ≤ c, ∀t ≥ 0.

The main result of this paper is the following theorem.

Theorem 2.1. If the assumptions (i), (iii), (iv) , and (v) are fulfilled, then the null
solution to Eq. (1) is uniformly stable. If in addition (ii) holds, then the null solution
to Eq. (1) is asymptotically stable.

Remark 2.3. Under the assumptions (i) − (v), we cannot expect to have uniform
asymptotic stability for the null solution. Indeed, if f(t) = 1/(t + 1) and g = 0, the
general solution to Eq. (1) is given by

x(t) = (t + 1)−1 (C1 cos(t + 1) + C2 sin(t + 1)) ,

and so the null solution to the corresponding first order linear differential system in
(x, y = x′) is not uniformly asymptotically stable.
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3. Proof of Theorem 2.1

In this Section we will present the sketch of the proof of Theorem 2.1 (the details
of the proof can be found in [16]).

As in [3], we write Eq. (1) as the following first order system

z′ = A (t) z + B (t) z + F (t, z) , (5)

where

z =
(

x
y

)
, A (t) =

( −f (t) 1
−1 −f (t)

)
, B (t) =

(
0 0

f ′ (t) + f2 (t) 0

)
,

F (t, z) =
(

0
−g (t, x)

)
.

Obviously, our stability question reduces to the stability of the null solution z(t) = 0
of the system (5). Notice that the fundamental matrix of the linear system

z′ (t) = A (t) z, (6)

which is equal to the identity matrix for t = t0, t0 ≥ 0, is given by

Z (t, t0) = exp
(
−

∫ t

t0

f (s) ds

)
·
(

cos (t− t0) sin (t− t0)
− sin (t− t0) cos (t− t0)

)
,

for all t ∈ IR+.

Remark 3.1. It is known that if (6) is uniformly asymptotically stable, then for
“small” perturbations F , (5) is uniformly asymptotically stable; but in our case one
gets a difficulty since the system (6) is only asymptotically stable and it is not uni-
formly asymptotically stable.

Now, if z := (x, y)T is a vector of IR2 we set ‖z‖ :=
√

x2 + y2.
We first assume that (i), (iii)-(v) are fulfilled. In order to prove that the null

solution of (5) is stable, take some z0 6= 0 with ‖z0‖ small enough and t0 ≥ 0 and
denote by z(t, t0, z0) the unique solution of (5) which is equal to z0 for t = t0. By
our assumptions, we know that z(t, t0, z0) is defined on a maximal right interval, say
[t0, b). This solution satisfies the integral equation

z(t, t0, z0) = Z(t, t0)z0 +
∫ t

t0

Z(t, t0)Z(s, t0)−1 [B(s)z(s, t0, z0)+

+ F (s, z(s, t0, z0))] ds, (7)

for all t ∈ [t0, b). In fact we can show that b = +∞. If a > 0 and t0 < a then it
follows by (7) (see [3])

‖z(t, t0, z0)‖ ≤ ‖z0‖e−
R t

t0
f(s)ds +

+
∫ t

t0

e−
R t

s
f(u)du

∣∣f ′ (s) + f2 (s)
∣∣ ‖z(s, t0, z0)‖ds +

+M

∫ t

t0

e−
R t

s
f(u)duf (s) ‖z(s, t0, z0)‖αds, (8)
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for all t ∈ [t0, b). Suppose, by contradiction, that b < +∞. Moreover, in a first stage,
assume that b ≤ a.

Since f ∈ C1[0, a], it follows by (8) that there exists a constant D > 0 such that

‖z(t, t0, z0)‖ ≤ ‖z0‖+ D

∫ t

t0

(‖z(s, t0, z0)‖+ ‖z(s, t0, z0)‖α) ds =: r (t) ,

for all t ∈ [t0, b),
r (t0) = ‖z0‖, r (t) ≥ ‖z0‖ > 0, t ∈ [t0, b).

By classical estimates and Bernoulli type differential inequalities, if

‖z0‖ <
(
eD(α−1)a − 1

) 1
1−α

=: δ1,

one gets

r (t) ≤
((

1 + ‖z0‖1−α
)
eD(1−α)a − 1

) 1
1−α

, (∀) t ∈ [t0, b). (9)

Since r(t) is bounded on [t0, b), it follows that z(t, t0, z0) and z′(t, t0, z0) are both
bounded on [t0, b) and therefore z(t, t0, z0) can be extended to the right of b. This
fact contradicts the maximality of b. Hence, z(t, t0, z0) does exist on [t0, b) with b > a.
Let us still assume that b is finite, i.e. a < b < +∞. We are going to establish an
estimate for z(t, t0, z0) on the interval [a, b). This time, our assumption (iii) comes
into play. Indeed, starting from (7), where t0 and z0 are replaced by a and z(a, t0, z0),
we get

‖z (t, t0, z0) ‖ ≤ ‖z(a, t0, z0)‖e−
R t

a
f(s)ds +

∫ t

a

e−
R t

s
f(u)du [Kf (s) |x (s, t0, z0)|

+Mf (s) |x (s, t0, z0)|α] ds =: v (t) , a ≤ t < b.

We have used the fact that z(t, t0, z0) = z(t, a, z(a, t0, z0)), a ≤ t < b. After easy
computations and again by Bernoulli type differential inequalities, we find

v (t) ≤
{

e(α−1)(1−K)
R t

a
f(s)ds

[
‖z(a, t0, z0)‖1−α − M

1−K

]
+

+
M

1−K

} 1
1−α

, (10)

for all t ∈ [a, b).
So, if

‖z(a, t0, z0)‖ ∈
(

0,

(
1−K

M

) 1
α−1

)
,

then (10) shows that z(t, t0, z0) is bounded on [a, b) and hence b = +∞.
If t0 ≥ a, then we similarly get

v (t) ≤
{

e
(α−1)(1−K)

R t
t0

f(s)ds

[
‖z0‖1−α − M

1−K

]
+

M

1−K

} 1
1−α

, (11)

for all t ∈ [a, b).
Again, for

‖z0‖ ∈
(

0,

(
1−K

M

) 1
α−1

)
,

z(t, t0, z0) exists on [t0, +∞) (i.e., b = +∞).
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Now, by the estimates (9) (for t ∈ [t0, a]), (10), (11), where b = +∞, we see that
the null solution of (1) is uniformly stable. If in addition (ii) is fulfilled, then by (10),
(11) (where b = +∞), it follows that the null solution of (1) is asymptotically stable.
The proof of Theorem 2.1 is complete. ¤

4. Extensions to IR

This section contains some remarks concerning the extension of Theorem 2.1 to
the whole real line IR.

We consider the equation

x′′ + 2f (t)x′ + x + g (t, x) = 0, t ∈ IR, (12)

where f : IR → IR and g : IR×IR → IR are two given functions, satisfying the following
hypotheses:

(i)’ f ∈ C1 (IR) and t · f (t) > 0, for all t ∈ IR, t 6= 0;
(ii)’

∫ 0

−∞ f (t) dt = −∞ and
∫ +∞
0

f (t) dt = +∞;
(iii)’ there exist a ≥ 0 and K ∈ (0, 1) such that

∣∣f ′ (t) + f2 (t)
∣∣ ≤ K |f (t)| , for all |t| ≥ a; (13)

(iv)’ g ∈ C(IR× IR) and g is locally Lipschitzian in x;
(v)’ there exist M > 0 and α > 1 such that

|g (t, x)| ≤ M |f (t)| · |x|α , for all (t, x) ∈ IR2.

A prototype of functions f and g is f(t) = 1/t for |t| ≥ a (a > 0) and extended on
the interval (−a, a) in such a way that f ∈ C1(IR) and tf(t) > 0 for all t ∈ IR, t 6= 0
(for instance we can choose f(t) = t(3/a2 − 2 |t| /a3), |t| < a), and g (t, x) = f (t)xα.
Then hypotheses (i)-(v) are fulfilled with a = 1, K ∈ (0, 1) , M ≥ 1, α > 1.

We remark that through the changes

s = −t, u(s) = x(−s), t ≤ 0,

Eq. (12) for t ≤ 0 becomes

d2u

ds2
+ 2f∗ (s)

du

ds
+ u + g∗ (s, u) = 0, s ∈ IR+,

where f∗ (s) = −f (−s) and g∗ (s, u) = g (−s, u).
Therefore, by this remark and Theorem 2.1 we obtain the following result (for the

definition of the strong stability, see [8]).

Theorem 4.1. Suppose that the hypotheses (i)’, (iii)’-(v)’ are fulfilled. Then the null
solution to Eq. (12) is strongly stable, i.e. for every ε > 0 there exists a δ > 0 such
that for every initial data |x(0)| < δ, |x′(0)| < δ, Eq. (12) has a unique solution x(t)
defined on IR, satisfying |x(t)| < ε, |x′(t)| < ε, (∀) t ∈ IR. If, in addition, (ii)’ holds,
then

x (±∞) = x′ (±∞) = 0.

Remark 4.1. Our extensions to the whole real line IR are allowed by the fact that
the key condition (13) is fulfilled away from the origin.
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