Interpolation of compact non-linear operators on Banach triples

Nicolae Cofan and Ilie Stan

Abstract

We investigate the behavior of Lipschitz and compact non-linear operators under K and J real interpolation methods for Banach triples. We begin with the case when one of the triples reduces to a single Banach space, and we prove that the classical Lions-Peetre compactness theorems for linear operators still hold for Lipschitz and compact non-linear operators. We also establish a compactness result when the interpolation operator is considered from a J-space into a K-space. 2000 Mathematics Subject Classification. Primary 46M35; Secondary 46B70. Key words and phrases. interpolation, compact non-linear operators.

1. Introduction

The behaviour of compact non-linear operators under real interpolation have not even been investigated. Cobos [5] proved that the classical Lions-Peetre [8] compactness theorems for linear operators, in the case of Banach couples, are also valid for Lipschitz operators. Later, Bento [3] generalised some of these results.

In this paper we investigate the behavior of Lipschitz and compact non-linear operators in the multidimensional case. In the literature there are many interpolation methods for Banach n-space $(n \geq 3)$. We restrict our attention to Sparr K-and J-methods for Banach triples.

2. Preliminaries and notations

Our notation and terminology are standard and we refer to [4], [7] and [10]. For the reader's convenience we give some definitions and results that will be used later.

Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a Banach triple, i.e. A_{0}, A_{1}, A_{2} are three Banach spaces which are linearly and continuously embedded in a Hausdorff topological vector space \mathscr{A}. Then we can form their sum $\sum(\bar{A}):=A_{0}+A_{1}+A_{2}$ and their intersection $\Delta(\bar{A}):=A_{0} \cap A_{1} \cap A_{2}$. These two spaces become Banach spaces when endowed with the norms $K(1,1, \cdot)$ and $J(1,1, \cdot)$ respectively, where

$$
K(t, s, a)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}+s\left\|a_{2}\right\|_{A_{2}}: a=a_{0}+a_{1}+a_{2}, a_{i} \in A_{i}\right\}, t, s>0
$$

and

$$
J(t, s, a)=\max \left(\left\|a_{0}\right\|_{A_{0}}, t\left\|a_{1}\right\|_{A_{1}}, s\left\|a_{2}\right\|_{A_{2}}\right), t, s>0
$$

Let A be an intermediate space with respect to \bar{A}, i.e. A is a Banach space for which $\Delta(\bar{A}) \hookrightarrow A \hookrightarrow \sum(\bar{A})$ (continuous inclusions) and let $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}$, $\theta_{1}+\theta_{2}<1$. Then we say that
(i) A is of class $\mathscr{C}_{K}(\bar{\theta}, \bar{A})$ if $K(t, s, a) \leq c t^{\theta_{1}} s^{\theta_{2}}\|a\|_{A}, a \in A$;
(ii) A is of class $\mathscr{C}_{J}(\bar{\theta}, \bar{A})$ if $\|a\|_{A} \leq c t^{-\theta_{1}} s^{-\theta_{2}} J(t, s, a), a \in \Delta(\bar{A})$;
(iii) A is class $\mathscr{C}(\bar{\theta}, \bar{A})$ if A is of class $\mathscr{C}_{K}(\bar{\theta}, \bar{A})$ and of class $\mathscr{C}_{J}(\bar{\theta}, \bar{A})$.

An important example of space of class $\mathscr{C}_{K}(\bar{\theta}, \bar{A})$ is the real interpolation K-space (or Sparr K-space [10]) $\left(A_{0}, A_{1}, A_{2}\right)_{\bar{\theta}, p, K}:=\bar{A}_{\bar{\theta}, p, K}$. We remind that for $1 \leq p \leq \infty$ and $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$, the space $\bar{A}_{\bar{\theta}, p, K}$ consists of all $a \in \sum(\bar{A})$, which have a finite norm:

$$
\|a\|_{\bar{\theta}, p, K}= \begin{cases}\left(\int_{0}^{\infty} \int_{0}^{\infty}\left(t^{-\theta_{1}} s^{-\theta_{2}} K(t, s, a)\right)^{p} \frac{d t}{t} \frac{d s}{s}\right)^{1 / p} & \text { if } 1 \leq p<\infty \\ \sup _{\substack{t>0 \\ s>0}} t^{-\theta_{1}} s^{-\theta_{2}} K(t, s, a) & \text { if } p=\infty\end{cases}
$$

On the other hand, the real interpolation J-space (or Sparr J-space [10]) $\left(A_{0}, A_{1}, A_{2}\right)_{\bar{\theta}, p, J}:=\bar{A}_{\bar{\theta}, p, J}$ is an important example of space of class $\mathscr{C}_{J}(\bar{\theta}, \bar{A})$. We remind that for $1 \leq p \leq \infty$ and $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$ the space $\bar{A}_{\bar{\theta}, p, J}$ consists of all $a \in \sum(\bar{A})$ which can be represented in the form

$$
\begin{equation*}
a=\int_{0}^{\infty} \int_{0}^{\infty} u(t, s) \frac{d t}{t} \frac{d s}{s} \quad\left(\text { convergence in } \quad \sum(\bar{A})\right) \tag{1}
\end{equation*}
$$

where $u(t, s)$ is measurable with values in $\Delta(\bar{A})$ and

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty}\left(t^{-\theta_{1}} s^{-\theta_{2}} J(t, s, u(t, s))\right)^{p} \frac{d t}{t} \frac{d s}{s}<\infty \tag{2}
\end{equation*}
$$

Moreover

$$
\|a\|_{\bar{\theta}, p, J}=\inf \left(\int_{0}^{\infty} \int_{0}^{\infty}\left(t^{-\theta_{1}} s^{-\theta_{2}} J(t, s, u(t, s))\right)^{p} \frac{d t}{t} \frac{d s}{s}\right)^{1 / p}
$$

where the infimum is taken over all representations of a such that (1) and (2) hold, defines a norm on $\bar{A}_{\bar{\theta}, p, J}$.

In contrast to the case of Banach couples, when the Equivalence Theorem is true (i.e. $\left.\left(A_{0}, A_{1}\right)_{\theta, p, J}=\left(A_{0}, A_{1}\right)_{\theta, p, K}:=\left(A_{0}, A_{1}\right)_{\theta, p} ; 0<\theta<1,1 \leq p \leq \infty\right)$ (see [4]), in the case of Banach triples, in general, only the inclusion $\bar{A}_{\bar{\theta}, p, J} \hookrightarrow \bar{A}_{\bar{\theta}, p, K}$ is valid, but not converse (see [10]). Though, there are many triples for which the converse inclusion is valid (see [1], [6]). We call an $L P$-triple, that Banach triple \bar{A} for which $\bar{A}_{\bar{\theta}, p, J}=\bar{A}_{\bar{\theta}, p, K}:=\bar{A}_{\bar{\theta}, p}$ holds for every $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$ and every $1 \leq p \leq \infty$. For a Banach triple $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ we have (see [2], [10])

$$
\begin{equation*}
\bar{A}_{\bar{\theta}, p, J} \hookrightarrow\left(\left(A_{0}, A_{2}\right)_{\theta_{2}, p},\left(A_{1}, A_{2}\right)_{\theta_{2}, p}\right)_{\lambda, p} \hookrightarrow \bar{A}_{\bar{\theta}, p, K} \tag{3}
\end{equation*}
$$

where $\lambda=\frac{\theta_{1}}{1-\theta_{2}}$.
The class of all continuous maps $T: \sum(\bar{A}) \rightarrow \sum(\bar{B})$ such that the restriction of T to A_{i} is a continuous map from A_{i} into $B_{i},(i=0,1,2)$ will be denoted by $\mathscr{C}(\bar{A}, \bar{B})$. If $A_{0}=A_{1}=A_{2}=A$ or $B_{0}=B_{1}=B_{2}=B$, then we write $\mathscr{C}(A, \bar{B})$ or, respectively $\mathscr{C}(\bar{A}, B)$.

Recall that a non-linear operator T is called compact if it is continuous and if it transforms each bounded set into a set whose closure is compact.

It was proved by Cobos in [5] that if $T \in \mathscr{C}(\bar{A}, \bar{B})$ and $T: A_{i} \rightarrow B_{i},(i=0,1)$ are Lipschitz operators, then for every $\theta \in(0,1), p \in[1, \infty)$

$$
\begin{equation*}
T:\left(A_{0}, A_{1}\right)_{\theta, p} \rightarrow\left(B_{0}, B_{1}\right)_{\theta, p} \text { is also a Lipschitz operator. } \tag{4}
\end{equation*}
$$

Later, Bento [3] proved that if $T \in \mathscr{C}(\bar{A}, \bar{B})$ is an operator such that $T: A_{i} \rightarrow B_{i}$, $(i=0,1)$ are compact Lipschitz operators, then for every $\theta \in(0,1)$ and $1 \leq p<\infty$

$$
\begin{equation*}
T:\left(A_{0}, A_{1}\right)_{\theta, p} \rightarrow\left(B_{0}, B_{1}\right)_{\theta, p} \text { is compact } \tag{5}
\end{equation*}
$$

We extend these results to the case of Banach triples.

3. Interpolation of Lipschitz operators

We begin with the case when one of the triples reduces to a single Banach space.
Proposition 3.1. Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a Banach triple and let B be a Banach space. Assume that T is a non-linear operator
(i) If $T \in \mathscr{C}(\bar{A}, B)$ is an operator such that $T: A_{i} \rightarrow B,(i=0,1,2)$ are Lipschitz operators and A is an intermediate space with respect to \bar{A} such that $\Delta(\bar{A})$ is dense in A, then $T: A \rightarrow B$ is also a Lipschitz operator.
(ii) If $T \in \mathscr{C}(B, \bar{A})$ is an operator such that $T: B \rightarrow A_{i}(i=0,1,2)$ are Lipschitz operators and A is an intermediate space with respect to \bar{A}, then $T: B \rightarrow A$ is also a Lipschitz operator.

Proof. (i) Let L_{i} be the Lipschitz constant of T as a mapping from A_{i} to $B(i=0,1,2)$. Let $x, y \in \Delta(\bar{A})$ and take any decomposition

$$
\left.x-y=a_{0}+a_{1}+a_{2}, \text { with } a_{i} \in A_{i}(i=0,1,2) \quad \text { (in fact, } a_{i} \in \Delta(\bar{A}), i=0,1,2\right) .
$$

Put $w_{i}=x-\sum_{k=0}^{i} a_{k},(i=0,1,2)$. Then

$$
\begin{aligned}
\|T x-T y\| & \leq\left\|T x-T w_{0}\right\|_{B}+\left\|T w_{0}-T w_{1}\right\|_{B}+\left\|T w_{1}-T y\right\|_{B} \\
& \leq L_{0}\left\|a_{0}\right\|_{A_{0}}+L_{1}\left\|a_{1}\right\|_{A_{1}}+L_{2}\left\|a_{2}\right\|_{A_{2}} \\
& \leq \max \left(L_{0}, L_{1}, L_{2}\right)\left(\left\|a_{0}\right\|_{A_{0}}+\left\|a_{1}\right\|_{A_{1}}+\left\|a_{2}\right\|_{A_{2}}\right)
\end{aligned}
$$

Thus, for any $x, y \in \Delta(\bar{A})$ we have

$$
\|T x-T y\|_{B} \leq \max \left(L_{0}, L_{1}, L_{2}\right)\|x-y\|_{\sum(\bar{A})}
$$

Hence

$$
T:\left(\Delta(\bar{A}),\|\cdot\|_{\sum(\bar{A})}\right) \rightarrow B
$$

is a Lipschitz operator. Since $A \hookrightarrow \sum(\bar{A})$

$$
T:\left(\Delta(\bar{A}),\|\cdot\|_{A}\right) \rightarrow B
$$

is also a Lipschitz operator. Therefore we can extend T to a Lipschitz operator from A into B because $\Delta(\bar{A})$ is dense in A.
(ii) Let L_{i} be the Lipschitz constant of T as a mapping from B to $A_{i}(i=0,1,2)$. For every $x, y \in B$ we have

$$
\|T x-T y\|_{\Delta(\bar{A})}=\max _{0 \leq i \leq 2}\left(\|T x-T y\|_{A_{i}}\right) \leq \max _{0 \leq i \leq 2}\left(L_{i}\right)\|x-y\|_{B}
$$

Since $\Delta(\bar{A}) \hookrightarrow A$ it follows that $T: B \rightarrow A$ is Lipschitz.
Corollary 3.1. Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a Banach triple and let B be a Banach space. Assume that T is a non-linear operator
(i) If $T \in \mathscr{C}(\bar{A}, B)$ is an operator such that $T: A_{i} \rightarrow B(i=0,1,2)$ are Lipschitz operators, then for every $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$ and every $1 \leq p<\infty$, $T: \bar{A}_{\bar{\theta}, p, J} \rightarrow B$ is also a Lipschitz operator.
(ii) If $T \in \mathscr{C}(A, \bar{B})$ is an operator such that $T: B \rightarrow A_{i}(i=0,1,2)$ are Lipschitz operators, then for every $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$ and every $1 \leq p<\infty$, $T: B \rightarrow \bar{A}_{\bar{\theta}, p, J}$ (or $\bar{A}_{\bar{\theta}, p, K}$) is also a Lipschitz operator.
Next we consider general Banach triples $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ and $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$.
Proposition 3.2. Let $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$ and $1 \leq p<\infty$, let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ and $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$ be two Banach triples. Assume that T is a non-linear operator. If $T \in \mathscr{C}(\bar{A}, \bar{B})$ is an operator such that $T: A_{i} \rightarrow B_{i}(i=0,1,2)$ are Lipschitz operators, then $T: \bar{A}_{\bar{\theta}, p, J} \rightarrow \bar{B}_{\bar{\theta}, p, K}$ is also a Lipschitz operator.
Proof. Since $T: A_{i} \rightarrow B_{i}(i=0,1,2)$ are Lipschitz operators, in view of Cobos result ([5]) we deduce that

$$
T:\left(A_{i}, A_{2}\right)_{\theta_{2}, p} \rightarrow\left(B_{i}, B_{2}\right)_{\theta_{2}, p} \quad(i=0,1)
$$

are Lipschitz operators.
Then

$$
T:\left(\left(A_{0}, A_{2}\right)_{\theta_{2}, p},\left(A_{1}, A_{2}\right)_{\theta_{1}, p}\right)_{\lambda, p} \rightarrow\left(\left(B_{0}, B_{2}\right)_{\theta_{2}, p},\left(B_{1}, B_{2}\right)_{\theta_{2}, p}\right)_{\lambda, p}
$$

where $\lambda=\frac{\theta_{1}}{1-\theta_{2}}$, is also a Lipschitz operator. Now, by (3) we deduce that

$$
T: \bar{A}_{\left(\theta_{1}, \theta_{2}\right), p, J} \rightarrow \bar{B}_{\left(\theta_{1}, \theta_{2}\right), p, K}
$$

is a Lipschitz operator.
Proposition 3.3. Let $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$ and $1 \leq p<\infty$, let $\bar{A}=$ $\left(A_{0}, A_{1}, A_{2}\right)$ be a Banach triple such that $\Delta(\bar{A})$ is dense in $\bar{A}_{\left(\theta_{1}, \theta_{2}\right), p, K}$. Assume that T is a non-linear operator and $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$ is a Banach triple. If $T \in \mathscr{C}(\bar{A}, \bar{B})$ is an operator such that $T: A_{i} \rightarrow B_{i}(i=0,1,2)$ are Lipschitz operators, then, $T: \bar{A}_{\bar{\theta}, p, K} \rightarrow \bar{B}_{\bar{\theta}, p, K}$ is also a Lipschitz operator.
Proof. Let L_{i} be the Lipschitz constant of T as a mapping from A_{i} to $B_{i}(i=0,1,2)$. Let $x, y \in \Delta(\bar{A})$ and choose any decomposition

$$
x-y=a_{0}+a_{1}+a_{2}, \quad \text { with } a_{i} \in A_{i} \quad\left(\text { in fact } a_{i} \in \Delta(\bar{A})\right), \quad(i=0,1,2)
$$

Then
$T x-T y=\left(T x-T\left(x-a_{0}\right)\right)+\left(T\left(x-a_{0}\right)-T\left(x-a_{0}-a_{1}\right)\right)+\left(T\left(x-a_{0}-a_{1}\right)-T y\right)$
is a decomposition of $T x-T y$ in $\sum(\bar{B})$. Therefore

$$
K(t, s, T x-T y, \bar{B}) \leq L_{0}\left\|a_{0}\right\|_{A_{0}}+t L_{1}\left\|a_{1}\right\|_{A_{1}}+s L_{2}\left\|a_{2}\right\|_{A_{2}}
$$

and

$$
K(t, s, T x-T y, \bar{B}) \leq L_{0} K\left(\frac{L_{1}}{L_{0}} t, \frac{L_{2}}{L_{0}} s, x-y, \bar{A}\right)
$$

Thus, for any $x, y \in \Delta(\bar{A})$

$$
\begin{aligned}
\|T x-T y\|_{\bar{\theta}, p, K} & =\left(\int_{0}^{\infty} \int_{0}^{\infty}\left(t^{-\theta_{1}} s^{-\theta_{2}} K(t, s, T x-T y, \bar{B})\right)^{p} \frac{d t}{t} \frac{d s}{s}\right)^{1 / p} \\
& \leq L_{0}\left(\int_{0}^{\infty} \int_{0}^{\infty}\left(t^{-\theta_{1}} s^{-\theta_{2}} K\left(\frac{L_{1}}{L_{0}} t, \frac{L_{2}}{L_{0}} s, x-y, \bar{A}\right)\right)^{p} \frac{d t}{t} \frac{d s}{s}\right)^{1 / p} \\
& \leq L_{0}^{1-\theta_{1}-\theta_{2}} L_{1}^{\theta_{1}} L_{2}^{\theta_{2}}\|x-y\|_{\bar{\theta}, p, K} .
\end{aligned}
$$

Hence

$$
T:\left(\Delta(\bar{A}),\|\cdot\|_{\bar{\theta}, p, K}\right) \rightarrow \bar{B}_{\bar{\theta}, p, K}
$$

is a Lipschitz operator. Therefore $T: \bar{A}_{\bar{\theta}, p, K} \rightarrow \bar{B}_{\bar{\theta}, p, K}$ is also a Lipschitz operator because $\Delta(\bar{A})$ is dense in $\bar{A}_{\bar{\theta}, p, K}$

4. The compactness results

At first, we derive multidimensional compactness results of Lions-Peetre type.
Theorem 4.1. Let $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$ be a Banach triple and let A be a Banach space. Assume that T is a non-linear operator. If $T \in \mathscr{C}(A, \bar{B})$ is an operator such that $T: A \rightarrow B_{i}(i=0,1,2)$ are Lipschitz operators, $T: A \rightarrow B_{0}$ is compact and B is a space of class $\mathscr{C}_{J}(\bar{\theta}, \bar{B})$, then $T: A \rightarrow B$ is compact.

Proof. Let D be any bounded subset of A. We show that $T(D)$ is a precompact subset of B, from which it follows that $T: A \rightarrow B$ is compact. Let L_{i} be the Lipschitz constant of T as a mapping from A to $B_{i}(i=0,1,2)$ and $M=\sup \left\{\|x\|_{A}: x \in D\right\}$. By the assumption on B we have

$$
\|b\|_{B} \leq C t^{-\theta_{1}} s^{-\theta_{2}} J(t, s, b, \bar{B}), \quad b \in \Delta(\bar{B}), \quad t, s>0
$$

Hence, given any bounded subset D of A and any $\varepsilon>0$, we can choose t and s (small enough) so that

$$
\max \left(2 C L_{1} M t^{1-\theta_{1}} s^{-\theta_{2}}, 2 C L_{2} M t^{-\theta_{1}} s^{1-\theta_{2}}\right) \leq \varepsilon
$$

Since $T: A \rightarrow B_{0}$ is compact we can find a finite subset $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of D such that

$$
T(D) \subset \bigcup_{j=1}^{n}\left\{T v_{j}+\left\{b \in B_{0}:\|b\|_{B_{0}} \leq \frac{\varepsilon}{C t^{-\theta_{1}} s^{-\theta_{2}}}\right\}\right\}
$$

Thus, give any $a \in D$, choosing j so that $\left\|T a-T v_{j}\right\|_{B} \leq \frac{\varepsilon}{C t^{-\theta_{1}} S^{-\theta_{2}}}$.
We obtain

$$
\begin{aligned}
\left\|T a-T v_{j}\right\|_{B} \leq & \max \left(C t^{-\theta_{1}} s^{-\theta_{2}}\left\|T a-T v_{j}\right\|_{B_{0}}, C t^{1-\theta_{1}} s^{-\theta_{2}}\left\|T a-T v_{j}\right\|_{B_{1}}\right. \\
& \left.C t^{-\theta_{1}} s^{1-\theta_{2}}\left\|T a-T v_{j}\right\|_{B_{2}}\right) \leq \varepsilon
\end{aligned}
$$

This proves the compactness of $T: A \rightarrow B$.
Corollary 4.1. Let $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$ and let $1 \leq p<\infty$. Under the same assumption as in Theorem 4.1 we have

$$
T: A \rightarrow \bar{B}_{\bar{\theta}, p, J} \text { is compact. }
$$

Theorem 4.2. Let $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}, \theta_{1}+\theta_{2}<1$ and let $1 \leq p<\infty$. Let B be a Banach space. Assume that T is a non-linear operator and that $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ is a Banach triple such that $\Delta(\bar{A})$ is dense in $\bar{A}_{\bar{\theta}, p, K}$. If $T \in \mathscr{C}(\bar{A}, B)$ is an operator such that $T: A_{i} \rightarrow B(i=0,1,2)$ are Lipschitz operators, $T: A_{0} \rightarrow B$ is compact, then $T: \bar{A}_{\bar{\theta}, p, K} \rightarrow B$ is compact.
Proof. Let L_{i} be the Lipschitz constant of T as a mapping from A_{i} to $B(i=0,1, \underline{2})$. Let D any bounded subset of $\bar{A}_{\bar{\theta}, p, K}$. Put $M=\sup \left\{\|a\|_{\bar{A}_{\bar{\theta}, p, K}} ; a \in D\right\}$. Since $\Delta(\bar{A})$
is dense in $\bar{A}_{\bar{\theta}, p, K}$ we may assume that $D \subset \Delta(\bar{A})$. Since $\bar{A}_{\bar{\theta}, p, K}$ is a space of class $\mathscr{C}_{K}(\bar{\theta}, \bar{A})$ we have

$$
t^{-\theta_{1}} s^{-\theta_{2}} K(t, s, a, \bar{A}) \leq C\|a\|_{\bar{A}_{\bar{\theta}, p, K}} \leq C M, \quad a \in D, t, s>0
$$

For each t and s, we can decompose any $a \in D$ as $a=a_{0}+a_{1}+a_{2}$, with $a_{i} \in A_{i}$ ($i=0,1,2$) and

$$
\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}+s\left\|a_{2}\right\|_{A_{2}} \leq 2 C M t^{\theta_{1}} s^{\theta_{2}}
$$

Then, given $\varepsilon>0$, choosing $t=s$ big enough we can find three subsets D_{0}, D_{1}, D_{2} of $\Delta(\bar{A})$ such that $D \subset D_{0}+D_{1}+D_{2}, D_{0}$ is bounded in A_{0} and

$$
\sup \left\{\left\|a_{1}\right\|_{A_{1}}: a_{1} \in D_{1}\right\} \leq \varepsilon / 3 L_{1}, \quad \sup \left\{\left\|a_{2}\right\|_{A_{2}}: a_{2} \in D_{2}\right\} \leq \frac{\varepsilon}{3 L_{2}}
$$

Since D_{0} is bounded in A_{0} we can use the compactness assumption on T to find a finite subset $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of B such that

$$
T\left(D_{0}\right) \subset \bigcup_{j=1}^{n}\left\{b_{j}+\left\{b \in B:\|b\|_{B} \leq \varepsilon / 3\right\}\right\}
$$

Now, for $a \in D$ with $a=a_{0}+a_{1}+a_{2}$ and $a_{i} \in D_{i}$ (in fact $a_{i} \in \Delta(\bar{A})$) we have

$$
\begin{aligned}
\left\|T a-b_{j}\right\|_{B} & \leq\left\|T a-T\left(a_{0}+a_{1}\right)\right\|_{B}+\left\|T\left(a_{0}+a_{1}\right)-T a_{0}\right\|_{B}+\left\|T a_{0}-b_{j}\right\|_{B} \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\left\|T a_{0}-b_{j}\right\|_{B}
\end{aligned}
$$

Choosing j such that $\left\|T a_{0}-b_{j}\right\|_{B} \leq \varepsilon / \mathcal{B}^{2}$ now it gives $\left\|T a-b_{j}\right\|_{B} \leq \varepsilon$. This shows the precompactness of $T(D)$. Thus $T: \bar{A}_{\bar{\theta}, p, K} \rightarrow B$ is compact.

Next, we consider general Banach triples $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ and $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$.
Theorem 4.3. Let $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right) \in(0,1)^{2}$ and $1 \leq p<\infty$, let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ and $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$ be two Banach triples. If $T \in \mathscr{C}(\bar{A}, \bar{B})$ is an operator such that $T: A_{i} \rightarrow B_{i}(i=0,1,2)$ are compact Lipschitz operators then

$$
T: \bar{A}_{\bar{\theta}, p, J} \rightarrow\left(\left(B_{0}, B_{2}\right)_{\theta_{2}, p},\left(B_{1}, B_{2}\right)_{\theta_{2}, p}\right)_{\lambda, p}
$$

where $\lambda=\frac{\theta_{1}}{1-\theta_{2}}$, is compact Lipschitz operator.
Proof. Since $T: A_{i} \rightarrow B_{i}(i=0,1,2)$ are compact Lipschitz operators, in view of Bento result ([3], Theorem 5.1) we deduce that

$$
T:\left(A_{i}, A_{j}\right)_{\theta_{2}, p} \rightarrow\left(B_{i}, B_{2}\right)_{\theta_{2}, p} \quad(i=0,1)
$$

are compact Lipschitz operators.
Then

$$
T:\left(\left(A_{0}, A_{2}\right)_{\theta_{2}, p}\left(A_{1}, A_{2}\right)_{\theta_{2}, p}\right)_{\lambda, p} \rightarrow\left(\left(B_{0}, B_{2}\right)_{\theta_{2}, p},\left(B_{1}, B_{2}\right)_{\theta_{2}, p}\right)_{\lambda, p}
$$

is also a compact Lipschitz operator. Now, the result follows from (3).
Corollary 4.2. If $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ and $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$ are LP Banach triples, then, under the same assumption as in Theorem 4.3 we have

$$
T: \bar{A}_{\bar{\theta}, p} \rightarrow \bar{B}_{\bar{\theta}, p} \quad \text { is compact Lipschitz operator. }
$$

Theorem 4.4. Let $\bar{X}=\left(X_{0}, X_{1}\right)$ and $\bar{Y}=\left(Y_{0}, Y_{1}\right)$ be two Banach couples. Suppose that $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ and $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$ are Banach triples such that A_{i} is of class $\mathscr{C}\left(\theta_{i}, \bar{X}\right)$, with $0<\theta_{0}<\theta_{1}<\theta_{2}<1$ and B is of class $\mathscr{C}\left(\psi_{i}, \bar{Y}\right)$, with $0<$ $\psi_{0}<\psi_{1}<\psi_{2}<1$. If $T \in \mathscr{C}(\bar{X}, \bar{Y})$ is an operator such that $T: X_{i} \rightarrow Y_{i}, i=0,1$ are compact Lipschitz operators, then $T: \bar{A}_{(\alpha, \beta), p} \rightarrow \bar{B}_{(\alpha, \beta), p}$ is compact Lipschitz operator for all values of $(\alpha, \beta) \in(0,1)^{2}$, with $\alpha+\beta<1$,

$$
(1-\alpha-\beta) \theta_{0}+\alpha \theta_{1}+\beta \theta_{2}=(1-\alpha-\beta) \psi_{0}+\alpha \psi_{1}+\beta \psi_{2} \text { and } p \in[1, \infty)
$$

Proof. Since A_{i} is of class $\mathscr{C}\left(\theta_{i}, \bar{X}\right)$ we have (see [9])

$$
\left(X_{0}, X_{1}\right)_{\eta, p}=\bar{A}_{(\alpha, \beta), p, J}=\bar{A}_{(\alpha, \beta), p, K}
$$

where $\eta=(1-\alpha-\beta) \theta_{0}+\alpha \theta_{1}+\beta \theta_{2}$. Similarly

$$
\left(Y_{0}, Y_{1}\right)_{\eta, p}=\bar{B}_{(\alpha, \beta), p, J}=\bar{B}_{(\alpha, \beta), p, K}
$$

where $\eta=(1-\alpha-\beta) \psi_{0}+\alpha \psi_{1}+\beta \psi_{2}$. Now, the result follows from (5).

References

[1] I. Asekritova, N. Krugljak, On Equivalence of K and J methods for $(n+1)$-tuples of Banach spaces, Studia Math., 122, 99-116 (1997).
[2] J. Asekritova, N. Krugljak, L. Malingranda, L. Nicolova, L-E Persso, Lions-Peetre reiteration formulas for triples and their applications, Studia Math, 145 (3), 219-254 (2001).
[3] A.J.G. Bento, Interpolation of Compact Non-Linear Operators, J. of Inequal G Appl., 5, 227-261 (2000).
[4] J. Bergh, J. Löfström, Interpolation Spaces. An introduction, Spring Berlin, 1976.
[5] F. Cobos, On interpolation of compact non-linear operators, Bull. London Math. Soc., 22, 273-280 (1991).
[6] F. Cobos, P. Fernandez-Martinez, A. Martinez, Y. Raynaud, On duality between K-and J spaces, Proceedings of the Edinburgh Mathematical Society 42, 43-63 (1999).
[7] N. Cofan, I. Stan, Interpolation of compact operators in the multidimensional case, Monografii Matematice, Universitatea de Vest Timişoara, Facultatea de Matematică, nr 76, 1-64 (2003).
[8] J.L. Lions, J. Peetre, Sur une classe d'espaces f'interpolation, Inst. Hautes Etudes Sci. Publ. Math. 19, 5-68 (1964).
[9] D. Mihailov, I. Stan, On Sparr and Fernandez's interpolation methods of Banach spaces, Novi Sad, J. Math. 32, no 2, 37-45 (2002).
[10] G. Sparr, Interpolation of several Banach spaces, Ann. Math. Pura Appl., 247-316 (1974).
(Nicolae Cofan) Department of Mathematics, "Politehnica" University of Timişoara,
Piaţa Regina Maria, No. 1, Timişoara, Romania
E-mail address: ncofan50@yahoo.com
(Ilie Stan) Department of Mathematics, West University of Timişoara, Bd. Vasile Parvan, No. 4, Timişoara 300223, Romania
E-mail address: stan@tim1.uvt.ro

