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On generalized weighted fractional order derivatives and Dar-
boux problem for partial differential equations

Abstract. This paper unveils a novel mathematical construct, namely the weighted fractional

derivative, and delves into its comprehensive exploration. By formulating pertinent hypotheses
concerning the source term, the manuscript not only verifies the existence, uniqueness, and

stability of solutions for Darboux problems but also introduces the transformative aspect of

the weighted fractional operator in this context.
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1. Introduction

Fractional calculus revolutionizes the traditional notions of differentiation and integra-
tion by extending them into the realm of non-integer orders. While initially capturing
the interest of physicists, this mathematical frontier has since become a focal point
for mathematicians and engineers alike. The profound implications of fractional cal-
culus and its application to differential equations of fractional order permeate diverse
domains such as electrochemistry, control systems, biology, and viscoelasticity, among
others (see [20, 16, 25, 24] for in-depth exploration). Recent years have borne witness
to significant strides in both ordinary and partial fractional differential equations,
with detailed progress chronicled in [4, 6, 12, 13, 9].

The pioneering contribution of [17] marks a transformative milestone, reshaping
conventional perspectives with the integration of Caputo and Riemann-Liouville (RL)
weighted operators. These operators, intricately designed with kernels grounded in
weighted functions, not only amplify the existing capabilities of the Caputo and RL
operators but also embody the essential property of a semi-group. This innovative
framework expands the horizons of fractional calculus, introducing a nuanced ap-
proach that resonates across diverse academic domains.

Numerous scholarly endeavors have delved into the intricacies of the Darboux prob-
lem concerning partial differential equations, offering a rich tapestry of insights. En-
thusiastic readers seeking a comprehensive understanding of this topic are encour-
aged to explore the extensive discussions provided in various publications, including
[1, 2, 22, 23, 4, 6]. These works not only scrutinize the Darboux problem from diverse
perspectives but also contribute to the broader discourse surrounding this intricate
facet of partial differential equations.

This study is dedicated to a thorough examination of the existence, uniqueness,
and stability of solutions pertaining to fractional partial differential systems. We
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specifically concentrate our efforts on systems articulated by the following form:

CDυ,$
a+ U (ζ, ϑ) = F (ζ, ϑ,U (ζ, ϑ)) , (ζ, ϑ) ∈ J = [a1, b1]× [a2, b2] ,

U (ζ, a2) = ϕ (ζ) , ζ ∈ [a1, b1] ,

U (a1, ϑ) = ψ (ϑ) , ϑ ∈ [a2, b2] ,

ϕ (a1) = ψ (a2) ,

(1.1)

where $ = ($1, $2) , $1(ζ) 6= 0, $2(ϑ) 6= 0 are continuous, positive and non-
decreasing functions on [a1, b1] and [a2, b2] respectively, a = (a1, a2) ∈ R2, υ =

(υ1, υ2) ∈ (0, 1)
2
, CDv,$

a+ is the generalized weighted Caputo fractional derivative of
order υ and F : J ×R→ R, ϕ : [a1, b1]→ R and ψ : [a2, b2]→ R are given continuous
functions.

The subsequent sections of the manuscript unfold as follows: Section 2 provides a
comprehensive exposition of diverse definitions and preliminaries crucial for the un-
derstanding of the subsequent developments. Moving forward, Section 3 meticulously
presents the proofs elucidating the results concerning the existence, uniqueness, and
stability aspects.

2. Preliminarily

In this section, we present crucial definitions, lemmas, and propositions essential to
underpin our subsequent findings.
Consider a = (a1, a2) ∈ R2 and υ = (υ1, υ2) with υ1 and υ2 are positive real numbers
and $1(ζ) 6= 0, $2(ϑ) 6= 0 are positive, continuous and non-decreasing functions
where

$−1
1 (ζ) =

1

$1(ζ)
, and $−1

2 (ϑ) =
1

$2(ϑ)
.

Definition 2.1. The weighted RL integral of order υ for U(ζ, ϑ) ∈ L1 (J) is defined
as

Iυ,$a+ U (ζ, ϑ) =
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

$1(s)$2(t)U(s, t)dtds,

Definition 2.2. The weighted RL derivative of order υ ∈ (0, 1)
2

for U(ζ, ϑ) ∈ L1 (J)
is defined as

Dυ,$
a+ U (ζ, ϑ) = D1,$I1−υ,$

a+ U (ζ, ϑ)

= D1,$ $−1
1 (ζ)$−1

2 (ϑ)

Γ(1− υ1)Γ(1− υ2)

∫ ζ

a1

∫ ϑ

a2

$1(s)$2(t)U(s, t)

(ζ − s)υ1 (ϑ− t)υ2
dtds

=
$−1

1 (ζ)$−1
2 (ϑ)

Γ(1− υ1)Γ(1− υ2)

∂2

∂ζ∂ϑ

∫ ζ

a1

∫ ϑ

a2

$1(s)$2(t)U(s, t)

(ζ − s)υ1 (ϑ− t)υ2
dtds

where

D1,$U (ζ, ϑ) = $−1
1 (ζ)$−1

2 (ϑ)
∂2

∂ζ∂ϑ
($1(ζ)$2(ϑ)U (ζ, ϑ)) .
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Definition 2.3. The weighted Caputo derivative of U(ζ, ϑ) ∈ L1 (J) of order υ ∈
(0, 1)

2
is defined as

CDυ,$
a+ U (ζ, ϑ) = Dυ,$

a+

(
U(ζ, ϑ)−$−1

1 (ζ)$1(a1)U(a1, ϑ)

−$−1
2 (ϑ)$2(a2)U(ζ, a2) +$−1

1 (ζ)$−1
2 (ϑ)$1(a1)$2(a2)U(a1, a2)

)
.

Lemma 2.1. Let υ = (υ1, υ2) , σ = (σ1, σ2) where υ1, υ2, σ1, σ2 are positive real
numbers. If U (ζ, ϑ) ∈ C(J), then

Iυ,$a+ Iσ,$a+ U (ζ, ϑ) = Iσ,$a+ Iυ,$a+ U (ζ, ϑ) = Iυ+σ,$
a+ U (ζ, ϑ) .

Proof. We have

Iυ,$a+ Iσ,$a+ U (ζ, ϑ) =
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t)Iσ,$a+ U(s, t)dtds

=
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)Γ(σ1)Γ(σ2)

∫ ζ

a1

∫ ϑ

a2

∫ s

a1

∫ t

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

× (s− τ)
σ1−1

(t− u)
σ2−1

$1(τ)$2(u)U(τ, u)dudτdtds.

By using Fubini’s theorem, we obtain

Iυ,$a+ Iσ,$a+ U (ζ, ϑ)

=
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)Γ(σ1)Γ(σ2)

∫ ζ

a1

∫ ϑ

a2

$1(τ)$2(u)U(τ, u)

×
∫ ζ

τ

∫ ϑ

u

(ζ − s)υ1−1
(ϑ− t)υ2−1

(s− τ)
σ1−1

(t− u)
σ2−1

dtdsdudτ

=
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)Γ(σ1)Γ(σ2)

∫ ζ

a1

∫ ϑ

a2

(
$1(τ)$2(u)U(τ, u)

×
∫ ζ

τ

(ζ − s)υ1−1
(s− τ)

σ1−1
ds

∫ ϑ

u

(ϑ− t)υ2−1
(t− u)

σ2−1
dt
)
dudτ.

By using the change of variables ξ = s−τ
ζ−τ , η = t−u

ϑ−u and by using the fact that∫ 1

0

(1− r)α−1
rβ−1dr = B(α, β) and B(α, β) = Γ(α)Γ(β)

Γ(α+β) , we get

Iυ,$a+ Iσ,$a+ U (ζ, ϑ)

=
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)Γ(σ1)Γ(σ2)

∫ ζ

a1

∫ ϑ

a2

(
(ζ − τ)

υ1+σ1−1
(ϑ− u)

υ2+σ2−1
$1(τ)

×$2(u)U(τ, u)

∫ 1

0

ξσ1−1 (1− ξ)υ1−1
dξ

∫ 1

0

ησ2−1 (1− η)
υ2−1

dη

)
dudτ

=
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1 + σ1)Γ(υ2 + σ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − τ)
υ1+σ1−1

(ϑ− u)
υ2+σ2−1

×$1(τ)$2(u)U(τ, u)dudτ

= Iυ+σ,$
a+ U (ζ, ϑ) .

�

Lemma 2.2. Let υ = (υ1, υ2) ∈ (0, 1)
2
. If U(ζ, ϑ) ∈ C (J), then we have

Dυ,$
a+

(
Iυ,$a+ U

)
(ζ, ϑ) = U (ζ, ϑ) .
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Proof. From Lemma 2.1 and Definition 2.2, we obtain

Dυ,$
a+ Iυ,$a+ U (ζ, ϑ) = D1,$

(
I1−υ,$
a+ Iυ,$a+ U

)
(ζ, ϑ)

= D1,$I1,$
a+ U (ζ, ϑ)

= U (ζ, ϑ) .

�

Proposition 2.3. Let υ = (υ1, υ2) ∈ (0, 1)
2

and U (ζ, ϑ) ∈ AC1(J). Then, we have

CDυ,$
a+ U (ζ, ϑ) = I1−υ,$

a+ D1,$U (ζ, ϑ)

=
$−1

1 (ζ)$−1
2 (ϑ)

Γ(1− υ1)Γ(1− υ2)

∫ ζ

a1

∫ ϑ

a2

$1(s)$2(t)D1,$U(s, t)

(ζ − s)υ1 (ϑ− t)υ2
dtds.

Lemma 2.4. If U (ζ, ϑ) ∈ AC1(J), then

Iυ,$a+
CDυ,$

a+ U (ζ, ϑ)

=
(

U(ζ, ϑ)−$−1
1 (ζ)$1(a1)U(a1, ϑ)−$−1

2 (ϑ)$2(a2)U(ζ, a2)

+$−1
1 (ζ)$−1

2 (ϑ)$1(a1)$2(a2)U(a1, a2)
)
.

Definition 2.4. [15] Let ι ∈ N∗, αj , βj , z, ν ∈ C, such that <(αj),<(βj) > 0 for
j ∈ {1, 2, . . . , ι}. The generalized Mittag-Leffler function is defined by

Eν
(

(αj , βj)j=1,ι ; (z)
)

=

+∞∑
κ=0

(ν)κ∏ι
j=1 Γ(καj + βj)

zκ

κ!
,

where

(ν)κ = ν (ν + 1) . . . (ν + κ− 1) =
Γ (ν + κ)

Γ (ν)
.

In particular, when ι = 2 and ν = 1, we obtain

E1

(
(αj , βj)j=1,2 ; (z)

)
= E

(
(αj , βj)j=1,2 ; (z)

)
=

+∞∑
κ=0

zκ

Γ(κα1 + β1)Γ(κα2 + β2)
.

The motivation behind the Lemma below stems from Theorem 1 in [14].

Lemma 2.5. Let (υ1, υ2) ∈ (0, 1)
2
. Suppose that U and H are two integrable non-

negative functions, and G is a continuous function on J with $1 and $2 are continuous
functions on [a1, b1] and [a2, b2] respectively. Additionally, assume that G , $1, and
$2 are non-negative and non-decreasing concerning their respective variables. If

U (ζ, ϑ) ≤ H (ζ, ϑ) + G (ζ, ϑ)$−1
1 (ζ)$−1

2 (ϑ)

∫ ζ

a+1

∫ ϑ

a+2

$1(s)$2(t)

× (ζ − s)υ1−1
(ϑ− t)υ2−1 U (s, t) dtds,

then

U (ζ, ϑ) ≤ H (ζ, ϑ) +$−1
1 (ζ)$−1

2 (ϑ)

∫ ζ

a+1

∫ ϑ

a+2

∞∑
k=1

(G (ζ, ϑ) Γ (υ1) Γ (υ2))
k

Γ (kυ1) Γ (kυ2)

×$1(s)$2(t) (ζ − s)kυ1−1
(ϑ− t)kυ2−1 H (s, t) dtds.
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Furthermore, if H exhibits nondecreasing with respect to each ζ and ϑ, then

U (ζ, ϑ) ≤ H (ζ, ϑ)E
(

(υ1, 1) , (υ2, 1) ; G (ζ, ϑ) Γ (υ1) Γ (υ2) (ζ − a1)
υ1 (ϑ− a2)

υ2
)
.

3. Main results

In this part, we discuss the existence problem of System (1.1). Before, we establish
the next lemma.

Lemma 3.1. U ∈ C (J) is a solution of (1.1) if and only if

U(ζ, ϑ) = $−1
1 (ζ)$1(a1)ψ (ϑ) +$−1

2 (ϑ)$2(a2)ϕ (ζ)

−$−1
1 (ζ)$−1

2 (ϑ)$1(a1)$2(a2)ϕ (a1) + Iυ,$a+ F
(
ζ, ϑ,U (ζ, ϑ)

)
.

(3.1)

Proof. Assume that U satisfies Equation (3.1). Applying CDυ,$
a+ and from Lemma

2.2, we deduce that U is a solution of (1.1). Since Iυ,$a+ F
(
ζ, ϑ,U (ζ, ϑ)

)
vanishes when

ζ = a1 or ϑ = a2, then the initial conditions in System (1.1)) are satisfied. Therefore,
U is a solution of System (1.1).

Now, suppose that U is a solution of System (1.1), and let us consider

h (ζ, ϑ) = F (ζ, ϑ,U (ζ, ϑ))Dυ,$
a+

(
U(ζ, ϑ)−$−1

1 (ζ)$1(a1)U(a1, ϑ)

−$−1
2 (ϑ)$2(a2)U(ζ, a2) +$−1

1 (ζ)$−1
2 (ϑ)$1(a1)$2(a2)U(a1, a2)

)
D1,$
a+ I1−υ,$

a+

(
U(ζ, ϑ)−$−1

1 (ζ)$1(a1)U(a1, ϑ)

−$−1
2 (ϑ)$2(a2)U(ζ, a2) +$−1

1 (ζ)$−1
2 (ϑ)$1(a1)$2(a2)U(a1, a2)

)
.

(3.2)

Applying the operator I1,$
a+ to (3.2), we get

I1,$
a+ h (ζ, ϑ) = I1−υ,$

a+

(
U(ζ, ϑ)−$−1

1 (ζ)$1(a1)U(a1, ϑ)

−$−1
2 (ϑ)$2(a2)U(ζ, a2) +$−1

1 (ζ)$−1
2 (ϑ)$1(a1)$2(a2)U(a1, a2)

)
.

Applying the operator D1−υ,$
a+ to the above equation, we obtain

U(ζ, ϑ)−$−1
1 (ζ)$1(a1)U(a1, ϑ)−$−1

2 (ϑ)$2(a2)U(ζ, a2)

+$−1
1 (ζ)$−1

2 (ϑ)$1(a1)$2(a2)U(a1, a2)

= D1−υ,$
a+ I1,$

a+ h (ζ, ϑ)

= D1,$Iυ,$a+ I1,$
a+ h (ζ, ϑ)

= Iυ,$a+ h (ζ, ϑ) ,

and the proof is completed. �

In what follows, let us assume that the function F satisfies the following hypotheses:
(H1) There exist J and N in C (J,R+) such that

|F (ζ, ϑ,U)| ≤ J (ζ, ϑ) + N (x, y) |U| , ∀ (ζ, ϑ) ∈ J , U ∈ R,
(H2) There is LF > 0 with

|F (ζ, ϑ,U)− F (ζ, ϑ,V )| ≤ LF |U − V | , ∀ (ζ, ϑ) ∈ J , U,V ∈ R.
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Theorem 3.2. Assume that (H1) hold, then System (1.1) possesses at least one
solution.

Proof. Let us define the operator A : C (J,R)→ C (J,R) by

(AU) (ζ, ϑ) = T (ζ, ϑ) +
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1

× (ϑ− t)υ2−1
$1(s)$2(t)F

(
s, t,U(s, t)

)
dtds,

where the function T is defined for every (ζ, ϑ) ∈ J as follows:

T (ζ, ϑ) = $−1
1 (ζ)$1(a1)ψ (ϑ) +$−1

2 (ϑ)$2(a2)ϕ (ζ)

−$−1
1 (ζ)$−1

2 (ϑ)$1(a1)$2(a2)ϕ (a1) .
(3.3)

Certainly, A is continuous. We proceed to demonstrate that A is bounded in C (J,R)
into C (J,R). To establish this, we aim to prove that for any R > 0, there exists L > 0
such that for every U ∈ BR = {U ∈ C (J,R) , ‖U‖∞ ≤ R} , we have ‖AU‖∞ ≤ L.
Consider U ∈ BR and (ζ, ϑ) ∈ J ; then, we obtain

|(AU) (ζ, ϑ)| ≤ |T (ζ, ϑ)|+ $−1
1 (ζ)$−1

2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1

× (ϑ− t)υ2−1
$1(s)$2(t)

∣∣F (s, t,U(s, t)
)∣∣ dtds.

From (H1), we obtain

|(AU) (ζ, ϑ)| ≤ |T (ζ, ϑ)|+ $−1
1 (ζ)$−1

2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1

× (ϑ− t)υ2−1
$1(s)$2(t)

(
J (s, t) + N (s, t) |U(s, t)|

)
dtds

≤ ‖T ‖∞ +

(
‖J‖∞ + ‖N ‖∞R

)
Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

dtds

≤ ‖T ‖∞ +

(
‖J‖∞ + ‖N ‖∞R

)
Γ(υ1 + 1)Γ(υ2 + 1)

(ζ − a1)
υ1 (ϑ− a2)

υ2 .

Then, for any U ∈ BR there exists

L = ‖T ‖∞ +

(
‖J‖∞ + ‖N ‖∞R

)
Γ(υ1 + 1)Γ(υ2 + 1)

(b1 − a1)
υ1 (b2 − a2)

υ2

such that ‖AU‖∞ ≤ L.
Next, we establish that A maps bounded sets in C (J,R) into equicontinuous sets

in C (J,R). Consider (ζ1, ϑ1), (ζ2, ϑ2) ∈ J such that ζ1 < ζ2 and ϑ1 < ϑ2, and let
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U ∈ BR. From (H1), we obtain

|(AU) (ζ2, ϑ2)− (AU) (ζ1, ϑ1)|

≤
(
‖J‖∞ + ‖N ‖∞R

)
Γ(υ1)Γ(υ2)

∫ ζ1

a1

∫ ϑ1

a2

(
(ζ1 − s)υ1−1 (ϑ1 − t)υ2−1− (ζ2 − s)υ1−1 (ϑ2 − t)υ2−1

)
dtds

+
$2(b2)

∣∣$−1
2 (ϑ2)−$−1

2 (ϑ1)
∣∣

Γ(υ1)Γ(υ2)

(
‖J‖∞ + ‖N ‖∞R

)
×
∫ ζ1

a1

∫ ϑ1

a2

(ζ1 − s)υ1−1 (ϑ1 − t)υ2−1 dtds

+
$1(b1)

∣∣$−1
1 (ζ2)−$−1

1 (ζ1)
∣∣

Γ(υ1)Γ(υ2)

(
‖J‖∞ + ‖N ‖∞R

)
×
∫ ζ1

a1

∫ ϑ1

a2

(ζ1 − s)υ1−1 (ϑ1 − t)υ2−1 dtds

+

(
‖J‖∞ + ‖N ‖∞R

)
Γ(υ1)Γ(υ2)

∫ ζ1

a1

∫ ϑ2

ϑ1

(ζ2 − s)υ1−1 (ϑ2 − t)υ2−1 dtds

+

(
‖J‖∞ + ‖N ‖∞R

)
Γ(υ1)Γ(υ2)

∫ ζ2

ζ1

∫ ϑ1

a2

(ζ2 − s)υ1−1 (ϑ2 − t)υ2−1 dtds

+

(
‖J‖∞ + ‖N ‖∞R

)
Γ(υ1)Γ(υ2)

∫ ζ2

ζ1

∫ ϑ2

ϑ1

(ζ2 − s)υ1−1 (ϑ2 − t)υ2−1 dtds+ |T (ζ2, ϑ2)− T (ζ1, ϑ1)|

≤
(
‖J‖∞ + ‖N ‖∞R

)
Γ(υ1 + 1)Γ(υ2 + 1)

((
$1(b1)

∣∣$−1
1 (ζ2)−$−1

1 (ζ1)
∣∣

+$2(b2)
∣∣$−1

2 (ϑ2)−$−1
2 (ϑ1)

∣∣ ) (b1 − a1)υ1 (b2 − a2)υ2

+2
(

(ζ2 − a1)υ1 (ϑ2 − ϑ1)υ2 + (ζ2 − ζ1)υ1 (ϑ2 − a2)υ2
))

+ |T (ζ2, ϑ2)− T (ζ1, ϑ1)| .

As ζ1 → ζ2 and ϑ1 → ϑ2, the right hand sides of the above inequality tend to zero.
Finally, we prove a priori bounds. Let U ∈ C (J,R) such that U = λA (U) for some

λ ∈ (0, 1) . Then, for any (ζ, ϑ) ∈ J , we have

|U (ζ, ϑ)| ≤ |T (ζ, ϑ)|+ $−1
1 (ζ)$−1

2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t)
∣∣F (s, t,U(s, t)

)∣∣ dtds,
From (H1), we have

|U (ζ, ϑ)| ≤ |T (ζ, ϑ)|+ $−1
1 (ζ)$−1

2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t)
(

J (s, t) + N (s, t) |U(s, t)|
)
dtds

≤ ‖T ‖∞ +
‖J‖∞

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

dtds

+

(
‖N ‖∞$−1

1 (ζ)$−1
2 (ϑ)

)
Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1 (s)$2 (t) |U(s, t)| dtds
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≤ ‖T ‖∞ +
‖J‖∞

Γ(υ1 + 1)Γ(υ2 + 1)
(ζ − a1)

υ1 (ϑ− a2)
υ2

+

(
‖N ‖∞$−1

1 (ζ)$−1
2 (ϑ)

)
Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1 (s)$2 (t) |U(s, t)| dtds.

In view of Lemma 2.5 we get,

|U (ζ, ϑ)| ≤
(
‖T ‖∞ +

‖J‖∞
Γ(υ1 + 1)Γ(υ2 + 1)

(ζ − a1)
υ1 (ϑ− a2)

υ2

)
×E
(

(υ1, 1) , (υ2, 1) ; ‖N ‖∞ (ζ − a1)
υ1 (ϑ− a2)

υ2
)

≤
(
‖T ‖∞ +

‖J‖∞
Γ(υ1 + 1)Γ(υ2 + 1)

(b1 − a1)
υ1 (b2 − a2)

υ2

)
×E
(

(υ1, 1) , (υ2, 1) ; ‖N ‖∞ (b1 − a1)
υ1 (b2 − a2)

υ2
)
.

Set

M =

(
‖T ‖∞ +

‖J‖∞
Γ(υ1 + 1)Γ(υ2 + 1)

(b1 − a1)
υ1 (b2 − a2)

υ2

)
×E
(

(υ1, 1) , (υ2, 1) ; ‖N ‖∞ (b1 − a1)
υ1 (b2 − a2)

υ2
)

and let

W =
{

U ∈ C (J,R) , ‖U‖∞ < M + 1
}
,

then, one can not find U ∈ ∂W s.t. U = λA (U) , for any λ ∈ (0, 1) . It yields from
Theorem 2.8 in [5] that A admits a fixed point and the proof is completed. �

Theorem 3.3. Assume that (H2) hold, then System (1.1) possesses a unique solution.

Proof. We know that if (H2) is holds then, (H1) is holds so, the System (1.1) has
at least one solution. It remains to prove the uniqueness of solution, to this end we
suppose that (1.1) has tow solutions U (x, y) and V (x, y) then,

|U (x, y)− V (x, y)| ≤ $−1
1 (ζ)$−1

2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t)
∣∣F (s, t,U(s, t)

)
− F

(
s, t,V (s, t)

)∣∣ dtds
≤ $−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)
LF

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t) |U(s, t)− V (s, t)| dtds

it follows from Lemma 2.5 that U (x, y) = V (x, y) Hence, the System (1.1) has a
unique solution. �

4. Ulam stability

In this section, we discuss the Ulam type stability of System (1.1). to define the
Ulam-Hyers stability, ∀ε > 0, and (ζ, ϑ) ∈ J , we consider the following inequality∣∣CDυ,$

a+ V (ζ, ϑ)− F (ζ, ϑ,V (ζ, ϑ))
∣∣ < ε. (4.1)
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Definition 4.1. System (1.1) is said to be Ulam-Hyers stable if there is C > 0 such
that for every ε > 0, and for all V ∈ C (J,R) a solution of the inequality (4.1), there
is U ∈ C (J,R) a solution of (1.1) such that

|V (ζ, ϑ)− U (ζ, ϑ)| ≤ Cε, (ζ, ϑ) ∈ J. (4.2)

Remark 4.1. Let V be a solution of the inequality (4.1) then V is a solution of the
following integral inequality∣∣∣V (ζ, ϑ)− K (ζ, ϑ)− $−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t)F
(
s, t,V (s, t)

)
dtds

∣∣∣
≤ ε (ζ − a1)

υ1 (ϑ− a2)
υ2

Γ(υ1 + 1)Γ(υ2 + 1)
,

(4.3)

where K (ζ, ϑ) is given by

K (ζ, ϑ) = $−1
1 (ζ)$1(a1)V (a1, ϑ) +$−1

2 (ϑ)$2(a2)V (ζ, a2)

−$−1
1 (ζ)$−1

2 (ϑ)$1(a1)$2(a2)V (a1, a2) .

Theorem 4.2. Assume that (H2) is satisfied. Then System (1.1) is Ulam-Hyers
stable.

Proof. Let V be a solution of (4.1) and U the unique solution of the following Cauchy
problem 

CDυ,$
a+ U (ζ, ϑ) = F (ζ, ϑ,U (ζ, ϑ)) , (ζ, ϑ) ∈ J,

U (ζ, a2) = V (ζ, a2) , ζ ∈ [a1, b1] ,

U (a1, ϑ) = V (ζ, a2) , ϑ ∈ [a2, b2] ,

Therefore,

U (ζ, ϑ) = K (ζ, ϑ) +
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t)F (s, t,U(s, t)) dtds

From Remark 4.1 and (H2) we have,

|V (ζ, ϑ)− U (ζ, ϑ)|

≤
∣∣∣V (ζ, ϑ)− K (ζ, ϑ)− $−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t)F (s, t,V (s, t)) dtds
∣∣∣

+
$−1

1 (ζ)$−1
2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t)
∣∣F (s, t,V (s, t)

)
− F

(
s, t,U(s, t)

)∣∣ dtds
≤ ε (ζ − a1)

υ1 (ϑ− a2)
υ2

Γ(υ1 + 1)Γ(υ2 + 1)
+ Lf

$−1
1 (ζ)$−1

2 (ϑ)

Γ(υ1)Γ(υ2)

∫ ζ

a1

∫ ϑ

a2

(ζ − s)υ1−1
(ϑ− t)υ2−1

×$1(s)$2(t) |V (s, t)− U(s, t)| dtds.
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From Lemma 2.5 we obtain

|V (ζ, ϑ)− U (ζ, ϑ)|

≤ ε (ζ − a1)
υ1 (ϑ− a2)

υ2

Γ(υ1 + 1)Γ(υ2 + 1)
E
(

(υ1, 1) , (υ2, 1) ;Lf (ζ − a1)
υ1 (ϑ− a2)

υ2
)

≤ ε (b1 − a1)
υ1 (b2 − a2)

υ2

Γ(υ1 + 1)Γ(υ2 + 1)
E
(

(υ1, 1) , (υ2, 1) ;Lf (b1 − a1)
υ1 (b2 − a2)

υ2
)

:= Cε

where

C =
(b1 − a1)

υ1 (b2 − a2)
υ2

Γ(υ1 + 1)Γ(υ2 + 1)
E ((υ1, 1) , (υ2, 1) ;Lf (b1 − a1)

υ1 (b2 − a2)
υ2) .

Consequently, System (1.1) is Ulam-Hyers stable and this is complete the proof. �

Example 4.3. Let us consider the following problem
CDυ,$

a+ U (ζ, ϑ) = F (ζ, ϑ,U (ζ, ϑ)) , (ζ, ϑ) ∈ J = [0, 1]× [0, 1] ,

U (ζ, 0) = sinh (ζ) , ζ ∈ [0, 1] ,

U (0, ϑ) = exp (ϑ)− 1, ϑ ∈ [0, 1] ,

(4.4)

where a = (0, 0), υ =
(

1
2 ,

1
2

)
, $ = ($1, $2) with ($1 (ζ) , $2 (ϑ)) = (exp(ζ), exp(ϑ))

and F (ζ, ϑ,U) = cosh (ζ + ϑ) + arctan (U) .
For all U,V ∈ R and (ζ, ϑ) ∈ [0, 1]× [0, 1], we have

|F (ζ, ϑ,U)| ≤ cosh (ζ + ϑ) + |U| , (4.5)

|F (ζ, ϑ,U)− F (ζ, ϑ,V )| ≤ |U − V | . (4.6)

Hence, the assumptions (H1) and (H2) are satisfied. As a consequence of Theorem 3.2
and Theorem 4.2 we deduce that the (IVP) (4.4) has a unique solution on [0, 1]×[0, 1]
and it is Ulam-Hyers stable.

5. Conclusion

This paper explores the nuances surrounding a newly formulated mathematical con-
struct known as the weighted fractional derivative. Through a meticulous formulation
of hypotheses concerning the source term, the manuscript navigates the complexities
of mathematical analysis to ascertain not only the existence but also the uniqueness
and stability of solutions for Darboux problems. A distinctive feature of this study
is the incorporation of the weighted fractional operator, introducing a nuanced layer
that enhances the depth and precision of the analysis. The findings contribute novel
insights into fractional calculus, providing a comprehensive understanding of the im-
plications and applications of the weighted fractional derivative in addressing complex
mathematical problems.
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