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Bifurcation for Nonlinear Eigenvalue p-Laplacian Problems
Involving Lq-norm
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Abstract. In this paper, we study a global bifurcation phenomenon associated with the

non-linear problem

(Ef ) −∆pu = λ‖u‖p−qq |u|q−2u+ f(x, u, λ) in Ω,

where, the unknown u ∈ W 1,p
0 (Ω). Under some natural hypotheses on the nonlinear pertur-

bation f , we prove that (λ1, 0) is a global bifurcation point of the above problem, where λ1
stands the first eigenvalue of (E{f≡0}).
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1. Introduction

The well-known p-Laplacian operator −∆pu := −∇.
(
|∇u|p−2∇u

)
becomes the icon

of nonlinear partial differential equations. Motivated by their wide range of appli-
cations, eigenvalue problems involving the p-Laplacian operator have attracted in-
creasing attention over the past four decades. This growing interest is driven by
their deep connections to various areas of applied sciences, including bifurcation the-
ory, resonance phenomena, fluid dynamics, and quantum mechanics. See [7] and the
references therein for more details about motivational physics.

In the present work, we study the bifurcation of the boundary value problem{
−∆pu = λ‖u‖p−qq |u|q−2u+ f(x, u, λ) in Ω,

u ∈W 1,p
0 (Ω),

(1)

where Ω ⊂ RN is a smooth bounded domain, 1 < p < ∞, 1 < q < p∗, where p∗ is
defined by

p∗ :=

{
∞ if p ≥ N

Np
N−p otherwise.

λ is a real parameter representing eigenvalues. Nonlinearity f stands a function
satisfying some conditions to be specified later. The Lq-norm in (1) is justified by the

compact embedding of W 1,p
0 (Ω) in Lq(Ω) for 1 < q < p∗, including the case q = p.
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Let us mention that for 1 < q < p∗, Franzina and Lamberti [15] proved that the first
eigenvalue, denoted λ1, of the eigenvalue problem{

−∆pu = λ‖u‖p−qq |u|q−2u in Ω,

u ∈W 1,p
0 (Ω),

(2)

is characterized variationally by the following optimization

λ1: = min

{∫
Ω

|∇u|p dx : u ∈W 1,p
0 (Ω) with ‖u‖pq = 1

}
. (3)

The authors also proved that the first eigenvalue λ1 is simple, and that its corre-
sponding principal eigenfunction u1 is positive and normalized so that ‖u1‖q = 1.
Consequently, u1 is the unique positive solution to the equation

−∆pu = λ‖u‖qp−q|u|q−2u.

However, the isolation of the principal eigenvalue was not addressed in their analysis.
To overcome this gap and to establish our bifurcation result, we prove in Subsection
2.4 that λ1 is indeed isolated.

In the special case p = q, problem (2) reduces to the classical p-Laplacian eigenvalue
problem:

−∆pu = λ|u|p−2u.

Bifurcation phenomena for homogeneous Dirichlet problems in regular domains,
under specific assumptions on the nonlinearity f , have been previously investigated—see
[1, 6]. These results were later extended by the authors of [11, 12] to encompass arbi-
trary bounded domains with locally supported, independent weight functions, where
bifurcation from the interior was studied. For bifurcation problems formulated on the
entire space, we refer the reader to [13].

In this work, we extend classical results corresponding to the case p = q to the
more general situation where p 6= q, specifically assuming 1 < q < p. More precisely,
we examine a class of nonlinear boundary value problems under relaxed assumptions
on the perturbation term f , applicable to arbitrary bounded domains.

It is worth noting that when 1 < p < q, the problem becomes singular, encompass-
ing a wide variety of nonlinear models. These include, among others, equations arising
in the study of chemical catalytic reactions, non-Newtonian fluid dynamics, and heat
conduction in electrical conductors whose resistance is temperature-dependent. For
a more comprehensive discussion of such models, we refer the reader to [5, 8, 16] and
the references therein.

The structure of the paper is as follows. In Section 2, we present the necessary
preliminaries and establish a key result concerning the isolation of the principal eigen-
value. In Section 3, we first verify that our operators satisfy the hypotheses of the
generalized topological degree theory. We then demonstrate that the topological de-
gree undergoes a discontinuous jump as λ crosses λ1, leading to the bifurcation result
we aim to prove.

2. Hypotheses and preliminary results

2.1. Assumptions. Our assumptions on the nonlinearity f are as follows.
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(A1) f : Ω× R→ R is a Carathéodory function, that is, f is measurable in x ∈ Ω for
all s ∈ R and continuous in s ∈ R a.e. x ∈ Ω and we have

f(x, s, λ) = o(|s|p−1) (4)

for s near s = 0 uniformly for a.e. with respect to x ∈ Ω and uniformly with
respect to λ in bounded interval.

(A2) there is r ∈ (p, p∗) such that

lim
|s|→∞

|f(x, s, λ)|
|s|r−1

= 0 (5)

uniformly for a.e. with respect to x ∈ Ω and with respect to λ in bounded
interval.

The meaning of (A1) and (A2) show that the problem (1) is (p− 1)-superlinear and
(p− 1)-sublinear at 0 and ∞ respectively.

2.2. Compactness and Variational setting. Let us mention that the Sobolev
space W 1,p

0 (Ω) is equipped with the norm

‖u‖1,p =

(∫
Ω

|∇u|p dx
) 1

p

and the Lp-norm is denoted by ‖u‖p. Recall that W 1,p
0 (Ω) with 1 < p <∞ are reflex-

ive, separable and Banach spaces. Consider the following operators A = −∆p, B de-

fined fromW 1,p
0 (Ω) to its dual space W−1,p′(Ω) and F from R×W 1,p

0 (Ω) to W−1,p′(Ω),

for any u, v ∈W 1,p
0 (Ω) by

〈A(u), v〉 :=

∫
Ω

|∇u|p−2∇u∇u dx

〈B(u), v〉 := ‖u‖p−qq

∫
Ω

|u|q−2uv dx

〈F (λ, u), v〉 :=

∫
Ω

f(x, u, λ)v dx

where 〈., .〉 is the usual duality map defined on W−1,p′(Ω) ×W 1,p
0 (Ω). When u = v

we have

〈Au, u〉 = ‖u‖p1,p, and 〈Bu, u〉 = ‖u‖pq .

Definition 2.1. A pair (λ, u) in R×W 1,p
0 (Ω) is a weak solution of (1) if and only if∫

Ω

|∇u|p−2∇u∇v dx = λ‖u‖p−qq

∫
Ω

|u|q−2uv dx+

∫
Ω

f(x, u, λ)v dx (6)

holds true for every v ∈W 1,p
0 (Ω).

The pair (λ, 0) is called a trivial solution of (1), for anyλ ∈ R.

Here F (λ, ·) stands the Nemytskii operator generated by f . Observe that (6) is
equivalent to

Au− λBu− F (λ, u) = 0 in W−1,p′(Ω). (7)

To overcome the problem with lack of compactness on the main operator p-Laplacian,
we introduce the notion of a class of operators satisfying the called (S+) property.
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Definition 2.2. A map T acting from W 1,p
0 (Ω) into its dual W−1,p′(Ω) is said to

belong to the class (S+), if for any sequence {un} ⊂W 1,p
0 (Ω) such that

If un ⇀ u in W 1,p
0 (Ω) and lim sup

n→+∞
〈Lun, un − u〉 ≤ 0,

then
un → u in W 1,p

0 (Ω).

We denote T ∈ (S+).

Remark 2.1. The operator A has the following properties:
(i) A is odd, (p− 1)-homogeneous and strictly monotone, i.e.,

〈Au−Av, u− v〉 > 0, for all u 6= v,

(ii) A ∈ (S+). Moreover, A is a homeomorphism.

Lemma 2.1. The function B is odd, (p− 1)-homogeneous and compact.

Proof. It is clear that a map B is odd and (p − 1)-homogeneous, it suffices to show
that it is well defined and then compact. So by applying Hölder’s inequality, we have
for u, v ∈W 1,p

0 (Ω)

|〈Bu, v〉| ≤ ‖u‖p−qq

(∫
Ω

|u|(q−1)q′ dx
) 1

q′
(∫

Ω

(|v|q) dx
) 1

q

,

≤ ‖u‖p−qq ‖u‖q−1
q′ ‖v‖q,

where q′ := q
q−1 is the conjugate of q. Therefore

|〈Bu, v〉| ≤ C‖u‖p−qp ‖u‖q−1
q′ ‖v‖p,

≤ CC ′‖u‖p−q1,p ‖u‖
q−1
1,p ‖v‖1,p.

Then
‖〈Bu‖∗ ≤ CC ′‖u‖p−1

1,p ,

where C is obtained by the embedding of Lp(Ω) in Lq(Ω) and C ′ is given by the

embedding of W 1,p
0 (Ω) in Lp(Ω). Here ‖.‖∗ stands the dual norm associated with

‖∇.‖p. For the completely continuity of B, we observe that if (un)n ⊂ W 1,p
0 (Ω) and

un ⇀ u (converges weakly) in W 1,p
0 (Ω). Thanks to the compact Sobolev embedding

W 1,p
0 (Ω) into Lq(Ω), we deduce that (un) converges strongly to u in Lq(Ω), so that

there exists g ∈ Lq+(Ω) such that

|u| ≤ g a.e. in Ω.

Applying the dominated convergence theorem, one may deduce that

|un|q−2un → |u|q−2u in Lq
′
(Ω).

That is,

Bun → Bu in Lq
′
(Ω).

Recall that the following inclusions

W 1,p
0 (Ω) ↪→ Lq(Ω) and Lq

′
(Ω) ↪→W−1,q′(Ω)

are compact. Consequently

Bun → Bu in W 1,p
0 (Ω)

and then the proof of the lemma is achieved. �
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2.3. Degree theory. The man tool to prove our bifurcation results is the topological
degree. So let us recall here some basic properties of the Leray-Schauder degree (see
[3, 4, 19]). Let X be a real separable reflexive Banach space and T : X −→ X∗ be a
demi-continuous operator, that is, un ⊂ X a sequence such that

un ⇀ u implies that Tun ⇀ Tu

and if T ∈ (S+), then it is possible to define the degree Deg[T ;D,O], where D ⊂ X
is a bounded open set such that Tu 6= 0 for any u ∈ ∂D.
A point uo ∈ X will be called an isolated critical point of T if

∃ ε > 0 : ∀u ∈ Bε(uo), Tu 6= 0 with u 6= uo.

We define also the index of the isolated critical point uo, by

Ind(T, uo) = limDeg[T ;Bε(uo), 0].

The properties in The following two lemmas which we can find in [9, 10, 13], will be
used.

Lemma 2.2. Assume that T is a potential operator, i.e., for some continuously
differentiable functional Φ : X → R,Φ′(u) = Tu, u ∈ X. Let uo be a local minimum
of φ, and an isolated critical point of T . Then

Ind(T, u0) = 1.

Lemma 2.3. Assume that 〈Tu, u〉 > 0 for all u ∈ X, ‖u‖X = R. Then

Deg[T ;BR(uo), 0] = 1.

Remark 2.2. Note that every continuous map T :∈ W 1,p
0 (Ω)→ W−1,p′(Ω) is demi-

continuous and if T ∈ (S+) then (T + K) ∈ (S+), for any compact operator: K ∈
W 1,p

0 (Ω)→W−1,p′(Ω).

Now, it is time to handle to operator F by proving some specific properties.

Lemma 2.4. The operator F (λ, ·) satisfies
(i) F (λ, ·) is compact and F (λ, 0) = 0.

(ii) For any u ∈W 1,p
0 (Ω), we have

lim
‖∇u‖p→0

F (λ, u)

‖∇u‖p−1
p

= 0 in W−1,p′

0 (Ω), (8)

uniformly for λ in a bounded subset of R.

Proof. (i) First it is obvious that F (λ, 0) = 0 for any λ ∈ R.
From (4) and (5), one obtains∫

Ω

|f(x, s, λ)|r
′
dx ≤ C

∫
Ω

|u(x)|r dx, (9)

where r ∈ (p, p∗). Such choice of the exponent r ensures that Lr(Ω) ↪→ Lr
′(p−1)(Ω)

since r′(p − 1) ≤ p′(p − 1) = p, so that the inequality (9) is justified. Then

F (λ, u) maps from Lr(Ω) into Lr
′
(Ω).Moreover, assume that un ⇀ u in W 1,p

0 (Ω),
hence

un → u in Lr(Ω) and F (λ, un)→ F (λ, u) in Lr
′
(Ω).
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On the other hands, since

Lr
′
(Ω) ↪→W−1,p′(Ω),

we have

F (λ, un)→ F (λ, u) in W−1,p′(Ω).

Therefore, the compactness of F (λ, .) follows.

(ii) By (A2), we claim that lim‖∇u‖p→∞
F (λ,u)

‖∇u‖p−1
p

= 0, in Lr
′
(Ω). Indeed, set v =

u
‖∇u‖p , for ‖∇u‖p large enough. Thus

F (λ, u)

‖∇u‖p−1
p

=
F (λ, u)

|u|p−1
|v|p−1. (10)

From this and Hölder’s inequality, we suppose, for some t > 1 to be specified,
that(∫

Ω

|F (λ, u)|r

‖∇u‖(p−1)r
p

)r′−1

≤

(∫
Ω

|F (λ, u)|r′t

‖∇u‖(p−1)r′t
p

) 1
t

.

(∫
Ω

|u|r′t′(p−1)

‖∇u‖(p−1)r′t′
p

) 1
t

(11)

holds. For this end, t should satisfy

p∗

p∗ − r′(p− 1)
< t <

p∗

r′(r − p)
. (12)

This bound is always possible due to the assumption p < r < p∗. Now, combining
(10) and (11) and regarding to (9), one obtains that∥∥∥∥∣∣∣∣ F (λ, u)

‖∇u‖p−1
p

∣∣∣∣r′∥∥∥∥t
t

≤ Cr
′t

∫
Ω

|v|r
′t(r−p) dx. (13)

(13) and in view that u→ 0 in W 1,p
0 (Ω), we obtains by compactness due to the

bounds (12) ∥∥∥∥∣∣∣∣ F (λ, u)

‖∇u‖p−1
p

∣∣∣∣r′∥∥∥∥t
t

→ 0 as un → 0 in W 1,p
0 (Ω). (14)

Finally, our setting of v implies that v ∈ Lp
∗
(Ω). Moreover, one may find a

constant c > 0 such that

‖|v|(p−1)r′‖t′ ≤ c
by the choice of t satisfying (12). The proof is now archived.

�

Now, we set for any λ ∈ R

Tλ = A− λB − F (λ, .).

Then, by (7), Remark 2.1, Lemma 2.1, Remark 2.2, and Lemma 2.4, we can define
the topological degree

Deg [Tλ;D, 0] ,

for any λ ∈ R, such that Tλu 6= 0, for any u ∈ ∂D, where D is any bounded open set
in W 1,p

0 (Ω).
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2.4. Isolation of the principal eigenvalue. In this subsection, we are concerned
to prove the isolation of the first eigenvalue λ1, of the auxiliary problem (2) related
to (1) for f = 0. For this, we need some useful results, which we will give later.

First we recall that a pair (λ, u) in R ×W 1,p
0 (Ω) is a weak solution of (2) if and

only if ∫
Ω

|∇u|p−2∇u∇v dx = λ‖u‖p−qq

∫
Ω

|u|q−2uv dx. (15)

Now we give the following result which is a direct consequence of the Harnack’s
inequality for nonnegative solutions. We refer to [ [14] Theorem 5, 6 ] and [18].

Lemma 2.5. Let u ∈ W 1,p
0 (Ω) be a non-negative weak solution of (2) then either

u ≡ 0 or u(x) > 0 for all x ∈ Ω.

Lemma 2.6. Eigenfunctions associated to λ1 are either positive or negative in Ω.

Proof. Let u be an eigenfunction associated to λ1. For v = |u|, we have ‖v‖1,p =
‖u‖1,p and ‖u‖pq = 1, then from the characterization of λ1 given in (3) it follows that
v = |u| is an eigenfunction associated to λ1, hence by Lemma (2.5), we deduce that
v = |u| > 0 in Ω, then we conclude that u is either positive or negative in Ω. �

Proposition 2.7. Let 1 < q < p and Ω be a smooth bounded domain in RN . If λ is
an eigenvalue of (2) admitting a positive eigenfunction then λ = λ1.

Proof. Our proof is based on the following generalized Picone’s inequality (see [2,
Proposition 2.9 ]) 〈

|∇u|p−2∇u,∇
( vq

uq−1

)〉
≤ |∇v|q|∇u|p−q, (16)

which is hold for every pair of differentiable functions u, v with u ≥ 0 and v > 0. By
Young inequality, (16) implies〈

|∇u|p−2∇u,∇
( vq

uq−1

)〉
≤ q

p
|∇v|p +

p− q
p
|∇u|p. (17)

Let u1 ∈W 1,p(Ω) \ {0} be the first positive eigenfunction corresponding to λ1, u is a
positive eigenfunction corresponding to λ.
We only need to prove that λ ≤ λ1, hence by testing (15) with a nonnegative functions

v =
uq1

(ε+ u)q−1
,

and thanks to (16) and (17) we have

λ‖u‖p−qq

∫
Ω

uq−1 uq1
(ε+ u)q−1

dx =

∫
Ω

|∇u|p−1∇
( uq1

(ε+ u)q−1

)
dx,

≤
∫

Ω

|∇u1|q|∇u|p−q dx,

≤ q

p
‖∇u1‖pp +

p− q
p
‖∇u‖pp.
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By taking the limit as ε goes to 0, using the Fatou’s Lemma, we get

λ‖u‖p−qq ‖u1‖qq ≤
q

p
‖∇u1‖pp +

p− q
p
‖∇u‖pp,

≤ q

p
λ1 +

p− q
p

λ. (18)

Moreover, we can assume the normalization∫
Ω

|u1|q dx =

∫
Ω

|u|q dx = 1.

Then

‖∇u1‖pp = λ1 and ‖∇u‖pp = λ,

Thus from (16), we obtain(
1− p− q

p

)
λ ≤ q

p
λ1 =⇒ λ ≤ λ1.

�

In the following lemma we prove an estimate on the measure of N for an eigenfunc-
tion u, where N is a nodal domain of a function u, that is a closure of a connected
component of Ω \ {u = 0}.

Lemma 2.8. Let N be a nodal domain of w, wich is an eigenfunction corresponding
to 0 < λ 6= λ1, then w changes sign on N, and the estimate

|N | ≥
(
λC−1

)−γ
, (19)

holds true for some constant C = C(p, q,N,Ω),

γ :=


q(N−1)

N(p−q)−p+pq if 1 < p < N,
q

N−q if p = N,
Nq

pq+N(p−q) if p > N,

and, |B| denotes the Lebesgue measure of a subs B ⊂ RN .

Proof. By proposition 2.7 we deduce immediately that w must change sign.
To obtain estimate (19) we need to discuss three cases, for this we define on N the
function

u(x) :=

{
w(x) if x ∈ N
0 if x ∈ Ω \ N .

Assume that w ∈ W 1,p
0 (Ω). In what follows, we suppose that w > 0; the case w < 0

can be treated similarly using the same argument.
The inequality holds for every v ∈ W 1,p

0 (Ω). Now, replacing v by w and applying
Hölder’s inequality, we obtain:
Case 1: If 1 < p < N , then∫

N
|∇w|p dx = λ‖w‖p−qq,N

∫
N
|w|q dx.
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Then, ∫
N
|∇w|p dx ≤ λ|N |

p
q (1− q

p∗ )
(∫
N
|w|p

∗
dx
) p

p∗
,

≤ λ|N |p(
1
q−

1
p∗ )‖w‖pp∗,N , (20)

Now by the injection W 1,p(N ) ↪→ Lp
∗
(N ), there exists a constant C such that∫

N
|∇w|p dx =

∫
Ω

|∇u|p dx,

≥ C‖u‖pp∗ = C‖w‖pp∗,N . (21)

Thus

λ|N |
N(p−q)−p+pq

q(N−1) ≥ C.
Case 2: If p = N , we proceed as in the previous case and obtain:∫

N
|∇w|N dx ≤ λ|N |

N
q −1‖w‖NN,N . (22)

Since ∫
N
|∇w|N dx =

∫
Ω

|∇u|N dx,

≥ C‖u‖Nq = C‖w‖NN,N , (23)

where C is the constant given by the embedding W 1,N (N ) ↪→ Lq(N ). Hence

λ|N |
N−q

q ≥ C.
Case 3: If p > N , we have∫

N
|∇w|p dx+

∫
N
|w|p dx ≤ λ|N |

p
q ‖w‖p∞,N . (24)

On the other hand by appealing Morrey’s lemma,[ ∫
N
|∇w|p dx+

∫
N
|w|p dx

]
|N |

p
N−1 = ‖u‖p1,p|N |

p
N−1,

≥ C‖u‖p∞,N = C‖w‖p∞,N . (25)

Thus, we obtain

λ|N |
p
N + p

q−1 ≥ C =⇒ λ|N |
pq+N(p−q)

Nq ≥ C.
�

Theorem 2.9. The principal eigenvalue λ1 is isolated, that is, there exists η > 0
such that there is no other eigenvalue of (2) in the interval (λ1, λ1 + η) .

Proof. Assume by contradiction that λ1 is not isolated. Then we can say that there
exists a sequence of eigenvalue {λk}, such that 0 < λk ↘ λ1. Let uk be an eigenfunc-
tion corresponding to λk, by taking v = uk in (15), we have

0 <

∫
Ω

|∇uk|p dx = λk

(∫
Ω

|uk|q dx
) p

q

.

Then we can define
wk :=

uk( ∫
Ω
|uk|q dx

) 1
q

,
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which is bounded in W 1,p
0 (Ω), hence we may extract a subsequence (still denoted

wk) such that wk ⇀ w ∈ W 1,p
0 (Ω) (weakly) and due to the fact that the embed-

ding W 1,p
0 (Ω) ↪→ Lq(Ω) is compact, wk converges strangly to w in Lq(Ω). Moreover( ∫

Ω
|w|q dx

) p
q

= 1.

On the other hand

0 <

∫
Ω

|∇w|p dx ≤ lim inf
k→∞

∫
Ω

|∇wk|p dx = λ1.

Thus,
∫

Ω
|∇w|p dx = λ1 by the characterization of λ1. Therefore w is an eigenfunction

associated to λ1. Using Lemma 2.6 we can choose w > 0 on Ω, and if we denote by
Ω−k the negative set of wn. Hence we conclude from the convergence in measure of

the sequence wn towards w that |Ω−k | → 0. This contradicts estimate (19). �

3. Bifurcation result

In this section, we prove the existence of bifurcation solutions to the problem at
λ = λ1. To that end, let us first recall the standard definition of a bifurcation point
for a nonlinear continuous map

Tλ : W 1,p
0 (Ω) −→W−1,p′

0 (Ω).

Definition 3.1. Let E = R×W 1,p
0 (Ω). A point (λ, 0) in E is said to be a bifurcation

point of the problem Tλ(u) = 0, if for any neighborhood of (λ, 0) there exists a
nontrivial solution of Tλ(u) = 0.

The following result provides a characterization of the bifurcation points of prob-
lem (1).

Proposition 3.1. If (λ, 0) ∈ E is a bifurcation point of (1), then λ is an eigenvalue
of (2).

Proof. Since (λ, 0) is a bifurcation point of (1), there is a sequence {(λj , uj)j ∈ N} of

nontrivial solutions of the problem (2) such that λj → λ in R and uj → 0 in W 1,p
0 (Ω),

as j → +∞. By Definition 2.1, pairs (λj , uj) satisfy (6). Thus we have by (p − 1)-
homogeneity

Avj − λjBvj =
F (λj , uj)

‖∇uj‖p−1
p

, (26)

where vj = u
‖∇uj‖p . The sequence (vj) is bounded in W 1,p

0 (Ω). Then there exists a

function v ∈ W 1,p
0 (Ω) such that vj ⇀ v ∈ W 1,p

0 (Ω) and almost everywhere in Ω (up
to a subsequence if necessary). Then, from Remark 2.1 and Lemma 2.3, we deduce
that

Buj +
F (λ, uj)

‖∇j , uj‖p−1
p

→ λBv in W−1,p′(Ω). (27)

Thanks to the continuity of A, it follows from equation (26) that

Avj → λBv in W−1,p′(Ω).
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Now, the continuity of A−1 implies that {vj}j≥1 converges to A−1(λBv) in W 1,p
0 (Ω),

as j → +∞. We also deduce that v 6= 0. The convergence a.e. on Ω, yields that v is
solution of the equation

v = A−1(λBv) in W 1,p
0 (Ω). (28)

Finally, in view of equation (28), we conclude that λ is an eigenvalue of problem (2).
This completes the proof. �

Remark 3.1. Observe that Proposition 3.1 show that bifurcation points of (1), per-
mit to find new eigenvalues of (2).

Definition 3.2. One says that a subset of the form

C := {(λ, u) ∈ E : (λ, u) is nontrivial solution of (1), } ,
is to be a continuum of nontrivial solutions of (1), if it is a connected subset of E.

Theorem 3.2. Assume (A1 ) and (A2). Hence a pair (λ1, 0) is a bifurcation point
of (1). Moreover, there is a continuum of nontrivial solutions C of (1) such that

(λ1, 0) ∈ C and C is either unbounded in R×W 1,p
0 (Ω) or there is λ 6= λ1, an eigenvalue

of (2), with (λ, 0) ∈ C, where C stands the closure of C in R×W 1,p
0 (Ω).

Proof. We shall employ the classical global bifurcation stated in Theorem 1.3 of [17,
Theorem 1.3] and a variation technique of [11, Theorem 3.2] with some appropriate
modifications, so that we may conclude that

Deg [A− λB;Bε(0), 0]] , (29)

leaps from −1 to 1 when λ is near to the value of λ1. This is the key point of the
proof. We distinguish two cases:
On the left of λ1. In view of Lemma 2.3 and The variational characterization (26)
of λ1, we have for λ on the left of λ1

Deg [A− λB;Bε(0), 0] = 1. (30)

On the right of λ1. Since λ1 is isolated in the spectrum, we can find for each λ
near to λ1, δ > 0 such that there is no eigenvalue of (2) in the interval (λ1, λ1 + δ).
To evaluate (27) for on the right of λ1, we use the following trick. Define an auxiliary
function ψ : R→ R by

ψ(t) = a


0 for t ≤ 1

t3 − 2t2 + 2t− 1 for 1 ≤ t ≤ 3

14(t− 2) for t ≥ 3,

where a = δ
7λ1

(the graph of ψ is given in Figure 1). The choice of this value of a

ensures that ψ is positive and strictly convex in (1, 3) so that the functional

Φλ(u) :=
1

p
〈Au, u〉 − λ

p
〈Bu, u〉+ ψ

(
1

p
〈Au, u〉

)
. (31)

is continuously Fréchet differentiable. Moreover, critical points of Φλ correspond to
solutions of the associated Euler-Lagrange equation Φ;λ = 0 in W 1,p

0 (Ω). That is,

Au− λBu+ ψ′
(

1

p
〈Au, u〉

)
.Au = 0. (32)
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Figure 1. The graph of the auxiliary function ψ.

Obviously, 0 is a critical point. Now, we claim that if u∗ is a non trivial critical point
of Φλ, in view of the definition of ψ, we must have 1

p 〈Au
∗, u∗〉 in the interval (1, 3).

Indeed, suppose that 1
p 〈Au

∗, u∗〉 > 3. In this case, ψ′
(

1
p 〈Au

∗, u∗〉
)

= 14a. Thus

ψ′
(

1

p
〈Au∗, u∗〉

)
=

2δ

λ1
. (33)

However, from (10), we deduce that

Au∗ =
λ

1 + ψ′
(

1
p 〈Au∗, u∗〉

)Bu∗. (34)

That means the value λ

1+ψ′( 1
p 〈Au∗,u∗〉)

is an eigenvalue of (2) associated to the eigen-

function u∗. Then we must have
λ

1 + 2δ
λ1

≥ λ1.

That is, λ ≥ λ1 + 2δ. This contradicts the fact that λ ∈ (λ1, λ1 + δ), and the claim
is proved. Hence we have

1

p
〈Au∗, u∗〉 ∈ (1, 3).

Let u1 be the principal eigenfunction (referred to be positive and normalized ). Then
regarding to the simplicity of λ1, u∗ is in the one-dimensional eigenspace spanned
by u1. Thus u∗ = ±‖u∗‖1,pu1. Finally, for λ ∈ (λ1, λ1 + δ), we conclude that
−‖u∗‖1,pu1, 0, ‖u∗‖1,pu1 are precisely the isolated critical points of Φλ.

To complete the proof, we establish the following claims:
• The functional Φ is weakly lower semi-continuous.
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• The functional Φ is coercive.
We begin by proving the weak lower semi-continuity of Φ. If un ⇀ u weakly, then by
Lemma 2.1, we have

〈Bun, un〉 → 〈Bu, u〉. (35)

Moreover, since the norm is weakly lower semi-continuous, we have

‖∇u‖p ≤ lim inf
n→∞

‖∇un‖p. (36)

Then, (35), (36) and the fact that ψ is increasing in the interval (1,∞) lead to

lim
n→∞

Φλ(un) ≥ Φλ(u).

For coercivity. With respect to the definition of Φλ we can write

Φλ(u) =
1

p
〈Au, u〉+

λ1 − λ
p
〈Bu, u〉+

λ1

p
〈Bu, u〉+ ψ

(
1

p
〈Au, u〉

)
.,

≥λ1 − λ
p
〈Bu, u〉+ ψ

(
1

p
〈Au, u〉

)
.

Hence, by the definition of the function ψ and for ‖∇u‖p sufficiently large, we obtain

Φλ(u) ≥ λ1 − λ
p
〈Bu, u〉+

2δ

λ1

(
1

p
〈Au, u〉 − 2

)
,

Thus, due to the fact that λ1 < λ, we have

Φλ(u) ≥ λ1 − λ
pλ1

‖∇u‖pp +
2δ

λ1

(
1

p
‖u‖p1,p − 2

)
.

Consequently, we deduce that

Φλ(u) ≥ 1

p

(λ1 − λ
λ1

+ a
)
‖u‖p1,p −

4δ

λ1
.

One readily verifies that

λ1 − λ
λ1

+
2δ

λ1
>
λ1 − λ
λ1

+
δ

λ1
> 0. (37)

Finally, letting lim‖∇u‖p→∞ in (37), we deduce that lim‖∇u‖p→∞ Φλ(u) =∞.
Now, since, Φλ is even and coercive, the three critical points above are precisely

two non trivial points at which the minimum of Φλ is achieved and 0 is obviously an
isolated critical ”saddle” point. The last claim is archived.

Thus it follows from Lemma 2.2 that

Ind [Φ′λ, αu1] = Ind [Φ′λ,−αu1] = 1. (38)

Since also

〈Φ′λ(u), u〉 > 0,

for any u ∈ BR(0), with R > 0 sufficiently large, one can verify that

〈Au, u〉 > 3 and 〈Au, u〉 ≥ λ1〈Bu, u〉.
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Then

〈Φ′λ(u), u〉 ≥ (λ1 − λ)〈Bu, u〉+
2δ

λ1
〈Au, u〉.

≥ −δ
λ1
〈Au, u〉+

2δ

λ1
〈Au, u〉

≥ (
2δ

λ1
− δ

λ1
)‖u‖p1,p =

δ

λ1
‖u‖p|1,p.

This implies that 〈Φ′λ(u), u〉 → ∞, as ‖u‖1,p →∞. We deduce from Lemma 2.3 that

Deg[Φ′λ;BR(u∗), 0] = 1. (39)

The degree being additive and in view of (38) and (39), we conclude that

Deg[A− λB;Bε(uo), 0] = −1. (40)

Also we have

〈Au, u〉 − λ〈Bu, u〉 → 0 as ‖u‖1,p → 0.

Consequently,

Deg[A− λB;Bε(u
∗), 0] = Ind[Φ′λ, 0], (41)

for ε > 0 sufficiently small enough. By The invariance principle of the degree we
conclude that for any λ near to λ1 with λ 6= λ1

Deg[Tλ;Bε(u
∗), 0] = Deg[A− λB;Bε(u

∗), 0].

Finally, (30), (39) and (41) imply, for ε > 0 sufficiently small, that

Deg[Tλ, Bε(u
∗), 0] = 1 for λ ∈ (λ1 − δ, λ1)

and

Deg[Tλ, Bε(uo), 0] = 1 for λ ∈ (λ1, λ1 + δ).

Which guaranteed the ”jump” of the degree and the proof is achieved. �
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