Fuzzy associative \mathscr{I} -ideals of IS-algebras with t-norms

Muhammad Akram and Karamat Hussain Dar

ABSTRACT. In this paper we introduce the notion of T-fuzzy associative \mathscr{I} -ideals in an IS-algebra, and investigate some of their properties. We discuss the properties of homomorphic image and inverse image of T-fuzzy associative \mathscr{I} -ideals in an IS-algebra. Connections between direct product and T-product of fuzzy associative \mathscr{I} -ideals induced by t-norms are also studied.

2000 Mathematics Subject Classification. 06F35, 03G25, 94D05. Key words and phrases. IS-algebras; (Imaginable)T- fuzzy associative \mathscr{I} -ideals; Direct product; T-product.

1. Introduction

The notion of BCK-algebras was first introduced by K. Iseki [9] which is a subclass of BCI-algebras [8] introduced by Y.Imai and K.Iseki. This notion is originated from two different ways: one of the motivation is based on set theory, another motivation is from classical and non-classical propositional calculus. Jun et al.[10] introduced a class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup. For the convenience of study, Jun et al. [11] renamed the BCI-semigroup as an IS-algebra and studied some of its properties.

The notion of fuzzy sets was first introduced by L. A. Zadeh [13] in 1965. On the other hand, B. Schweizer and A. Sklar [6, 7] introduced the notions of *Triangular norm* (*t*-norm) and *Triangular conorm* (*t*-conorm). The triangular norms(*t*-norms) and the triangular conorms (*t*-conorms) are the most general families of binary operations that satisfy the requirement of the conjunction and disjunction operators respectively. Thus, the *t*-norm generalizes (classical) conjunctive(AND) operator and the *t*-conorm generalizes (classical) disjunctive(OR) operator. In application, the *t*-norm *T* and the *t*-conorm *S* can be regarded as functions that map the unit square into the unit interval.

Y. B. Jun and K. H. Kim [3] introduced the notion of imaginable fuzzy ideals of BCK-algebras with respect to a t-norm T, and studied some of their properties. M. Akram and K. H. Dar [4] introduced the notion of T-fuzzy ideals in BCI-algebras, and obtained some of their related results. M. Akram [5] has recently introduced the notion of fuzzy ideals in a class of IS-algebras with respect to a t-conorm, and studied some of their properties. In this paper we introduce the notion of T-fuzzy associative \mathscr{I} -ideals in an IS-algebra, and investigate some of their properties. We discuss the properties of homomorphic image and inverse image of T-fuzzy associative \mathscr{I} -ideals in an IS-algebra. Connections between direct product and T-product of fuzzy associative \mathscr{I} -ideals induced by t-norms are also studied.

Received: January 26, 2006.

The research of the first author is supported by PUCIT, Pakistan.

The research work of second author is supported by HEC-Islamabad, Pakistan.

2. Preliminaries

In this section we review some elementary aspects that are necessary for this paper. By a *BCI*-algebra we mean (X; *, 0) of type (2, 0) satisfying the following conditions: (1) ((x * y) * (x * z)) * (z * y) = 0,

- (2) x * (x * y) * y = 0,
- (3) x * x = 0,

(4) $x * y = 0, y * x = 0 \Rightarrow x = y$

for all $x, y, z \in X$. We can define a partial ordering relation " \leq " on X by letting $x \leq y$ if and only if x * y = 0. Any *BCI*-algebra X has the following properties:

(5)
$$x * 0 = x$$
.

- (6) (x * y) * z = (x * z) * y.
- (7) $x \le y \Rightarrow x * z \le y * z, z * y \le z * x.$

Let S be a nonempty subset of a BCI-algebra X, then S is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$. A mapping $f : X \to Y$ of BCI-algebras is a homomorphism if f(x * y) = f(x) * f(y), for all $x, y \in X$. A nonempty subset A of a BCI-algebra X is called an *ideal* of X if, for all $x, y \in X$, it satisfies: (I1) $0 \in A$, (I2) $x * y, y \in A \Rightarrow x \in A$.

By an *IS*-algebra we mean a nonempty set X with two binary operations "*" and "." and constant 0 satisfying the following axioms:

- (a) I(X) = (X; *, 0) is a *BCI*-algebra,
- (b) $S(X) = (X; \cdot)$ is a semigroup,

(c) The operation " \cdot "is distributive (on both sides) over the operation "*", that is x.(y * z) = (x.y) * (x.z) and (x * y).z = (x.z) * (y.z) for all $x, y, z \in X$.

A nonempty subset I of a semigroup S(X) = (X; .) is said to be *stable* if $xa \in I$ whenever $x \in S(X)$ and $a \in I$.

A nonempty subset I of an IS-algebra X is called a left (respectively, right) associative \mathscr{I} -ideal of X if

(a1) I is a left(respectively, right)stable subset of S(X),

(a2) for any $x, y, z \in I(X)$, $(x * y) * z \in I$ and $y * z \in I$ imply that $x \in I$.

We now review some fuzzy logical concepts:

A mapping $\mu: X \to [0, 1]$, where X is an arbitrary nonempty set, is called a *fuzzy set* in X. For any fuzzy set μ in X and any $s \in [0, 1]$, we define the set $U(\mu; s) = \{x \in X \mid \mu(x) \geq s\}$, which is called the *upper level cut* of μ . A *triangular norm* (t-norm T) is a function $T: [0, 1] \times [0, 1] \to [0, 1]$ that satisfies following conditions:

(T1)
$$T(x,1) = x$$
,

(T2) T(x,y) = T(y,x),

(T3) T(x, T(y, z)) = T(T(x, y), z),

(T4) $T(x,y) \le T(x,z)$ whenever $y \le z$

for all $x, y, z \in [0, 1]$.

A fuzzy set μ in a *BCI*-algebra X is called a *fuzzy ideal with respect to a t-norm* of X if, for all $x, y \in X$ it satisfies:

 $(\mathrm{TF1}) \ \mu(0) \ge \mu(x),$

(TF2) $\mu(x) \ge T(\mu(x * y), \mu(y)).$

A fuzzy set μ in a semigroup S(X) := (X, .) is said to be a *fuzzy left(respectively, right) stable with respect to a t-norm* if $\mu(x,y) \ge \mu(y)$ (respectively, $\mu(x,y) \ge \mu(x)$) for all $x, y \in X$. Let T be a *t*-norm. A fuzzy set μ in X is said to satisfy *imaginable property* if $Im(\mu) \subseteq \Delta_T$, where $\Delta_T = \{x \in [0,1] \mid T(x,x) = x\}$.

For a t-norm T, the statement $T(x,y) \leq \min(x,y)$ for all $x, y \in [0,1]$ holds.

3. Fuzzy associative \mathscr{I} -ideals with *t*-norms

Definition 3.1. A fuzzy set μ in an IS-algebra X is called a fuzzy left (respectively, right) associative \mathscr{I} -ideal of X with respect to a t-norm(briefly, T-fuzzy associative \mathscr{I} -ideal) if

 $\begin{array}{ll} ({\rm TF3}) \ \ \mu(x.y) \geq \mu(y), \\ ({\rm TF4}) \ \ \mu(x) \geq T(\mu((x*y)*z), \mu(y*z)) \\ for \ all \ x, \ y, \ z \in X. \end{array}$

In what follows, associative \mathscr{I} -ideal shall mean left associative \mathscr{I} -ideal.

Definition 3.2. T-fuzzy associative \mathscr{I} -ideals is said to be an imaginable if it satisfies the imaginable property.

Example 3.1. Consider an IS-algebra $X = \{0, a, b, c\}$ with the following Cayley tables:

*	0	a	b	c		θ	a	b	С
θ	θ	θ	b	b	θ	0	θ	θ	0
a	a	θ	С	b	a	θ	a	θ	a
b	b	b	θ	θ	b	θ	θ	b	b
c	c	b	a	θ	с	θ	a	b	c

We define a fuzzy set $\mu: X \to [0,1]$ by $\mu(0) = \mu(a) = t_1, \mu(b) = \mu(c) = t_2, t_1 > t_2$ and let $T_m: [0,1] \times [0,1] \to [0,1]$ be a function defined by $T_m(x,y) = \max(x+y-1,0)$ which is a t-norm for all $x, y \in [0,1]$. By routine computations, it is easy to check that μ is a T_m -fuzzy associative \mathscr{I} -ideal of X, and $Im(\mu) \subseteq \Delta_{T_m}$. Hence μ is an imaginable fuzzy associative \mathscr{I} -ideals of X with respect to T_m .

Theorem 3.1. Let T be a t-norm. Then every imaginable T-fuzzy associative \mathscr{I} -ideal of X is a fuzzy associative \mathscr{I} -ideal.

Proof. Let μ be an imaginable *T*-fuzzy associative \mathscr{I} -ideal of *X*. Then $\mu(x) \geq T(\mu((x * y) * z), \mu(y * z))$ for all $x, y, z \in X$. Since μ is an imaginable, we have

$$\begin{split} &\min(\mu((x*y)*z),\mu(y*z)) = \\ &T(\min(\mu((x*y)*z),\mu(y*z)),\min(\mu((x*y)*z),\mu(y*z))) \\ &\leq T(\mu((x*y)*z),\mu(y*z)) \leq \min(T(\mu((x*y)*z),\mu(y*z)). \end{split}$$

It follows that $\mu(x) \ge T(\mu((x * y) * z), \mu(y * z)) = \min(\mu((x * y) * z), \mu(y * z))$, so μ is a fuzzy associative \mathscr{I} -ideal of X.

Converse of Theorem 3.1 may not be true as seen in the following example.

Example 3.2. Consider an IS-algebra $X = \{0, a, b, c\}$ with the following Cayley tables:

*	0	a	b	С	•	0	a	b	c
θ	θ	a	b	С	θ	0	0	θ	0
a	a	θ	С	b	a	θ	a	b	С
b	b	С	θ	a	b	θ	a	b	С
c	c	b	a	θ	c	θ	θ	θ	θ

We define a fuzzy set $\mu: X \to [0,1]$ by $\mu(0) = 0.8, \mu(a) = 0.7, \mu(b) = \mu(c) = 0.5$. By routine computation, we can easily see that μ is a fuzzy associative \mathscr{I} -ideals of X.

10

Let $\alpha \in (0, 1)$ and define the binary operation T_{α} on (0, 1) as follows:

$$T_{\alpha}(x,y) = \begin{cases} \min(x,y) & \text{if } \max(x,y) = 1\\ 0 & \max(x,y) < 1, \ x+y \le 1+\alpha\\ \alpha & \text{otherwise} \end{cases}$$

for all $x, y \in [0, 1]$. Then T_{α} is a *t*-norm. Thus $T_{\alpha}(\mu(0), \mu(0)) = T_{\alpha}(0.8, 0.8) = \alpha \neq \mu(0)$ whenever $\alpha < 0.6$. So $Im(\mu) \subseteq \Delta_{T_{\alpha}}$ whenever $\alpha < 0.6$. Hence μ is not an imaginable fuzzy associative \mathscr{I} -ideals of X with respect to T_{α} .

Theorem 3.2. Let T be a t-norm and let μ be a fuzzy set in an IS-algebra X. Then μ is T-fuzzy associative \mathscr{I} -ideal of X if and only if each nonempty level subset $U(\mu; \alpha)$ of μ is an associative \mathscr{I} -ideal of X.

Proof. Let μ be a *T*-fuzzy associative \mathscr{I} -ideal of *X* and let $\alpha \in [0, 1]$. Let $x, y, z \in X$ be such that $x \in U(\mu; \alpha), y \in U(\mu; \alpha), z \in U(\mu; \alpha)$. Using (TF3) and (TF4), we have

$$\mu(x.y) \ge \mu(x) \ge \alpha,$$

$$\mu(x) \ge T(\mu((x*y)*z), \mu(y*z)) \ge \alpha,$$

so $x.y \in U(\mu; \alpha)$ and $x \in U(\mu; \alpha)$.

Conversely, assume that every nonempty level subset $U(\mu; \alpha)$ of μ is an associative \mathscr{I} -ideal of X. Then it can be easily checked that μ satisfies (TF3). If there exist x, $y, z \in X$ such that $\mu(x) > T$ ($\mu((x * y) * z), \mu(y * z)$), then by taking $t_0 := \frac{1}{2} \{\mu(x) + T(\mu((x * y) * z), \mu(y * z))\}$, we have $(x * y) * z \in U(\mu; t_0)$ and $y * z \in U(\mu; t_0)$. Since μ is an associative \mathscr{I} -ideal of $X, x \in U(\mu; t_0)$, we have $\mu(x) \geq t_0$, a contradiction. Hence μ is a T-fuzzy associative \mathscr{I} -ideal of X.

Definition 3.3. Let f be a mapping on X. If v is a fuzzy set in f(X) then the fuzzy set $\mu = v \circ f$ (i.e., $(v \circ f)(x) = v(f(x))$) in X is called the preimage of v under f.

Theorem 3.3. An onto homomorphism preimage of a T-fuzzy associative \mathscr{I} -ideal of X is a T-fuzzy associative \mathscr{I} -ideal.

Proof. Let $f : X \to Y$ be an onto homomorphism of *IS*-algebras. If v is a *T*-fuzzy associative \mathscr{I} -ideal of Y and μ is the preimage of v under f, then for any $x, y, z \in X$, we have

$$\begin{aligned} \mu(x.y) &= (v \circ f)(x.y) = v(f(x.y)) = v(f(x).f(y)) \\ &\geq v(f(y)) = (v \circ f)(y) = \mu(y), \end{aligned}$$

$$\begin{array}{lll} \mu(x) &=& (v \circ f)(x) = v(f(x)) \\ &\geq& T(v((f(x) * f(y)) * f(z)), v(f(y) * f(z))) \\ &=& T((v \circ f)((x * y) * z), (v \circ f)(y * z)) \\ &=& T(\mu((x * y) * z), \mu(y * z)). \end{array}$$

This shows that μ is a fuzzy associative \mathscr{I} -ideal of X with respect to a t-norm T. \Box

Definition 3.4. Let μ be a fuzzy set in an IS-algebra X and f a mapping defined on X. Then the fuzzy set μ^f in f(X) defined by

$$\mu^{f}(y) = \sup_{x \in f^{-1}(y)} \mu(x) \quad \forall y \in f(X)$$

is called the image of μ under f. A fuzzy set μ in X has the sup property if for any subset $A \subseteq X$, there exists $a_0 \in A$ such that $\mu(a_0) = \sup_{a \in A} \mu(a)$

Theorem 3.4. An onto homomorphism image of a fuzzy associative \mathscr{I} -ideal with the sup property is a fuzzy associative \mathscr{I} -ideal.

Proof. Let $f : X \to Y$ be an epimorphism of X and μ a fuzzy associative \mathscr{I} -ideal of X with the sup property. Consider f(x), f(y), $f(z) \in f(X)$. Now, let $x_0, y_0, z_0 \in f^{-1}(f(x))$ be such that

$$\mu(x_0) = \sup_{t \in f^{-1}(f(x))} \mu(t)$$
$$\mu(y_0) = \sup_{t \in f^{-1}(f(y))} \mu(t)$$

and

$$\mu(z_0) = \sup_{t \in f^{-1}(f(z))} \mu(t)$$

respectively. Then we can deduce that

$$\mu^{f}(f(x).f(y)) = \sup_{\substack{t \in f^{-1}(f(x).f(y))}} \mu(t)$$

$$\geq \mu(y_{0})$$

$$= \sup_{\substack{t \in f^{-1}(f(y))}} \mu(t)$$

$$= \mu^{f}(f(y)),$$

$$\begin{split} \mu^{f}(f(x)) &= \sup_{t \in f^{-1}(f(x))} \mu(t) \\ &\geq \min\{\mu((x_{0} * y_{0}) * z_{0}), \mu(y_{0} * z_{0})\} \\ &= \min\{\sup_{t \in f^{-1}((f(x) * f(y)) * f(z))} \mu(t), \sup_{t \in f^{-1}(f(y) * f(z))} \mu(t)\} \\ &= \min\{\mu^{f}((f(x) * f(y)) * f(z)), \mu^{f}(f(y) * f(z))\}. \end{split}$$

Consequently, μ^f is a fuzzy associative \mathscr{I} -ideal of Y.

Theorem 3.5. Let T be a t-norm. Let μ be a fuzzy associative \mathscr{I} -ideal of an ISalgebra X with a t-norm T and having finite image. Then every descending chain of fuzzy associative \mathscr{I} -ideal of X with respect to T terminates at finite steps.

Proof. Suppose that there exists a strictly descending chain $A_0 \supset A_1 \supset A_2 \supset \cdots$ of fuzzy associative \mathscr{I} -ideal of X which does not terminate at finite steps. Define an fuzzy set μ in X by

$$\mu(x) := \begin{cases} \frac{n}{n+1} & \text{if } x \in A_n \setminus A_{n+1}, n = 0, 1, 2, \cdots, \\ 1 & \text{if } x \in \bigcap_{n=0}^{\infty} A_n, \end{cases}$$

where $A_0 = X$. We prove that μ is a fuzzy associative \mathscr{I} -ideal of X with respect to T. Clearly $\mu(x,y) \ge \mu(y)$ for all $x, y \in X$. Let $x, y, z \in X$. Assume that $(x * y) * z \in$ $A_n \setminus A_{n+1}$ and $y * z \in A_k \setminus A_{k+1}$ for $n = 0, 1, 2, \dots$; $k = 0, 1, 2, \dots$. Without loss of generality, we may assume that $n \le k$. Then, it is obvious that $y * z \in A_n$, and so $x \in A_n$ since A_n is a fuzzy associative \mathscr{I} -ideal of X. Hence, we have

$$\mu(x) \ge \frac{n}{n+1} = T(\mu((x*y)*z), \mu(y*z)).$$

If $(x*y)*z, y*z \in \bigcap_{n=0}^{\infty} A_n$, then $x \in \bigcap_{n=0}^{\infty} A_n$. Thus, we obtain that
$$\mu(x) = 1 = T(\mu((x*y)*z), \mu(y*z).$$

If $(x * y) * z \notin \bigcap_{n=0}^{\infty} A_n$ and $y * z \in \bigcap_{n=0}^{\infty} A_n$, then there exists a $k \in \mathbb{N}$ such that $(x * y) * z \in A_k \setminus A_{k+1}$. It follows that $x \in A_k$ so that

$$\mu(x) \ge \frac{k}{k+1} = T(\mu((x * y) * z), \mu(y * z)).$$

Finally, we suppose that $(x * y) * z \in \bigcap_{n=0}^{\infty} A_n$ and $y * z \notin \bigcap_{n=0}^{\infty} A_n$. Then we have $y * z \in A_r \setminus A_{r+1}$, for some $r \in \mathbb{N}$. This leads to $x \in A_r$, and so

$$\mu(x) \le \frac{r}{r+1} = T(\mu((x * y) * z), \mu(y * z)).$$

Consequently, μ is a fuzzy associative \mathscr{I} -ideal of X with the t-norm T and μ has infinite number of different values. However, this is clearly a contradiction, and hence the proof is completed.

Definition 3.5. Let T be a t-norm and λ and μ be two fuzzy sets in X. Then the T-product of λ and μ is denoted by $[\lambda \cdot \mu]_T$ and defined by $[\lambda \cdot \mu]_T(x) = T(\lambda(x), \mu(x))$, for all $x \in X$.

Theorem 3.6. Let λ and μ be two T-fuzzy associative \mathscr{I} -ideals of X. If a t-norm T^* dominates T, that is, if $T^*(T(\alpha, \gamma), T(\beta, \delta)) \geq T(T^*(\alpha, \beta), T^*(\gamma, \delta))$ for all $\alpha, \beta, \gamma, \delta \in [0, 1]$. Then T^* -product $[\lambda \cdot \mu]_T^*$ is a T-fuzzy associative \mathscr{I} -ideal of X.

Proof. For any $x, y \in X$, we have $[\lambda \cdot \mu]_T^*(x.y) = T^*(\lambda(x.y), \mu(x.y)) \ge T^*(\lambda(y), \mu(y)) = [\lambda \cdot \mu]_T^*(y)$. Let $x, y, z \in X$. Then

$$\begin{split} [\lambda \cdot \mu]_T^*(x) &= T^*(\lambda(x), \mu(x)) \\ &\geq T^*(T(\lambda((x * y) * z), \lambda(y * z)), T(\mu((x * y) * z), \mu(y * z))) \\ &\geq T(T^*(\lambda((x * y) * z), \mu((x * y) * z)), T^*(\lambda(y * z), \mu(y * z))) \\ &= T([\lambda \cdot \mu]_T^*((x * y) * z), [\lambda \cdot \mu]_T^*(y * z)). \end{split}$$

This proves that $[\lambda \cdot \mu]_T^*$ is a *T*-fuzzy associative \mathscr{I} -ideals of *X*.

Theorem 3.7. Let T be a t-norm. Let X_1 and X_2 be IS-algebras and $X = X_1 \times X_2$ be the direct product of IS-algebras X_1 and X_2 . Let λ be a fuzzy associative \mathscr{I} -ideal of an IS-algebra X_1 with respect to T and μ be a fuzzy associative \mathscr{I} -ideal of an IS-algebra X_2 with respect to T. Then $\nu = \lambda \times \mu$ is a fuzzy associative \mathscr{I} -ideal of $X = X_1 \times X_2$ with respect to T defined by

$$\nu(x_1, x_2) = (\lambda \times \mu)(x_1, x_2) = T(\lambda(x_1), \mu(x_2)).$$

Proof. Obviously, $\nu(x.y) \ge \nu(y)$, for all $x, y \in X$. Let $x = (x_1, x_2), y = (y_1, y_2)$ and $z = (z_1, z_2) \in X_1 \times X_2 = X$. Then

$$\begin{split} \nu(x) &= (\lambda \times \mu)(x) = (\lambda \times \mu)((x_1, x_2)) \\ &= T(\lambda(x_1), \mu(x_2)) \\ &\geq T(T(\lambda((x_1 * y_1) * z_1), \lambda(y_1 * z_1)), (\mu((x_2 * y_2) * z_2), \mu(y_2 * z_2))) \\ &= T(T(\lambda((x_1 * y_1) * z_1), \mu((x_2 * y_2) * z_2)), T(\lambda(y_1 * z_1), \mu(y_2 * z_2))) \\ &= T((\lambda \times \mu)(((x_1 * y_1) * z_1), (x_2 * y_2) * z_2)), (\lambda \times \mu)((y_1 * z_1, y_2 * z_2)) \\ &= T((\lambda \times \mu)(((x_1, x_2) * (y_1, y_2)) * (z_1, z_2)), (\lambda \times \mu)((y_1, y_2) * (z_1, z_2))) \\ &= T((\lambda \times \mu)((x * y) * z), (\lambda \times \mu)(y * z)) \\ &= T(\nu((x * y) * z), \nu(y * z)). \end{split}$$

Hence ν is a fuzzy associative \mathscr{I} -ideal of X with respect to T.

The relationship between T-fuzzy associative \mathscr{I} -ideals $\lambda \times \mu$ and $[\lambda \cdot \mu]_T$ can be viewed via the following diagram

where I = [0, 1] and $d: X \to X \times X$ is defined by d(x) = (x, x). It is easy to see that $[\lambda \cdot \mu]_T$ is the preimage of $\lambda \times \mu$ under d.

Definition 3.6. Let T be a t-norm. If ν is an imaginable fuzzy set S, the strongest T-fuzzy relation on S that is T-fuzzy relation on ν is μ_{ν} given by $\mu_{\nu}(x, y) = T(\nu(x), \nu(y))$, for all $x, y \in S$.

Theorem 3.8. Let ν be a fuzzy set in an IS-algebra X and μ_{ν} be the strongest an imaginable T-fuzzy relation on X. Then ν is an imaginable T-fuzzy associative \mathscr{I} -ideal of X if and only if μ_{ν} is an imaginable T-fuzzy associative \mathscr{I} -ideal of $X \times X$.

Proof. Suppose that ν is an imaginable fuzzy associative \mathscr{I} -ideal of X. For any $x = (x_1, x_2), y = (y_1, y_2) \in X \times X$, we have

$$\begin{aligned} \mu_{\nu}(x * y) &= & \mu_{\nu}((x_1, x_2) * (y_1, y_2)) = \mu_{\nu}((x_1 * y_1, x_2 * y_2)) \\ &= & T(\nu(x_1 * y_1), \nu(x_2 * y_2)) \\ &\geq & T(\nu(y_1, \nu(y_2))) = \mu_{\nu}(y)). \end{aligned}$$

Let $x = (x_1, x_2), y = (y_1, y_2)$ and $z = (z_1, z_2) \in X \times X$. Then

$$\begin{array}{lll} \mu_{\nu}(x) &=& \mu_{\nu}((x_{1},x_{2})) \\ &=& T(\nu(x_{1}),\nu(x_{2})) \\ &\geq& T(T(\nu((x_{1}*y_{1})*z_{1}),\nu(y_{1}*z_{1})),T(\nu((x_{2}*y_{2})*z_{2}),\nu(y_{2}*z_{2}))) \\ &=& T(T(\nu((x_{1}*y_{1})*z_{1}),\nu((x_{2}*y_{2})*z_{2}),S(\nu(y_{1}*z_{1}),\nu(y_{2}*z_{2}))) \\ &=& T(\mu_{n}((x_{1}*y_{1})*z_{1}),(x_{2}*y_{2})*z_{2}),\mu_{\nu}(y_{1}*z_{1},y_{2}*z_{2})) \\ &=& T(\mu_{\nu}(((x_{1},x_{2})*(y_{1},y_{2}))*(z_{1},z_{2})),\mu_{\nu}((y_{1},y_{2})*(z_{1},z_{2}))) \\ &=& T(\mu_{\nu}((x*y)*z),\mu_{\nu}(y*z)). \end{array}$$

Thus μ_{ν} is a *T*-fuzzy associative \mathscr{I} -ideals of $X \times X$. For any $x = (x_1, x_2) \in X \times X$,

$$T(\mu_{\nu}(x), \mu_{\nu}(x)) = T(\mu_{\nu}(x_{1}, x_{2}), \mu_{\nu}(x_{1}, x_{2}))$$

$$= T(T(\nu(x_{1}), \nu(x_{2})), T(\nu(x_{1}), \nu(x_{2})))$$

$$= T(T(\nu(x_{1}), \nu(x_{1})), T(\nu(x_{2}), \nu(x_{2})))$$

$$= T((\nu(x_{1}), \nu(x_{2})))$$

$$= \mu_{\nu}(x).$$

Hence μ_{ν} is an imaginable *T*-fuzzy associative \mathscr{I} -ideals of $X \times X$. The converse is proved similarly.

References

- M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems 24(1987) 79-86.
- [2] Y. Yu, J. N. Mordeson and S. C. Cheng, Elements of L-algebra, Lecture Notes in Fuzzy Math. and Computer Sci., Creighton Univ., Omaha, Nebraska (USA), 1994.
- [3] Y. B. Jun and K. H. Kim, Imaginable fuzzy ideals of BCK-algebras with respect to a t-norm, J. Fuzzy Math., 8(3) (2000) 737-744.
- [4] M. Akram and K. H. Dar, T-fuzzy ideals in BCI-algebras, IJMMS, 12 (2005) 1899-1907.
- [5] M. Akram, On properties of fuzzy associative *I*-ideals in IS-algebras with t-conorms, Inter. Math. Journal. (To appaear).
- [6] B. Schweizer, and A. Sklar, Statistical metric spaces, Pacific J. Math. 10(1960) 313-334.
- [7] B. Schweizer and A. Sklar, Associative functions and abstract semigroups, Publ. Math. Debrecen, 10(1963) 69-81.
- [8] Y. Imai and K. Iseki, On axiom System of propositional calculi XIV, Proc., Japonica Acad, 42(1966) 19-22.
- [9] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad, 42 (1966) 26-29.
- [10] Y. B. Jun, S. M. Hong and E. H. Roh, BCI-semigroups, Honam Math. J. 15(1)(1993) 59-64.
- [11] Y. B. Jun, X. L. Xin and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math., 24(4)(1998) 309-321.
- [12] E. H. Roh, Y. B. Jun and W. H. Shim, Fuzzy associative *I*-ideals of IS-algebras, IJMMS, 24(11)(2000) 729-735.
- [13] L. A. Zadeh, Fuzzy sets, Information Control, 8(1965) 338-353.

(M. Akram) UNIVERSITY COLLEGE OF INFORMATION TECHNOLOGY, UNIVERSITY OF THE PUNJAB, OLD CAMPUS, LAHORE-54000, PAKISTAN *E-mail address*: m.akram@pucit.edu.pk

(K.H. Dar) GOVT. COLLEGE UNIVERSITY LAHORE, DEPARTMENT OF MATHEMATICS, KATCHERY ROAD, LAHORE-54000, PAKISTAN *E-mail address*: prof_khdar@yahoo.com