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Discussion on a New Tripled System of Hybrid Type of FDEs
with p—Laplacian Involving p—Caputo Derivatives
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ABSTRACT. Our research is about the analysis of a new type of triple system of hybrid dif-
ferential equations of fractional order with nonlocal integro multi point boundary conditions,
whose results can certainly be useful in solving practical problems. We focus on a mathe-
matical operator called the p—Laplacian and another type of derivative called the ¢—Caputo
derivative. The displayed comes about are gotten by the hybrid Dhage fixed point theorem
for a entirety of three operators. A few illustrative illustrations is displayed at the conclusion
to appear the pertinence of the gotten comes about. To the leading of our information, this
is often the primary time where such issue is considered.
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1. Introduction

Fractional calculus is useful in many research areas, like the ones mentioned in
sources [1, 21, 31, 32]. Scientists from various areas of study became interested
in fractal order differential equations (DEs) after the mission’s exploration [17, 30].
Most of the research has been done using different types of fractional derivatives
such as Riemann-Liouville (RL), Grunwald-Letnikov, Atangana-Baleanu, Hadamard,
Caputo, and Katugampola [6, 26, 30, 33].

When, we find the fractional derivatives of functions in relation to other functions,
they are distinctive than standard fractional derivatives since they include utilizing
other uncommon functions, called ¢, see [3, 4, 22]. Many articles use the theories of
Schauder, Krasnoselskii, Darbo, or Monch to show that there are solutions for nonlin-
ear fractional differential equations (FDEs), however, these theories only work under
certain conditions [2, 7, 9, 28, 36]. Certainly, valuable works have been published on
the existence and uniqueness (EU) of solutions for FDEs with p—Laplacian opera-
tors, including Li, Wang, Khan, Chabanea et al. studied a nonlinear FDEs with the
operator for the EU of solutions [8, 10, 11, 13, 23, 25, 27, 34] and others for hybrid
type of the equations [5, 12, 15, 16, 20, 35].
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Ferraoun et al. have been concerned with the hybrid FDEs involving RL-operator
the following problem:

i | (5l )| = 1 (6 u(®) + Z0ha (6 u(),
DS” (52995 )] = F(6u(0) + Tha(t u(v),

D ({2280 = () + 7 ),

here u(t) = [ui(t) ua(t) ... wun(t)], te L:=][0,1], with

Bi
u;(0) = 01-/0 wi(s)u;(s)ds, 0< B,

a;,8; < 1,1 = 1,n, where ¢; are continuous functions on [0, ;] on L, g; € C(L X
R",R*), fi,h; € C(L x R") [19]. Beddani et al. worked on the nonlinear FDEs
involving 1, Laplacian operator:

%p[ P (1 (1) — IO g1, X(t)))} = he(tx(t), k=13,

¥ [Dgiw (22(0) = T gu(tx(1)) || =0,

for t € L, where x(t) = (21 (%), 22(t), z3(t)), with z;(0) = 0,

3
= ZAiﬂﬁz‘(Cik% Gk € L,

¢ (1) = ¢(0) = K > 0 where Dj**, i,k = 1,3 as the p—Caputo derivatives of
fractional orders 7, 0 < rip < 1 < rop < 2, Iof, the integral of fractional order
0 <o, A\ €Ri,and ¢ : L — R is an increasing function such that ¢'(t) # 0, and
Yy, (s) = |s|”"? s denotes the p—Laplacian operator and for t € L, gi, by, : LxR3 — R
is a given functions [3].

In the research work, first, we recall basic notions and lemmas in Section 2. Then,

in Section 3, we analyze the existence tripled system of hybrid FDEs with ¢ p, Lapla-
cian operator for the following problem: for t € L, and k =1, 3,

o s [ @(O=T 8 fi(tx(1)
DOf wwpk |:,D€i v < gk(t x(t)) >:| - hk (t,X(t))’
Bz [ @R(O=Z 7 fi(tx(1)
Upy, [Doi v < gk(f x(t))

3
z (1) — I’k ? fr(t,x(1)
gk(t x(1)) ‘t , = Z/\ikfi (Gik)s Cr€L,
= i=1

=0 (1)

here, x(t) = (z1(t), z2(t), z3(t)) and we take DgF?, Dgiw k =1,3 as the ¢—Caputo
derivatives of fractional orders oy, Bk, 0 < ap <1< B <2, Ay € RY, Z7EY, 0 < oy,
the fractional integral of order oy,, an increasing function ¢ : L — R w1th o' (}) #0,
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@o(b) :== ¢ (b) —(0) > 0, and ¥, (s) = s |s|”* 72 denotes the py—Laplacian operators
and satisfies
Pr+a =D gk () = Y (a2 2),

and fi,hy : L xR3 = R, g; : L x R® — R* is a given functions. Next, in Section 4,
practical examples are shown. Finally, we present the conclusions of the obtained
results for use in future research in in Section 5.

2. Basic notions and preliminaries

Consider an increasing function ¢ : L — R with ¢/(t) # 0, for t € L and the Gamma
function I'(-). We pose

@ (tg) = CQEW (15 9) r>0,te L,

where @, (t) := ¢(t) — ©(p). The left-sided ¢—RL fractional integral of order « for an
integrable function x : L — R with respect to function ¢, is defined as follows
t
L) = [0 (t.0)a(o)de 2
Note that Eq. (2) is reduced to the RL and Hadamard fractional integrals when
o(t) = t and ¢(t) = Int, respectively. Now, assume that ¢, x € C™ (J) too. The left-

sided p—RL and left-sided ¢—Caputo derivative of a function x of fractional order r
are defined by

Dfa() = (Fg ) T el

- (‘P’l(t) %)n /(Pn—r (t,5) z(s) ds, n=[]+1,

a

and ‘DY x(t) = IZJ:TW:EE;L](’(), where n = [r]+ 1 for 7 ¢ Nyn = r for r € N,
respectively, and

2l (t) = (Wh) %) 2(4).

Thus,
t

ogpuy = | [ o tEan ren ®

xL’f] (1), reN.

Lemma 2.1. Letr > 0. The following holds: (i) Ifx € C(L), then “D!’? I""7x(0) =
z(0), foroe L; (i) Ifx € C™"(L), n—1<r <mn, then

n—1

QD o zFl(a) | .
I D a(e) = alo) — Y 5 [Pal0)])"-

In special case, we have I5¥ “D ¥ x(0) = x(0) — x(a), when 0 <7 < 1.
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3. Existence results

We consider Banach spaces C(L) and £ = [C(L)]® endowed with the norms Izl e =
supgc s |z(t)| and
3

Ixlle = (w1, 22, 23) e = Y leillog -

i=1

respectively.

Lemma 3.1. For a given f, by, gi € LY(J,R3) (k =1, 3), the solution of hybrid
fractional problem

. o ZR()—=I7E P o (t) ~
D0y, [Dhe () | T, ver,

Busp [ @R (O=T7E? fio(t) _
wpk |:D0i ( gk(t) —0 - 0)
2 (0-Z75 Fu(0) -
— 0o | = > ki (Giw) Gk € L,
=1

is given by

w40 = T9E2 Fil) + GO T (0, Tot  hu(v)

3
T 2030 [Iﬂk @ <¢qkzgf;whk(b)> = Ak (Qk)}
=1

Proof. For 0 < ap < 1 < B < 2, Lemma 2.1 yields,

; o (1) — Gk wf (1) aR;eT
1/1ka§5¢< g >_Iof7@hk(")+d1kv

by conditions

Brp [ BRI 3 (V) .
wpk |:D0i QD( gk(t) - 07
t=0
we get di; = 0, and
(O-Z7F7 fio (1) ; T .
= gk(t) — = Igf@ (kaIof&hk(tD + dngO()(t),

and so by conditions

ek ()—Z 7 fi(0)
Qk(f)

3
= A (Gir) »
i=1

then

dop, = ¢01(b)< Bk’ (quzﬂk#’h ) Z)\lkxz Czk: )
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Thus,
welt) = TP Tt + R OZEE* (0u T Tuv)
3
+ wo;?gb%(t) {Iﬂw (quIng’hk(bD — Z;)\ika?i (Gir) }
1=
This completes the proof. O

The following hypotheses are required for further discussion. We need the following
to prove our main theorem.

Required hypotheses:

H;) The functions fx, gx and hy are continuous;

Hy) There exist three positive functions Ty, Tgk, Tne with bounds ||Trxll, || Tgklls
[ 7rkl|, respectively, with

|fe(0.x) = fru(o,y)| < Trr(0)
lgx(0,%) — gr(0,¥)| < Tar(0) X
|hi(0,x) — hi(0,¥) < Thr(o) %,

where ¥ = Zf’zl |z; — s, for all t € L and x = (21, 22,23), ¥ = (Y1, Y2, Y3),
Ty Yi S R7i7k = 1a 3

H3) There exist three functions Ax € L*°(L,R,) and a nondecreasing function 9y, €
C([0, 00), R>?) with

|hk(f,X)| SAk(t)ﬁk(||XH5)7 VteL,x; e R i, k=1, 3. (4)
Hy) There exists r > 0 such that
3(K1K2+K3) o] (5)
3 @0k || Tyi|| =7
1—K1k2::1\|7}k\|—2i=1 B (e
and
s (BN o 19 (1
max{—(%(b)lz(lﬂzzyﬂk( ) k= 1,3} < A, (6)
where
3
_ 2(@o (b)) ATk !
S |
k=1
3
Ko =) suplgx(t,0,0,0)],
P teL
3
b
Ks =y Gl sup| £ (t,0,0,0)]. (7)
k=1

Theorem 3.2. Assuming hypotheses (Hy)—(Hy) are met. Then, the hybrid fractional
problem (1) has at least one solution deﬁned on L, if

®))* |1 T
Klznﬂk”‘f' @OF()l)-‘ro";lc)ij <1 (8)

In order to prove the theorem, we adopt the following Lemmas.
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Lemma 3.3 ([33]). Given a function x € C™(L) and 0 < r < 1, we have

3 { T 50(8)" .
T () - ¥ ()] < 2zl B, t<t )

Lemma 3.4 ([24]). For the p—Laplacian operator ¢y, the following conditions hold
true:
(i) If|5\,5 > p > 0,with §6>0,1<p<2, then

[(8) = wp(8)| < Z510 - 81 (10)
(i) If p > 2, |9],[0] < p. >0, then
Upl6) = 45(8)| < 2516 - 4. (11)

Lemma 3.5 ([14]). Assume ) # X C & be a closed convexr bounded, and consider
three operators A,C : £E — & and B : X — £ with:

(11) A, C are Lipschitzian with a Lipschitz constants 7 and o, respectively;

(12) C is compact and continuous;

(13) x=AxBy+Cx = z € X for eachy € X;
Then the equation Ax Bx + Cx = x has a solution in X, if TK + 0 < 1, with K =
1C(X) e

Proof of Theorem 3.2: We define the closed convex bounded X C &£ by
X = {xe £ |lxll, < r}.

Thanks to Lemma 3.5, the fractional hybrid problem (1) is equivalent to the equation

rp(t) = Z757 fr(t,x) + gr(t, x){Igf“" (Vg g hi(t, x))

+ WOE ; [Iéi’f’ (Va, Tyt hi (b, %) Zx\ ki (Cik) }} (12)

Taking into account Lemma 3.1, we define three operators .A, C:£—€fandB: X =&
A(x) (8 = (A(x)(1), A2 (x) (1), A3(x) (1)),
B (x) (t) = (Bi(x)(t), Ba(x)(1), B3 (x)(1)),

C(x) (1) = (C1(x) (1), C2(x)(1), C3(x)(1)), (13)
where
A (x) (1) = gr(t, x),
Bi (x) (8) = Ig¥ (40,55 ha(t,x))
+ 981%75:) |:I§f<p (wQRIgf’whk b X Z)\zkmz <zk :|
Cr (%) (t) = Zgt¥ fio(t %),
and

t

L (b0 T nlt.) = [0, (t9) s [ Joa 6.0t dz} ds.

0 0
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In this case, Eq. (12) can be written as

() = Ay (%) (9 B (x) () + G (x) (0), te L.
In the following series of claims, we show the operators A, BB, C satisfy all the conditions
of Lemma 3.5.

Claim (a)' Let x = ($1,$2,$3), y = (y17y23y3) € &. Then by (H2)7 for t € L7 we
have

AL () — A(0) ()] S STp(t),  tel,
and so ,
14k () = Aoy < Wkl D Nl = will o,y -
=1
Thus,

JAG) — AW)]e < (Z 1751 [zj s =l |-

Therefore A is Lipschitzian on £ with constant Zi 1 1 Tgkll, for x,y € €. Also
3
)7+ || T
() =)l < (Z(BM') [Z s — yzc@)}
k=1
Hence C is Lipschitzian on £ with constant

3
(o (0))7* || T¢ll

TiTor) Vx,y € €.

k=1
Claim (b). We show that B is is a completely continuous operator from X into .
First, by (H;) we have B is a continuous operator X for all t € [0,b]. Next, we will
prove that the set B(X') is a uniformly bounded in X. For any x € X, and by

200 <1 g (s) = s[5 (k> 2),
we have
8169 (0] < |7 (v T3 “hu(3)|
’Iﬁk P (o T B (b, ) ’+Z>\Z,€ 2 (Coo)|
<2 ‘Ioﬂfw (Vo T2 i (b, X))‘ + Z)‘ik |z; (Cie)|
i=1
B 1 3
MY | _
S % {I()f Sahk(ba X)|q,c + TZ)\ik
=1
2(o (b)) Pk A1
< STirEy T TZM,
and so
3 ( (b B A 1 3
2 k A%k~
0l < Y[ A 3] <k )
k=1 i—1
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Thus ||B (x)||¢ < K for all x € X with Ky is given by (7). Indeed, B is uniformly
bounded on X. Now, we will show that B(X) is an equicontinuous set in £. Let
t1,t2 € L. Then for any x € X, by (6), (4) and Lemma 3.3, we get

|B1. (x) (t2) = By (x) (t1)] < |Z05% (o Tk h(t2, %))

Bk ; By (t2)
- Ioi v (quIgf whk (t1,x ‘ + ;z(bi

X ['Igf“" (Y I hie (b, %) ‘ + ZAzk i (Gik) ]

2(go(b))%k
— T(1+Bk)

Py (t2) | (Po(b)PrA%—1
+ 00 { g eeen ”Z/\%k]
and by (6), Lemmas 3.3 and 3.4, we get

1By, () (t2) = By, () (t1)]

< 2(¢o(0)) Pk (g —1) A2
- T(1+pk)

~ T (b, x)| + 2

Vai (ZoF P hi(ta,x)) — b, (Lo hi(tr, x)) ‘

Iak’whk(tg,x)

(20 (0)) Pk + (kD) k |gpy || I8 1 (9 (r)) 1%~
[ 1"(1+,8k)(1"(1+ak))qk + TZ)‘“C

T b))k +8 Alk—2 ,
< < 4 hkll(w)((“)r)a:)r(ifgk)l) - (P, (82))*

(@0 (b)) "+ AT 1 (t2)
+[ T80 TZ)‘M} 20(0) -

Therefore,
4|7, b))k TPk DA%=2 a
’B(X) (t2) — Z ! MH(WFO(&PM (1f§k)) (@1, (82))™
’ )Pk A (t2)
B0 (b)) kAT Py (t2
+Z{ 0F(1+/3) Z)‘*] sa(l)(b) (15)
k=1

The right-hand side of (15) tends to zero freely of x € X' as t3 — t;. So, the Ascoli—
Arzeld theorem implies that B is a completely continuous operator on X.

Claim (c). Hypothesis (13) of Lemma 3.5 is satisfied. For any x € X, t € L, using
the condition (7), we have

Cr (x) (O] = |Z5H7 fi(t, %)
< i 1(fe(tx) = fi(4,0,0,0))[ + g [ fi(t, 0,0,0)]

b))k || T b))
< (WO(F()l)Jrallk | Z| i+ (@01(+ak) Sup|Jfk({ 0,0,0)],
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Ak (x) (O] = [gr(t,x)]
< ‘gk(t X) - (t 0a070)| + \gk(t,0,0,0)|

3
< gl (Z || ) +§£ l9x(£,0,0,0)|,

and so

3
b))k || T b k
(0] < Z“"‘)%?LJL e + > FEaTsup i(t:0,0,0)]
k=1

b))k || T,
= ”XHg (Bo ()1)+0J1|c)ka + K3,
k=1

[AG) (O] < [Ixlle ZIIEkII +Zbup\9k (+,0,0,0)]

k=1

=[xl Z [ Tgr |l + Ko

k=1

Consider two elements x € £ and y € X with x = A(x)B (y) +C (x). Then by (14) we
have

21 (8)] < Ak (x) (O] B (x) ()] + [Cr (%) ()],
and so
3

3
sup (0] < 3 (supas 9] ) < Il (K3 17
k=1

teL h—1

.S <wo<b>3;;'ﬁk'> 3 (KK + K),
k=

3(K1K2+K3)

(20 (b)) 7k || T,
1K1 5 I Tl =308, w

Claim (d). Finally, we show that 7K + o < 1, that is, (d) of Lemma 3.5 holds.
Since

= [Ixll¢ <

— |15(x)] —sup{supzs< ><>|} <K,

tel
we have

b))k || T 50(0))7k || Trk
KZHquH + (900%()1)+0|’|C el <K ZHTJIGH + (Wo%()1)+0|’\c)fk\| <1,

k=1 k=1

with
3

3
7= 7ol Z ey (o) 1Tl -
k=1

Thus, all the conditions of Lemma 3.5 are satisfied, so the operator equation x =
A (x) B (x) 4+ C (x), has a solution in X. Indeed, problem (1) has a solution on L.
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4. Tllustrative examples

We present, a few numerical examples that show the accuracy of the results well.

Example 4.1. Base on the system (1), consider the following tripled system of hybrid
FDEs with ¢ p, Laplacian operator of nonlinear equation for all t € L = [0, In 3],

anse 16/ et [(z(t)— °/“f1(tx(t))
Doi wS/S |: e ( gl(t X(t))

(24 )sin(@1(8) | e'sinM(wa(t) | (1f[t)za(t)
1100 + : 275 . + 55()3 )

; pise! 22(0 -5 o (tx(1)
Dgﬁ 1/)8/5 |: e ( gz(t X(t))

_ (1+€t)$1(t) e' tan(z2 (1)) etsin™! (z3(t))
- 50 + 3002 + 100 : ’

pose pret (20 75 fy (tx(0)
V 1/’8/5{ ; ( D)

_ tan(z1 (1)) + sin(z2(t)) + . z3(t)

(16)

= 2B(1te2Y) 2fe3t 0(1Fet)?
with three different values a; = ap = az = % %, %, under conditions
e e (-5 f1 (tx(1) B
Y5 D < gf(t,x(t)) —o =0,
xl(t)—15/4;€tf1(t,x(t))
gfa,x(t)) Zloo (Gi) s
3/9.ct
16/135et [ @2()—1T 77 fo(tx(1))
Ys/s Do+ ( 72 (Gx(0) it
22 (0-275 2 (tx() °
g2 (£x(1)) - ZW% (Gi2)
=1 =1
and
et (200 275 fs (4x(1) B
sys Dy ( PACEO) =0
20 (0-Z75 fa(tx(0) °.,
3 (6x(0) o mei (Gis)
with

F1(6%) = e (2100 + 2200 + 23() + 55)
falt,x) = &5 (ml(t) wa(t) + x3(t) + 5)
F3(6%) = 1oy (@1(8) + 22(0) —25(8) + ) , (17)
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and
_et
91(t:%) = G555 (@1(0) + 22(0) + 23(8) + 73)
2t
9a(4,%) = g (@2(8) — 22() + 25(0) + ).
3t
g5(t,%) = g (21() — 22(8) —23(0) + 55) -
Set
24-¢?!) sin(z1 (t Cgin~ ! (2o
hi(t,x) = ( 3100( 1(1)) Lets 27éx (1) | (1+\;\5)(;)53(t)’
1+e')zq (t ttan R Cain— (-
hg(f,X) — ( 52) 1(t) + et 3(():8 (1)) + e's 10(()x3(t))7
_ tan(z1(t) sin(z2(t)) z3(t)
hS(t, X) - 25(1_;62k) + 2+623¢ + 50(;-{-6‘)'

Clearly, f, gk, hx, k = 1,2,3, are continuous. The condition (Hy) is satisfied, if we
consider [Tl = 10[|Toell = 15, k= 1,2,3, |Taall = 525, ITiell = &, IToall = 55

as follows:
| 11(’(, X) — 11(’(, y)’ = 100(8+e20) 89 s ({Iil(f) + l'g(f) + $3(t) + %)
(8+e2!)

— (W (y2(8) + y2(t) + ys(t) + %))‘

3

Z\l’i — i

=1

= Th(t) = moeee = [T 0] = 5,
2t

= Thl) = S = [T = L,

= Tt = 00GTE) = T30 = 155

9
< ) 100(8+e2Y)

o (6 = a1 (69)] = | Ty (@100 + 22() + 25(0) + &)

—Ise (21(4) + 2o (t) + 25(t) + %)’

3
< ‘26&; Zm‘ — il
=1
= Tn() =585 = (ITa(0] = s
= Tet) = g5 = 1TeOl = s
= T,

3t
s() = 35500 = [1Tgs(0)]

1
1000
and

(24€*)sin(z1 (1) | e'sin(z2(t)) |, (14[Dza(0)
1100 + 2752 + 550\3

|hi(t,x) — ha(ty)| =

(2+e?") sin(y1 (V) tsin~(ya () | (1+]t)ys(b)
- ( 1100 + = 275y2 + 55(?3
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< |25 | fsin (21.(6) = sin (2 ()] + | 5] [sin~" (@2(1)) — sin~" (32(V)]

3
t
2%‘ >l — il
i=1

= El(t) = 287;5 = Hﬁll( )H 2757
= The() = 5 = | Tha()] =
= Tws(t) = 57 = [ Tws(O]| = 55

Furthermore,

‘15%‘0”‘ Y3 () —a3(t)] <

2+e>!) sin(w1 (1)) etsin™!(z 1 T
|ha (t, %) = ( 2100 — + 2] Gt

IN

3
4+e? et 42t
et ol >l = (91 ().

1+e')a n(xo in~?!
lha(t, x)| = ( 52) 1 + < tas(()?) @ L 10 (%(t))’

64+10e"
300

IN

3
Z il = a2 ()02 (IIx]]) ,

_ | tan(z1 (1) sin(za(t)) z3(t)
lha(t,x)| = 25(1+le2l) + S + 50(i+e‘)

1
< 50(1+et)

3
Z il = %3 (605 (1)) -

Assume that r = 2.1 is given. Now, by employing Eq. (6), we have

po(0) k[l (r) . 1. _ T
A > mae { BoOE L) ;T3

_ len3)—p)™™ {”74+62‘+46‘+2“| V1 (1),

= (1) 1100
H6+10e‘ ’193 (r)}

300
211, ax {2149 12 1
1"(%) 1100 >’ 100’ 100
0 12T23/11 20137 a1 = Q2 a3 = 3/11
:ﬁz 2.2067 aq :a2:a3—1/2
2.461, ] = (g = Q3 = 8/9,

‘ 9 (r)

1
50(1+et)

and by using Eq. (7), we obtain

3
2(go(b) f*mqk !
N )

k=1

_ 6(p(In3)—p(0)*2A"/?
- 5

+ 100 T 200 T 300

- 81.353, a1 = as a3 = 3/117

5/ 5

= 3(2)F (§ Py e~ ¢ 103.900, o1 = ay = a3 =1/2,
2 138.988, aj = ag = ag = 8/9,
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TABLE 1. Numerical results of A, 1 and Eqgs.
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(20), (21) in Exam-

ple 4.1 for three cases of a1 = as = ag = %, %, %.

t A K1 w1 wa

ag = =az3=F
0.000 1.5000 0.2310 0.0007 0.4034
0.110 1.5320 1.4108 0.0060 0.4111
0.220 1.5716 3.4080 0.0148 0.4243
0.330 1.6485 6.6104 0.0280 0.4455
0.439 1.7127  11.0462 0.0457 0.4755
0.549 1.7698  16.9442 0.0688 0.5170
0.659 1.8225  24.5973 0.0981 0.5736
0.769 1.8723  34.3687 0.1349  0.6509
0.879 1.9202  46.7039 0.1807 0.7579
0.989 1.9668  62.1455 0.2374 0.9091
1.099 2.0125  81.3533 0.3070 1.1304

o] = a2 = a3 = %
0.000 1.5000 0.2310  0.0007 0.4034
0.110 1.5200 1.3863  0.0060 0.4109
0.220 1.5290 3.1838 0.0141 0.4229
0.330 1.5366 5.5201 0.0247 0.4387
0.439 1.6337  9.7668 0.0419 0.4674
0.549 1.7299  15.9579 0.0658 0.5104
0.659 1.8241  24.6540 0.0982 0.5740
0.769 1.9178  36.6295 0.1417 0.6684
0.879 2.0123  52.8921 0.1993 0.8117
0.989 2.1083  74.7498 0.2752 1.0381
1.099 2.2064 103.8997 0.3747 1.4217

Q] = a2 = a3 = %
0.000 1.5000 0.2310  0.0007  0.4034
0.110 1.5080 1.3622  0.0059 0.4108
0.220 1.5156 3.1149  0.0139 0.4225
0.330 1.5235 5.4006 0.0244 0.4380
0.439 1.5320 8.2641 0.0374 0.4579
0.549 1.5981  12.9617 0.0568 0.4906
0.659 1.7421  21.8356 0.0898 0.5541
0.769 1.8988  35.6746 0.1388 0.6610
0.879 2.0698  57.0008 0.2116 0.8488
0.989 2.2567  89.5738 0.3197 1.2080
1.099 24613 138.9877 0.4799 2.0257

Ko

Ks

3
5(7—e' 2t

ZSUP |9k (t,0,0,0)| = sup ) 12(><6802)’ + sup )7127;9000’ + sup ’

o teL el el tel

1

5
12000
3

k=1

7 9 1
+ 12000 T T6000 — 640"

_ (p(n3)—p(0))*/"

(Po(b))*F
megg |f1(t,0,0,0)]

23/11
r(11)

72
sup |
14
() LeL 1900(8+e2%)

8 4 .5 4 6
[1900 + 1900 + 1900

| =0.134.

+Sup‘5€72[‘ +Sup‘676(
9x 1900 1900(3+t2
telL teL 3+t

9(3—e3")

1630000

|
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These results are shown in Table 1 for three cases of a. Inequality (8) implies that

G TFN Tkl _ 3K 3(p(In3)—p(0)*/?
Klz [ Tgrll JF wor(1+ak)fk = foo5 + =0 100pé)

3/ 0.307, a1 =as=a3= 3/11’

2

=100 + ooy = | 0875 e =mmas=le gl (20)
048(), ] = Qg = Qg = 8/9,

Finally, inequality (5) implies that

3 3 —1
.
ws = 3 (K1Ka + K) {1 — K> | Taull — Z%}
k=1

k=1

(3)
1.130, ] = Qg = (g = 3/11,
~ ¢ 1422, a1 =ag = a3 =12 <21l=r. (21)
2026, ] = Qg = (3 = 8/9,

3/2 -
:3(/c1/cg+/c3)[ ~Kigss — <2>]

These results are shown in Table 1 and in Figures la and 1b, we have plotted w;

and wy for three cases of o = a9 = ag = 13—1, %, %. Since, (H;) — (Hs) are satisfied,
05 - 22
—8—a,=0,=a,=3/11 L e ":K """"""
o ——a=a,=a =172 : 2 | B0, =a,=0 =311 r=21
04 a,=0,=0,-8/9 ! B I e N
4 a =a,= 38/9

0.35 ' 16k
0.3

141

£ 025 §

12F
0.2

Bl
0.15 Y 1

y:
0.1 / | o8t
A/.A
t=1In3 L -
0.05 4 0.6
oig—= s L L L L 0.4 ] — L L L L
0 0.2 0.4 0.6 1.2 0 0.2 0.4 0.6 0.8 1 1.2
te[0,n3) te(0,n3)
(A) w1, Eq. (20) (B) we, Eq. (21)

FIGURE 1. Representation of w; and ws for three cases of o in Exam-
ple 4.1.

Theorem 3.2 implies that (16) has at least one solution on L.

Example 4.2. In this example, we consider the system (16) for all t € L = [0, In 3],
with a; = %, Qg = %, ag = % and for four cases @;(t),

¥1 (t) = eta @2(0 =t §03(t) = ln(t + 001)7 @4(0 = \/Ev (22)
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under the same conditions and functions fi(t,x), gr(t,x), hr(t,x) which are defined
by (17), (18) and (19). We saw that, fx, gx, hx, k = 1,2,3, were continuous and
condition (Hy) satisfied, if we considered || Tzx|| = 10| Tgx|| = 165, k = 1,2,3,, | Tn1|| =
5o, | Th2ll = 35, || Thsll = 55. Assum that r = 3.05 is given. We have tried to consider
a specific number r for all states of the function ¢. Now, by employing Eq. (6), we
have

8> ma { oY) 5 | =13}

6+10e!

500 || V2 (r),

3
_ (pi(In3)—;i(0)) T dfe? Hde+2]Y
r(1+ &) max 1100 th (r),

2.4705, ¢1(t) =€,
2.2986, s
(
(

0}

1
50(1+4-et)

12

1.8783, @3(t) =In(t+1),
2.1950, 4(t) = Vt.

Table 2 shows the results for four cases of ¢. One can see the curve of A for the cases
of ¢; in Figure 2. In the sequel, by using Eq. (7), we obtain

25

241 1=e
t

231 y(t)=In (t+1)

)
)
)

0.5
ool | =0

21

0 0.2 0.4 0.6 0.8 1 1.2
te€[0,In3]

FIGURE 2. Representation of A for four cases of ¢ in Example 4.2.

3 3
2(¢ (m)ﬁkAqkil _ 6(p;(In3)— i(o))S/zAS/S 61 67 6r
N e e I R e A A

k=1 =1
140.4957, @1 () = €,
55.6496, 2 (t) =t,

T 204.8407, @3(t) = In(t + 1),
46.5002, 4(t) = V4,



SYSTEM OF HYBRID TYPE OF FDES WITH p—LAPLACIAN 431

3
Kz =) sup[gx(t,0,0,0)]
k=1t€l
. 5(7T—e 9(376;“)
= sup m‘+sup‘l2x9000‘+sup‘m’

_ _5 7 9 1
= 72000 T 12000 T 16000 — 640°

TABLE 2. Numerical results of A, K1, K3 and Eqgs. (23), (24) in
Example 4.2 for four cases of .

t A Iy Ko A K1 Ko
pr(t) =€ p2(t) =t
0.0000 1.5000 0.2310 0.3355 1.5000 0.3355 0.0000
0.1099 1.6767 1.4108 1.8363 1.5282 1.4302 0.0037
0.2197 1.8301 3.4080 5.1044 1.5808 3.1472 0.0053
0.3296 1.9419 6.6104 10.2088 1.7113 6.0578 0.0065
0.4394 | 2.0351 11.0462 17.4666 1.8213 9.9630 0.0075
0.5493 | 2.1180 16.9442 27.3182 1.9183 14.8850 0.0084
0.6592 2.1945 24.5973 40.3248 2.0059 20.8491 0.0092
0.7690 | 2.2669 34.3687 57.1845 2.0865 27.8816 0.0099
0.8789 | 2.3364 46.7039 T8.7571 2.1615 36.0087 0.0106
0.9888 | 2.4041 62.1455 106.0974 2.2320 45.2562 0.0112
1.0986 | 2.4706 81.3533  140.4958 2.2986 55.6496 0.0118
©3(t) = In(t + 0.01) pa(t) = Vi
0.0000 1.5000 34.8034 0.0107 1.5000 0.3355  0.0000
0.1099 1.6767 91.4099 0.0282 1.5295 4.6066 0.0039
0.2197 1.7173 113.9983 0.0323 1.5844 7.5242 0.0053
0.3296 1.7412 129.4109 0.0348 1.6998 11.4641 0.0064
0.4394 1.7582 141.4112 0.0367 1.7953 15.7028 0.0072
0.5493 1.7714 151.3644 0.0381 1.8782 20.2204 0.0080
0.6592 1.7821 159.9336 0.0393 1.9523 25.0003 0.0087
0.7690 1.7911 167.4955 0.0403 2.0199 30.0288 0.0093
0.8789 1.7990 174.2864 0.0412 2.0822 35.2945 0.0099
0.9888 1.8215 184.6495 0.0420 2.1404 40.7878 0.0104
1.0986 | 1.8783 204.8408 0.0427 2.1951  46.5003  0.0109
3
_ (@o(b))“k
K3 = NEETTs) sup | fx(£,0,0,0)]
k=1
3 3
(¢i(In3)—; (0))/** ’ 72 (i (In3)— i (0))/** 5e2t
= sup > | + v sup
r(i) el 1900(8+€2%) r() wel, | 9x1900
3/11
i(In3)—;(0))” 6e'
+ (i ( 2 sup ;
r(i) el 1900(3+2)
0.0133, ¢1(t) =€,
_ Gamopo)” s s ey ) O0UE, p2(t) =t
- 14 1900 1900 19001 — _
r(11) 0.0426, @3(t) = In(t+ 1),
0.0108, @4(t) = Vt.

These results are shown in Table 2 for four cases of ¢ and also, Figures 3a and 3b
show the curves of 1 and K3. Inequality (8) implies that
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250 T T T T T 0.045

AU o'
0.04
t

¢
¢
200 by

—— |
—— 0,

c,(
——, (1)=°

4

)= 1
)= 1
t)=In (t+1) : 1 0.035
)= 1
! 0.03
1

150

0.025

Ky

0.02
100

7

0.015

50 0.017

0.005

0 02 0.4 06 08 1 12 0 02 0.4 06 08 1 12
te0,In3) te0,In3)

(a) K1 (B) K3

FIGURE 3. Representation of K; and K3 for four cases of ¢ in Exam-
ple 4.2.

3 3 .
._ (PoB) Tk Tl _ 3K, | 3(pi(In3)—e;(0)*2
W= Klz I Tgrell + P Foy = doo0 + 100r(§)
k=1 k=1

0.4844, ¢1(t) = e,
0.1967, o
0.8087, ¢3(t) =In(t+1),

0.1675, pa(t) = Vi.
Finally, inequality (5) implies that

<1 (23)

3 3 -1
= 301K +K) [ 1= a3 T3] - Y- Tl

F(1+G'k)
k=1 k=1

1.3553, 1(t) = e,

0.3689, a

2.8531, 3(t) =In(t+1), te [0, 23], [~
0.3010, p4(t) = V4.

These results are shown in Table 3 and in Figures 3a and 3b, we have plotted the
results for the tripled system of hybrid FDEs (16) with new conditions in this example
and four cases of ¢; are defined by (22).

Thus, the assumptions (H;) — (Hjs) are satisfied and Theorem 3.2 implies that (16)
with four cases of o; (22) has at least one solution on [0, ln3].

5. Conclusion and future results
In this paper, we have defined a new triple system of nonlinear hybrid FDEs under

with nonlocal integro multi point boundary conditions involving the p—Laplacian
operator and the ¢—Caputo derivative. Base on the hybrid Dhage fixed point theorem
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TABLE 3. Numerical results of w; and wsy, Egs. (23), (24) in Exam-
ple 4.2 for four cases of .

t w1 wa w1 w2
p1(t) = €' p2(t) =t
0.0000 | 0.0010 0.0016 0.0010 0.0016
0.1099 | 0.0073 0.0273 0.0060 0.0180
0.2197 | 0.0199 0.0476 0.0134 0.0310
0.3296 | 0.0388 0.0766 0.0248 0.0490
0.4394 | 0.0650 0.1178 0.0394 0.0720
0.5493 | 0.0999 0.1762 0.0572 0.1006
0.6592 | 0.1453 0.2593 0.0783 0.1358
0.7690 | 0.2033 0.3799 0.1027 0.1787
0.8789 | 0.2769 0.5610 0.1306 0.2306
0.9888 | 0.3692 0.8493 0.1619 0.2933
1.0986 | 0.4845 1.3554 0.1967 0.3689
p1(t) =et p2(t) =t
0.0000 | 0.1640 0.2334 0.0010 0.0016
0.1099 | 0.3905 0.8416 0.0205 0.0340
0.2197 | 0.4784 1.2103 0.0328 0.0530
0.3296 | 0.5377 1.5381 0.0476 0.0765
0.4394 | 0.5835 1.8557 0.0629 0.1017
0.5493 | 0.6214 2.1759 0.0789 0.1289
0.6592 | 0.6539 2.5064 0.0954 0.1583
0.7690 | 0.6825 2.8532 0.1126  0.1900
0.8789 | 0.7081 3.2215 0.1303 0.2242
0.9888 | 0.7438 3.8705 0.1487 0.2612
1.0986 | 0.8087 5.6887 0.1676 0.3011
- - ! : - 6 . ;
B r=3.05 —— i
—— 0, (0=t 5L [—o—o0m 1
4,(0)=In (t+1) 0,(0)=In (t+1) :
——0, =" ——0, =" 1
i \
1
. r=3.05 1
] e e B S T-4
t=1In3,
! :
1
i I
1
‘ : : : B ==t}
02 0.4 06 08 1 12 0 0.2 0.4 06 08 1
t€[0,In3] t€[0,In3]

(A) w1, Eq. (20)

(B) w2, Eq. (21)

FIGURE 4. Representation of w; and ws for four cases of ¢ in Exam-

ple 4.2.
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for a sum of three operators, the results are obtained. Two examples are presented
at the end to show the applicability of the obtained results which are generalization
for different states with derivative definition.
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