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Discussion on a New Tripled System of Hybrid Type of FDEs
with p−Laplacian Involving ϕ−Caputo Derivatives

Hamid Beddani, Moustafa Beddani, and Mohammad Esmael Samei∗

Abstract. Our research is about the analysis of a new type of triple system of hybrid dif-

ferential equations of fractional order with nonlocal integro multi point boundary conditions,

whose results can certainly be useful in solving practical problems. We focus on a mathe-
matical operator called the p−Laplacian and another type of derivative called the ϕ−Caputo

derivative. The displayed comes about are gotten by the hybrid Dhage fixed point theorem

for a entirety of three operators. A few illustrative illustrations is displayed at the conclusion
to appear the pertinence of the gotten comes about. To the leading of our information, this

is often the primary time where such issue is considered.
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1. Introduction

Fractional calculus is useful in many research areas, like the ones mentioned in
sources [1, 21, 31, 32]. Scientists from various areas of study became interested
in fractal order differential equations (DEs) after the mission’s exploration [17, 30].
Most of the research has been done using different types of fractional derivatives
such as Riemann-Liouville (RL), Grunwald-Letnikov, Atangana-Baleanu, Hadamard,
Caputo, and Katugampola [6, 26, 30, 33].

When, we find the fractional derivatives of functions in relation to other functions,
they are distinctive than standard fractional derivatives since they include utilizing
other uncommon functions, called ϕ, see [3, 4, 22]. Many articles use the theories of
Schauder, Krasnoselskii, Darbo, or Monch to show that there are solutions for nonlin-
ear fractional differential equations (FDEs), however, these theories only work under
certain conditions [2, 7, 9, 28, 36]. Certainly, valuable works have been published on
the existence and uniqueness (EU) of solutions for FDEs with p−Laplacian opera-
tors, including Li, Wang, Khan, Chabanea et al. studied a nonlinear FDEs with the
operator for the EU of solutions [8, 10, 11, 13, 23, 25, 27, 34] and others for hybrid
type of the equations [5, 12, 15, 16, 20, 35].
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Ferraoun et al. have been concerned with the hybrid FDEs involving RL-operator
the following problem:

Dα1
0

[(
u1(t)

g1(t,u(t))

)]
= f1

(
t,u(t)

)
+ Iδ10 h1

(
t,u(t)

)
,

Dα2
0

[(
u2(t)

g2(t,u(t))

)]
= f2

(
t,u(t)

)
+ Iδ20 h2

(
t,u(t)

)
,

...

Dαn0

[(
un(t)

gn(t,u(t))

)]
= fn

(
t,u(t)

)
+ Iδn0 hn

(
t,u(t)

)
,

here u(t) =
[
u1(t) u2(t) . . . un(t)

]
, t ∈ L := [0, 1], with

ui(0) = θi

∫ βi

0

ϕi(s)ui(s) ds, 0 < βi,

αi, δi < 1, i = 1, n, where ϕi are continuous functions on [0, βi] on L, gi ∈ C
(
L ×

Rn,R∗
)
, fi, hi ∈ C

(
L × Rn

)
[19]. Beddani et al. worked on the nonlinear FDEs

involving ψp Laplacian operator:
Dr1k;ϕ

0+ ψp

[
Dr2k;ϕ

0+

(
xk(t)− Iσ;ϕ

0+ gk(t, x(t))
)]

= hk
(
t, x(t)

)
, k = 1, 3,

ψp

[
Dr2k;ϕ

0+

(
xk(t)− Iσ;ϕ

0+ gk
(
t, x(t)

))]∣∣∣
t=0

= 0,

for t ∈ L, where x(t) = (x1(t), x2(t), x3(t)), with xk(0) = 0,

xk(1) =

3∑
i=1

λixi(ζik), ζik ∈ L,

ϕ (1) − ϕ(0) = K > 0 where Drik;ϕ
0+ , i, k = 1, 3 as the ϕ−Caputo derivatives of

fractional orders rik, 0 ≤ r1k < 1 < r2k < 2, Iσ;ϕ
0+ , the integral of fractional order

0 < σ, λi ∈ R∗+, and ϕ : L → R is an increasing function such that ϕ′(t) 6= 0, and

ψpm(s) = |s|p−2
s denotes the p−Laplacian operator and for t ∈ L, gk, hk : L×R3 → R

is a given functions [8].

In the research work, first, we recall basic notions and lemmas in Section 2. Then,
in Section 3, we analyze the existence tripled system of hybrid FDEs with ψPk Lapla-
cian operator for the following problem: for t ∈ L, and k = 1, 3,

Dαk;ϕ
0+ ψpk

[
Dβk;ϕ

0+

(
xk(t)−Iσk;ϕ

0+ fk(t,x(t))

gk(t,x(t))

)]
= hk

(
t, x(t)

)
,

ψpk

[
Dβk;ϕ

0+

(
xk(t)−Iσk;ϕ

0+ fk(t,x(t))

gk(t,x(t))

)]∣∣∣∣
t=0

= 0,

xk(t)−Iσk;ϕ

0+ fk(t,x(t))

gk(t,x(t))

∣∣∣∣
t=b

=

3∑
i=1

λikxi (ζik) , ζik ∈ L,

(1)

here, x(t) = (x1(t), x2(t), x3(t)) and we take Dαk;ϕ
0+ ,Dβk;ϕ

0+ , k = 1, 3 as the ϕ−Caputo
derivatives of fractional orders αk, βk, 0 ≤ αk < 1 < βk < 2, λik ∈ R∗+, Iσk;ϕ

0+ , 0 < σk,
the fractional integral of order σk,, an increasing function ϕ : L→ R with ϕ′(t) 6= 0,
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ϕ̂0(b) := ϕ (b)−ϕ(0) > 0, and ψpk(s) = s |s|pk−2
denotes the pk−Laplacian operators

and satisfies

pk + qk = pk · qk, (ψpk)
−1

= ψqk (qk ≥ 2),

and fk, hk : L × R3 → R, gk : L × R3 → R∗ is a given functions. Next, in Section 4,
practical examples are shown. Finally, we present the conclusions of the obtained
results for use in future research in in Section 5.

2. Basic notions and preliminaries

Consider an increasing function ϕ : L→ R with ϕ′(t) 6= 0, for t ∈ L and the Gamma
function Γ(·). We pose

ϕr (t, %) =
ϕ′(%)(ϕ̂%(t))r−1

Γ(r) , (t > %) , r > 0, t ∈ L,

where ϕ̂%(t) := ϕ(t)−ϕ(%). The left-sided ϕ−RL fractional integral of order α for an
integrable function x : L→ R with respect to function ϕ, is defined as follows

Ir;ϕa+ x(t) =

t∫
a

ϕr (t, %)x(%) d%. (2)

Note that Eq. (2) is reduced to the RL and Hadamard fractional integrals when
ϕ(t) = t and ϕ(t) = ln t, respectively. Now, assume that ϕ, x ∈ Cn (J) too. The left-
sided ϕ−RL and left-sided ϕ−Caputo derivative of a function x of fractional order r
are defined by

Dr;ϕa+ x(t) =
(

1
ϕ′(t)

d
dt

)n
In−r;ϕa+ x(t)

=
(

1
ϕ′(t)

d
dt

)n t∫
a

ϕn−r (t, s)x(s) ds, n = [r] + 1,

and cDr;ϕa+ x(t) = In−r;ϕa+ x
[n]
ϕ (t), where n = [r] + 1 for r /∈ N, n = r for r ∈ N,

respectively, and

x[n]
ϕ x(t) =

(
1

ϕ′(t)
d
dt

)n
x(t).

Thus,

cDr;ϕa+ u(t) =


t∫
a

ϕn−r(t, s)x
[n]
ϕ (s) ds, r /∈ N,

x[n]
ϕ (t), r ∈ N.

(3)

Lemma 2.1. Let r > 0. The following holds: (i) If x ∈ C(L), then cDr;ϕa+ Ir;ϕa+ x(%) =
x(%), for % ∈ L; (ii) If x ∈ Cn(L), n− 1 < r < n, then

Iα;ϕ
a+

cDα;ϕ
a+ x(%) = x(%)−

n−1∑
k=0

x[k]
ϕ (a)

k! [ϕ̂a(%)]
k
.

In special case, we have Iα;ϕ
a+

cDα;ϕ
a+ x(%) = x(%)− x(a), when 0 < r < 1.
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3. Existence results

We consider Banach spaces C(L) and E = [C(L)]3 endowed with the norms ‖x‖C(J) =

supt∈J |x(t)| and

‖x‖E = ‖(x1, x2, x3)‖E =

3∑
i=1

‖xi‖C(J) ,

respectively.

Lemma 3.1. For a given f̃k, h̃k, g̃k ∈ L1(J,R3) (k = 1, 3), the solution of hybrid
fractional problem

Dαk;ϕ
0+ ψpk

[
Dβk;ϕ

0+

(
xk(t)−Iσk;ϕ

0+ f̃k(t)

g̃k(t)

)]
= h̃k(t), t ∈ L,

ψpk

[
Dβk;ϕ

0+

(
xk(t)−Iσk;ϕ

0+ f̃k(t)

g̃k(t)

)]∣∣∣∣
t=0

= 0,

xk(t)−Iσk;ϕ

0+ f̃k(t)

g̃k(t)

∣∣∣∣
t=b

=

3∑
i=1

λikxi (ζik) , ζik ∈ L,

is given by

xk(t) = Iσk;ϕ
0+ f̃k(t) + g̃k(t) Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ h̃k(t)

)
+ ϕ̂0(t)g̃k(t)

ϕ̂0(b)

[
Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ h̃k(b)

)
−

3∑
i=1

λikxi (ζik)

]
.

Proof. For 0 ≤ αk < 1 < βk < 2, Lemma 2.1 yields,

ψpkD
βk;ϕ
0+

(
xk(t)−Iσk;ϕ

0+ f̃k(t)

g̃k(t)

)
= Iαk;ϕ

0+ h̃k(t) + d1k,

by conditions

ψpk

[
Dβk;ϕ

0+

(
xk(t)−Iσk;ϕ

0+ f̃k(t)

g̃k(t)

)]∣∣∣∣
t=0

= 0,

we get d1k = 0, and

xk(t)−Iσk;ϕ

0+ f̃k(t)

g̃k(t) = Iβk;ϕ
0+

(
ψqkI

αk;ϕ
0+ h̃k(t)

)
+ d2kϕ̂0(t),

and so by conditions

xk(t)−Iσk;ϕ

0+ f̃k(t)

g̃k(t)

∣∣∣∣
t=b

=

3∑
i=1

λikxi (ζik) ,

then

d2k = 1
ϕ̂0(b)

(
Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ h̃k(b)

)
−

3∑
i=1

λikxi (ζik)

)
.
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Thus,

xk(t) = Iσk;ϕ
0+ f̃k(t) + g̃k(t)Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ h̃k(t)

)
+ ϕ̂0(t)g̃k(t)

ϕ̂0(b)

{
Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ h̃k(b)

)
−

3∑
i=1

λikxi (ζik)

}
.

This completes the proof. �

The following hypotheses are required for further discussion. We need the following
to prove our main theorem.

Required hypotheses:
H1) The functions fk, gk and hk are continuous;
H2) There exist three positive functions Tfk, Tgk, Thk with bounds ‖Tfk‖ , ‖Tgk‖,

‖Thk‖, respectively, with

|fk(%, x)− fk(%, y)| ≤ Tfk(%) Σ,

|gk(%, x)− gk(%, y)| ≤ Tgk(%) Σ,

|hk(%, x)− hk(%, y)| ≤ Thk(%) Σ,

where Σ :=
∑3
i=1 |xi − yi|, for all t ∈ L and x = (x1, x2, x3), y = (y1, y2, y3),

xi, yi ∈ R, i, k = 1, 3;
H3) There exist three functions Λk ∈ L∞(L,R+) and a nondecreasing function ϑk ∈

C([0,∞),R>0) with

|hk(t, x)| ≤ Λk(t)ϑk (‖x‖E) , ∀ t ∈ L, xi ∈ R, i, k = 1, 3. (4)

H4) There exists r > 0 such that

3(K1K2+K3)

1−K1

3∑
k=1

‖Tgk‖−
∑3
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk)

≤ r, (5)

and

max
{

(ϕ̂0(b))αk‖ψk‖ϑk(r)
Γ(1+αk) : k = 1, 3

}
< ∆, (6)

where

K1 =

3∑
k=1

[
2(ϕ̂0(b))βk∆qk−1

Γ(1+βk) + r

3∑
i=1

λik

]
,

K2 =

3∑
k=1

sup
t∈L
|gk(t, 0, 0, 0)| ,

K3 =

3∑
k=1

(ϕ̂0(b))αk

Γ(1+αk) sup
t∈L
|fk(t, 0, 0, 0)| . (7)

Theorem 3.2. Assuming hypotheses (H1)–(H4) are met. Then, the hybrid fractional
problem (1) has at least one solution defined on L, if

K1

3∑
k=1

‖Tgk‖+

3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk) < 1. (8)

In order to prove the theorem, we adopt the following Lemmas.
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Lemma 3.3 ([33]). Given a function x ∈ Cn(L) and 0 < r < 1, we have∣∣Ir;ϕa+ x(́t)− Ir;ϕa+ x(t)
∣∣ ≤ 2 ‖x‖C(L)

(ϕ̂t (́t))
r

Γ(r+1) , t < t́. (9)

Lemma 3.4 ([24]). For the p−Laplacian operator ψp, the following conditions hold
true:
(i) If |δ́|, δ ≥ ρ > 0,with δ δ́ > 0, 1 < p ≤ 2, then∣∣∣ψp(δ)− ψp(δ́)∣∣∣ ≤ p−1

ρ2−p |δ − δ́|; (10)

(ii) If p > 2, |δ| , |δ́| ≤ ρ∗ > 0, then∣∣∣ψp(δ)− ψp(δ́)∣∣∣ ≤ p−1

ρ2−p
∗
|δ − δ́| . (11)

Lemma 3.5 ([14]). Assume ∅ 6= X ⊆ E be a closed convex bounded, and consider
three operators A, C : E → E and B : X → E with:

(l1) A, C are Lipschitzian with a Lipschitz constants τ and σ, respectively;
(l2) C is compact and continuous;
(l3) x = AxBy + Cx =⇒ x ∈ X for each y ∈ X ;

Then the equation AxBx + Cx = x has a solution in X , if τK + σ < 1, with K =
‖C(X )‖E .

Proof of Theorem 3.2: We define the closed convex bounded X ⊆ E by

X =
{

x ∈ E : ‖x‖E ≤ r
}
.

Thanks to Lemma 3.5, the fractional hybrid problem (1) is equivalent to the equation

xk(t) = Iσk;ϕ
0+ fk(t, x) + gk(t, x)

{
Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ hk(t, x)

)
+ ϕ̂0(t)

ϕ̂0(b)

[
Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ hk(b, x)

)
−

i=1∑
3

λikxi (ζik)

]}
. (12)

Taking into account Lemma 3.1, we define three operatorsA, C : E → E and B : X → E
A (x) (t) =

(
A1(x)(t),A2(x)(t),A3(x)(t)

)
,

B (x) (t) =
(
B1(x)(t),B2(x)(t),B3(x)(t)

)
,

C (x) (t) =
(
C1(x)(t), C2(x)(t), C3(x)(t)

)
, (13)

where

Ak (x) (t) = gk(t, x),

Bk (x) (t) = Iβk;ϕ
0+

(
ψqkI

αk;ϕ
0+ hk(t, x)

)
+ ϕ̂0(t)

Bϕ

[
Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ hk(b, x)

)
−

3∑
i=1

λikxi (ζik)

]
,

Ck (x) (t) = Iσk;ϕ
0+ fk(t, x),

and

Iβk;ϕ
0+

(
ψqkI

αk;ϕ
0+ hk(t, x)

)
=

t∫
0

ϕβk (t, s)ψqk

[ s∫
0

ϕαk (s, z)hk(z, x) dz

]
ds.
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In this case, Eq. (12) can be written as

xk(t) = Ak (x) (t)Bk (x) (t) + Ck (x) (t), t ∈ L.
In the following series of claims, we show the operatorsA,B, C satisfy all the conditions
of Lemma 3.5.
Claim (a). Let x = (x1, x2, x3), y = (y1, y2, y3) ∈ E . Then by (H2), for t ∈ L, we
have ∣∣Ak(x)(t)−Ak(y)(t)

∣∣ ≤ Σ Tgk(t), t ∈ L,
and so ∥∥Ak(x)−Ak(y)

∥∥
C(L)

≤ ‖Tgk‖
3∑
i=1

‖xi − yi‖C(L) .

Thus,

‖A(x)−A(y)‖E ≤
( 3∑
k=1

‖Tgk‖
)[ 3∑

i=1

‖xi − yi‖C(L)

]
.

Therefore A is Lipschitzian on E with constant
∑3
k=1 ‖Tgk‖, for x, y ∈ E . Also

‖C(x)− C(y)‖E ≤
( 3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk)

)[ 3∑
i=1

‖xi − yi‖C(L)

]
.

Hence C is Lipschitzian on E with constant

3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk) , ∀ x, y ∈ E .

Claim (b). We show that B is is a completely continuous operator from X into E .
First, by (H1) we have B is a continuous operator X for all t ∈ [0, b]. Next, we will
prove that the set B(X ) is a uniformly bounded in X . For any x ∈ X , and by∣∣∣ ϕ̂0(t)

ϕ̂0(b)

∣∣∣ ≤ 1, ψqk(s) = s |s|qk−2
(qk ≥ 2),

we have

|Bk (x) (t)| ≤
∣∣∣Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ hk(t, x)

)∣∣∣
+
∣∣∣Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ hk(b, x)

)∣∣∣+

3∑
i=1

λik |xi (ζik)|

≤ 2
∣∣∣Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ hk(b, x)

)∣∣∣+

3∑
i=1

λik |xi (ζik)|

≤ 2(ϕ̂0(b))βk

Γ(1+βk)

∣∣Iαk;ϕ
0+ hk(b, x)

∣∣qk−1
+ r

3∑
i=1

λik

≤ 2(ϕ̂0(b))βk∆qk−1

Γ(1+βk) + r

3∑
i=1

λik,

and so

|B (x) (t)| ≤
3∑
k=1

[
2(ϕ̂0(b))βk∆qk−1

Γ(1+βk) + r

3∑
i=1

λik

]
≤ K1. (14)
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Thus ‖B (x)‖E ≤ K1 for all x ∈ X with K1 is given by (7). Indeed, B is uniformly
bounded on X . Now, we will show that B(X ) is an equicontinuous set in E . Let
t1, t2 ∈ L. Then for any x ∈ X , by (6), (4) and Lemma 3.3, we get∣∣Bk (x) (t2)− Bk (x) (t1)

∣∣ ≤ ∣∣∣Iβk;ϕ
0+

(
ψqkI

αk;ϕ
0+ hk(t2, x)

)
− Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ hk(t1, x)

) ∣∣∣+
ϕ̂t1 (t2)

ϕ̂0(b)

×
[∣∣∣Iβk;ϕ

0+

(
ψqkI

αk;ϕ
0+ hk(b, x)

) ∣∣∣+

3∑
i=1

λik |xi (ζik)|
]

≤ 2(ϕ̂0(b))βk

Γ(1+βk)

∣∣∣ψqk (Iαk;ϕ
0+ hk(t2, x)

)
− ψqk

(
Iαk;ϕ

0+ hk(t1, x)
) ∣∣∣

+
ϕ̂t1

(t2)

ϕ̂0(b)

[
(ϕ̂0(b))βk∆qk−1

Γ(1+βk) + r

3∑
i=1

λik

]
,

and by (6), Lemmas 3.3 and 3.4, we get∣∣Bk (x) (t2)− Bk (x) (t1)
∣∣

≤ 2(ϕ̂0(b))βk (qk−1)∆qk−2

Γ(1+βk)

∣∣∣Iαk;ϕ
0+ hk(t2, x)

− Iαk;ϕ
0+ hk(t1, x)

∣∣∣+
ϕ̂t1 (t2)

ϕ̂0(b)

×
[

(ϕ̂0(b))βk+(qk−1)αk‖ψk‖qk−1(ϑk(r))qk−1

Γ(1+βk)(Γ(1+αk))qk−1 + r

3∑
i=1

λik

]
≤ 4‖Thk‖(ϕ̂0(b))αk+βk (qk−1)∆qk−2

Γ(1+αk)Γ(1+βk) (ϕ̂t1(t2))
αk

+

[
(ϕ̂0(b))βk∆qk−1

Γ(1+βk) + r

3∑
i=1

λik

]
ϕ̂t1

(t2)

ϕ̂0(b) .

Therefore,

∣∣B (x) (t2)− B (x) (t1)
∣∣ ≤ 3∑

k=1

4‖Thk‖(ϕ̂0(b))αk+βk (qk−1)∆qk−2

Γ(1+αk)Γ(1+βk) (ϕ̂t1(t2))
αk

+

3∑
k=1

[
(ϕ̂0(b))βk∆qk−1

Γ(1+βk) + r

3∑
i=1

λik

]
ϕ̂t1

(t2)

ϕ̂0(b) . (15)

The right-hand side of (15) tends to zero freely of x ∈ X as t2 → t1. So, the Ascoli–
Arzelá theorem implies that B is a completely continuous operator on X .
Claim (c). Hypothesis (l3) of Lemma 3.5 is satisfied. For any x ∈ X , t ∈ L, using
the condition (7), we have

|Ck (x) (t)| =
∣∣Iσk;ϕ

0+ fk(t, x)
∣∣

≤ Iσk;ϕ
0+ |(fk(t, x)− fk(t, 0, 0, 0))|+ Iσk;ϕ

0+ |fk(t, 0, 0, 0)|

≤ (ϕ̂0(b))αk‖Tfk‖
Γ(1+αk)

3∑
i=1

|xi|+ (ϕ̂0(b))αk

Γ(1+αk) sup
t∈L
|fk(t, 0, 0, 0)| ,
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|Ak (x) (t)| = |gk(t, x)|
≤ |gk(t, x)− gk(t, 0, 0, 0)|+ |gk(t, 0, 0, 0)|

≤ ‖Tgk‖
( 3∑
i=1

|xi|
)

+ sup
t∈L
|gk(t, 0, 0, 0)| ,

and so

|C (x) (t)| ≤
3∑
k=1

(ϕ̂0(b))αk‖Tfk‖
Γ(1+αk) ‖x‖E +

3∑
k=1

(ϕ̂0(b))αk

Γ(1+αk) sup
t∈L
|fk(t, 0, 0, 0)|

= ‖x‖E
3∑
k=1

(ϕ̂0(b))αk‖Tfk‖
Γ(1+αk) +K3,

|A (x) (t)| ≤ ‖x‖E
3∑
k=1

‖Tgk‖+

3∑
k=1

sup
t∈L
|gk(t, 0, 0, 0)|

= ‖x‖E
3∑
k=1

‖Tgk‖+K2.

Consider two elements x ∈ E and y ∈ X with x = A(x)B (y) + C (x). Then by (14) we
have

|xk(t)| ≤ |Ak (x) (t)| |Bk (x) (t)|+ |Ck (x) (t)| ,
and so

sup
t∈L
|x(t)| ≤

3∑
k=1

(
sup
t∈L
|xk(t)|

)
≤ ‖x‖E

(
K1

3∑
k=1

‖Tgk‖

+

3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk)

)
+ 3 (K1K2 +K3) ,

⇒‖x‖E ≤
3(K1K2+K3)

1−K1
∑3
k=1‖Tgk‖−

∑3
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk)

≤ r.

Claim (d). Finally, we show that τK + σ < 1, that is, (d) of Lemma 3.5 holds.
Since

K = ‖B(X )‖ = sup
x∈X

{
sup
t∈L
|B(x)(t)|

}
≤ K1,

we have

K

3∑
k=1

‖Tgk‖+

3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk) ≤ K1

3∑
k=1

‖Tgk‖+

3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk) < 1,

with

τ =

3∑
k=1

‖Tgk‖ , σ =

3∑
k=1

1
Γ(1+σk) (ϕ̂0(b))

σk ‖Tfk‖ .

Thus, all the conditions of Lemma 3.5 are satisfied, so the operator equation x =
A (x)B (x) + C (x), has a solution in X . Indeed, problem (1) has a solution on L.
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4. Illustrative examples

We present, a few numerical examples that show the accuracy of the results well.

Example 4.1. Base on the system (1), consider the following tripled system of hybrid
FDEs with ψPk Laplacian operator of nonlinear equation for all t ∈ L = [0, ln 3],

Dα1;et

0+ ψ8/5

[
D16/13;et

0+

(
x1(t)−I

5/4;et

0+ f1(t,x(t))

g1(t,x(t))

)]
=

(2+e2t) sin(x1(t))

1100 + et sin−1(x2(t))
275 + (1+|t|)x3(t)

550 ,

Dα2;et

0+ ψ8/5

[
D16/13;et

0+

(
x2(t)−I

5/4;et

0+ f2(t,x(t))

g2(t,x(t))

)]
=

(1+et)x1(t)

50 + et tan(x2(t))
300 + et sin−1(x3(t))

100 ,

Dα3;et

0+ ψ8/5

[
D16/13;et

0+

(
x3(t)−I

5/4;et

0+ f3(t,x(t))

g3(t,x(t))

)]
= tan(x1(t))

25(1+e2t) + sin(x2(t))
2+e3t + x3(t)

50(1+et) ,

(16)

with three different values α1 = α2 = α3 = 3
11 ,

1
2 ,

8
9 , under conditions

ψ8/5D
16/13;et

0+

(
x1(t)−I

5/4;et

0+ f1(t,x(t))

g1(t,x(t))

)∣∣∣∣
t=0

= 0,

x1(t)−I
5/4;et

0+ f1(t,x(t))

g1(t,x(t))

∣∣∣∣
t=1

=

3∑
i=1

i
100xi (ζi1) ,

ψ8/5D
16/13;et

0+

(
x2(t)−1I

3/2;et

0+ f2(t,x(t))

g2(t,x(t))

) ∣∣∣∣
t=0

= 0,

x2(t)−I
5/4;et

0+ f2(t,x(t))

g2(t,x(t))

∣∣∣∣
t=1

=

3∑
i=1

i
200xi (ζi2) ,

and

ψ8/5D
16/13;et

0+

(
x3(t)−I

5/4;et

0+ f3(t,x(t))

g3(t,x(t))

) ∣∣∣∣
t=0

= 0,

x3(t)−I
5/4;et

0+ f3(t,x(t))

g3(t,x(t))

∣∣∣∣
t=1

=

3∑
i=1

i
300xi (ζi3) ,

with

f1(t, x) = 9
100(8+e2t)

(
x1(t) + x2(t) + x3(t) + 8

19

)
,

f2(t, x) = e2t

900

(
x1(t)− x2(t) + x3(t) + 5

19

)
,

f3(t, x) = et

100(3+t2)

(
x1(t) + x2(t)− x3(t) + 6

19

)
, (17)
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and

g1(t, x) = 7−et
6000

(
x1(t) + x2(t) + x3(t) + 5

12

)
,

g2(t, x) = e2t

9000

(
x1(t)− x2(t) + x3(t) + 7

12

)
,

g3(t, x) = 3+e3t

30000

(
x1(t)− x2(t)− x3(t) + 9

16

)
. (18)

Set

h1(t, x) =
(2+e2t) sin(x1(t))

1100 + et sin−1(x2(t))
275 + (1+|t|)x3(t)

550 ,

h2(t, x) =
(1+et)x1(t)

50 + et tan(x2(t))
300 + et sin−1(x3(t))

100 ,

h3(t, x) = tan(x1(t))
25(1+e2t) + sin(x2(t))

2+e3t + x3(t)
50(1+et) . (19)

Clearly, fk, gk, hk, k = 1, 2, 3, are continuous. The condition (H2) is satisfied, if we
consider ‖Tfk‖ = 10 ‖Tgk‖ = 1

100 , k = 1, 2, 3,, ‖Th1‖ = 3
275 , ‖Th2‖ = 3

50 , ‖Th3‖ = 1
29

as follows:∣∣f1

(
t, x
)
− f1

(
t, y
)∣∣ =

∣∣∣ 9
100(8+e2t)

(
x1(t) + x2(t) + x3(t) + 8

19

)
−
(

9
100(8+e2t)

(
y1(t) + y2(t) + y3(t) + 8

19

))∣∣∣
≤
∣∣∣ 9

100(8+e2t)

∣∣∣ 3∑
i=1

|xi − yi|

⇒ Tf1(t) = 9
100(8+e2t) ⇒ ‖Tf1(t)‖ = 1

100 ,

⇒ Tf2(t) = e2t

900 ⇒ ‖Tf2(t)‖ = 1
100 ,

⇒ Tf3(t) = et

100(3+t2) ⇒ ‖Tf3(t)‖ = 1
100 ,

∣∣g1

(
t, x
)
− g1

(
t, y
)∣∣ =

∣∣∣ 7−et6000

(
x1(t) + x2(t) + x3(t) + 5

12

)
− 7−et

6000

(
x1(t) + x2(t) + x3(t) + 5

12

)∣∣∣
≤
∣∣∣ 7−et6000

∣∣∣ 3∑
i=1

|xi − yi| ,

⇒ Tg1(t) = 7−et
6000 ⇒ ‖Tg1(t)‖ = 1

1000 ,

⇒ Tg2(t) = e2t

9000 ⇒ ‖Tg2(t)‖ = 1
1000 ,

⇒ Tg3(t) = 3+e3t

30000 ⇒ ‖Tg3(t)‖ = 1
1000 ,

and ∣∣h1(t, x)− h1(t, y)
∣∣ =

∣∣∣∣ (2+e2t) sin(x1(t))

1100 + et sin−1(x2(t))
275 + (1+|t|)x3(t)

550

−
(

(2+e2t) sin(y1(t))

1100 + et sin−1(y2(t))
275 + (1+|t|)y3(t)

550

) ∣∣∣∣
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≤
∣∣∣ 2+e2t

1100

∣∣∣ |sin (x1(t))− sin (y1(t))|+
∣∣∣ et275

∣∣∣ ∣∣sin−1 (x2(t))− sin−1 (y2(t))
∣∣

+
∣∣∣ 1+|t|

550

∣∣∣ |y3(t)− x3(t)| ≤
∣∣∣ et275

∣∣∣ 3∑
i=1

|xi − yi|

⇒ Th1(t) = et

275 ⇒ ‖Th1(t)‖ = 3
275 ,

⇒ Th2(t) = 1+et

50 ⇒ ‖Th2(t)‖ = 3
50 ,

⇒ Th3(t) = 1
2+e3t ⇒ ‖Th3(t)‖ = 1

29 .

Furthermore,

|h1(t, x)| =
∣∣∣∣ (2+e2t) sin(x1(t))

1100 + et sin−1(x2(t))
275 + (1+|t|)x3(t)

550

∣∣∣∣
≤
∣∣∣ 4+e2t+4et+2|t|

1100

∣∣∣ 3∑
i=1

‖xi‖ = ψ1(t)ϑ1 (‖x‖) ,

|h2(t, x)| =
∣∣∣∣ (1+et)x1(t)

50 + et tan(x2(t))
300 + et sin−1(x3(t))

100

∣∣∣∣
≤
∣∣∣ 6+10et

300

∣∣∣ 3∑
i=1

‖xi‖ = ψ2(t)ϑ2 (‖x‖) ,

|h3(t, x)| =
∣∣∣ tan(x1(t))

25(1+e2t) + sin(x2(t))
2+e3t + x3(t)

50(1+et)

∣∣∣
≤
∣∣∣ 1

50(1+et)

∣∣∣ 3∑
i=1

‖xi‖ = ψ3(t)ϑ3 (‖(x)‖) .

Assume that r = 2.1 is given. Now, by employing Eq. (6), we have

∆i > max
{

(ϕ̂0(b))αk‖ψk‖ϑk(r)
Γ(1+αk) : k = 1, 3

}
= (ϕ(ln 3)−ϕ(0))

3/11

Γ(1+ 3
11 )

max
{∥∥∥ 4+e2t+4et+2|t|

1100

∥∥∥ϑ1 (r) ,∥∥∥ 6+10et

300

∥∥∥ϑ2 (r) ,
∥∥∥ 1

50(1+et)

∥∥∥ϑ3 (r)
}

= 2
3/11r

Γ( 14
11 )

max
{

21+ln 9
1100 , 12

100 ,
1

100

}
= 0.12 r 2

3/11

Γ( 14
11 )

'

 2.013, α1 = α2 = α3 = 3/11,
2.206, α1 = α2 = α3 = 1/2,
2.461, α1 = α2 = α3 = 8/9,

and by using Eq. (7), we obtain

K1 =

3∑
k=1

(
2(ϕ̂0(b))βk∆qk−1

Γ(1+βk) + r

3∑
i=1

λik

)
= 6(ϕ(ln 3)−ϕ(0))

3/2∆
5/3

Γ( 5
2 )

+ 6r
100 + 6r

200 + 6r
300

= 3(2)
5/2∆

5/3

Γ( 5
2 )

+ 11r
100 '

 81.353, α1 = α2 = α3 = 3/11,
103.900, α1 = α2 = α3 = 1/2,
138.988, α1 = α2 = α3 = 8/9,
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Table 1. Numerical results of ∆, K1 and Eqs. (20), (21) in Exam-
ple 4.1 for three cases of α1 = α2 = α3 = 3

11 ,
1
2 ,

9
8 .

t ∆ K1 w1 w2

α1 = α2 = α3 = 3
11

α1 = α2 = α3 = 3
11α1 = α2 = α3 = 3
11

0.000 1.5000 0.2310 0.0007 0.4034
0.110 1.5320 1.4108 0.0060 0.4111
0.220 1.5716 3.4080 0.0148 0.4243
0.330 1.6485 6.6104 0.0280 0.4455
0.439 1.7127 11.0462 0.0457 0.4755
0.549 1.7698 16.9442 0.0688 0.5170
0.659 1.8225 24.5973 0.0981 0.5736
0.769 1.8723 34.3687 0.1349 0.6509
0.879 1.9202 46.7039 0.1807 0.7579
0.989 1.9668 62.1455 0.2374 0.9091
1.099 2.0125 81.3533 0.3070 1.1304

α1 = α2 = α3 = 1
2

α1 = α2 = α3 = 1
2α1 = α2 = α3 = 1
2

0.000 1.5000 0.2310 0.0007 0.4034
0.110 1.5200 1.3863 0.0060 0.4109
0.220 1.5290 3.1838 0.0141 0.4229
0.330 1.5366 5.5201 0.0247 0.4387
0.439 1.6337 9.7668 0.0419 0.4674
0.549 1.7299 15.9579 0.0658 0.5104
0.659 1.8241 24.6540 0.0982 0.5740
0.769 1.9178 36.6295 0.1417 0.6684
0.879 2.0123 52.8921 0.1993 0.8117
0.989 2.1083 74.7498 0.2752 1.0381
1.099 2.2064 103.8997 0.3747 1.4217

α1 = α2 = α3 = 8
9

α1 = α2 = α3 = 8
9α1 = α2 = α3 = 8
9

0.000 1.5000 0.2310 0.0007 0.4034
0.110 1.5080 1.3622 0.0059 0.4108
0.220 1.5156 3.1149 0.0139 0.4225
0.330 1.5235 5.4006 0.0244 0.4380
0.439 1.5320 8.2641 0.0374 0.4579
0.549 1.5981 12.9617 0.0568 0.4906
0.659 1.7421 21.8356 0.0898 0.5541
0.769 1.8988 35.6746 0.1388 0.6610
0.879 2.0698 57.0008 0.2116 0.8488
0.989 2.2567 89.5738 0.3197 1.2080
1.099 2.4613 138.9877 0.4799 2.0257

K2 =

3∑
k=1

sup
t∈L
|gk(t, 0, 0, 0)| = sup

t∈L

∣∣∣ 5(7−et)
12×6000

∣∣∣+ sup
t∈L

∣∣∣ 7e2t

12×9000

∣∣∣+ sup
t∈L

∣∣∣ 9(3−e3t)
16×30000

∣∣∣
= 5

12000 + 7
12000 + 9

16000 = 1
640 ,

K3 =

3∑
k=1

(ϕ̂0(b))αk

Γ(1+αk) sup
t∈L
|fk(t, 0, 0, 0)|

= (ϕ(ln 3)−ϕ(0))
3/11

Γ( 14
11 )

[
sup
t∈L

∣∣∣ 72
1900(8+e2t)

∣∣∣+ sup
t∈L

∣∣∣ 5e2t

9×1900

∣∣∣ +sup
t∈L

∣∣∣ 6et

1900(3+t2)

∣∣∣]
= 2

3/11

Γ( 14
11 )

[
8

1900 + 5
1900 + 6

1900

]
= 0.134.
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These results are shown in Table 1 for three cases of α. Inequality (8) implies that

w1 := K1

3∑
k=1

‖Tgk‖+

3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk) = 3K1

1000 + 3(ϕ(ln 3)−ϕ(0))
3/2

100Γ( 5
2 )

= 3K1

1000 + 3(2)
3/2

100Γ( 5
2 )
'

 0.307, α1 = α2 = α3 = 3/11,
0.375, α1 = α2 = α3 = 1/2,
0.480, α1 = α2 = α3 = 8/9,

 < 1. (20)

Finally, inequality (5) implies that

w2 := 3 (K1K2 +K3)

[
1−K1

3∑
k=1

‖Tgk‖ −
3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk)

]−1

= 3 (K1K2 +K3)

[
1−K1

3
1000 −

3(2)
3/2

γ( 5
2 )

]−1

'

 1.130, α1 = α2 = α3 = 3/11,
1.422, α1 = α2 = α3 = 1/2,
2.026, α1 = α2 = α3 = 8/9,

 ≤ 2.1 = r. (21)

These results are shown in Table 1 and in Figures 1a and 1b, we have plotted w1

and w2 for three cases of α1 = α2 = α3 = 3
11 ,

1
2 ,

8
9 . Since, (H1)− (H3) are satisfied,

t ∈ [0, ln 3]
0 0.2 0.4 0.6 0.8 1 1.2

w
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = ln 3

α
1
=α

2
=α

3
=3/11

α
1
=α

2
=α

3
=1/2

α
1
=α

2
=α

3
=8/9

(a) w1, Eq. (20)

t ∈ [0, ln 3]
0 0.2 0.4 0.6 0.8 1 1.2

w
2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

r = 2.1
α

1
=α

2
=α

3
=3/11

α
1
=α

2
=α

3
=1/2

α
1
=α

2
=α

3
=8/9

(b) w2, Eq. (21)

Figure 1. Representation of w1 and w2 for three cases of α in Exam-
ple 4.1.

Theorem 3.2 implies that (16) has at least one solution on L.

Example 4.2. In this example, we consider the system (16) for all t ∈ L = [0, ln 3],
with α1 = 1

7 , α2 = 1
2 , α3 = 7

8 and for four cases ϕi(t),

ϕ1(t) = et, ϕ2(t) = t, ϕ3(t) = ln(t + 0.01), ϕ4(t) =
√
t, (22)
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under the same conditions and functions fk(t, x), gk(t, x), hk(t, x) which are defined
by (17), (18) and (19). We saw that, fk, gk, hk, k = 1, 2, 3, were continuous and
condition (H2) satisfied, if we considered ‖Tfk‖ = 10 ‖Tgk‖ = 1

100 , k = 1, 2, 3,, ‖Th1‖ =
3

275 , ‖Th2‖ = 3
50 , ‖Th3‖ = 1

29 . Assum that r = 3.05 is given. We have tried to consider
a specific number r for all states of the function ϕ. Now, by employing Eq. (6), we
have

∆i > max
{

(ϕ̂0(b))αk‖ψk‖ϑk(r)
Γ(1+αk) : k = 1, 3

}
= (ϕi(ln 3)−ϕi(0))

3
11

Γ(1+ 3
11 )

max
{∥∥∥ 4+e2t+4et+2|t|

1100

∥∥∥ϑ1 (r) ,
∥∥∥ 6+10et

300

∥∥∥ϑ2 (r) ,
∥∥∥ 1

50(1+et)

∥∥∥ϑ3 (r)
}

'


2.4705, ϕ1(t) = et,

2.2986, ϕ2(t) = t,

1.8783, ϕ3(t) = ln(t + 1),

2.1950, ϕ4(t) =
√
t.

Table 2 shows the results for four cases of ϕ. One can see the curve of ∆ for the cases
of ϕi in Figure 2. In the sequel, by using Eq. (7), we obtain

t ∈ [0, ln 3]
0 0.2 0.4 0.6 0.8 1 1.2

∆

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

t = ln 3

φ
1
(t)=e

t
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Figure 2. Representation of ∆ for four cases of ϕ in Example 4.2.

K1 =

3∑
k=1

(
2(ϕ̂0(b))βk∆qk−1

Γ(1+βk) + r

3∑
i=1

λik

)
= 6(ϕi(ln 3)−ϕi(0))

3/2∆
5/3

Γ( 5
2 )

+ 6r
100 + 6r

200 + 6r
300

'


140.4957, ϕ1(t) = et,

55.6496, ϕ2(t) = t,

204.8407, ϕ3(t) = ln(t + 1),

46.5002, ϕ4(t) =
√
t,
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K2 =

3∑
k=1

sup
t∈L
|gk(t, 0, 0, 0)|

= sup
t∈L

∣∣∣ 5(7−et)
12×6000

∣∣∣+ sup
t∈L

∣∣∣ 7e2t

12×9000

∣∣∣+ sup
t∈L

∣∣∣ 9(3−e3t)
16×30000

∣∣∣
= 5

12000 + 7
12000 + 9

16000 = 1
640 ,

Table 2. Numerical results of ∆, K1, K3 and Eqs. (23), (24) in
Example 4.2 for four cases of ϕ.

t ∆ K1 K2 ∆ K1 K2

ϕ1(t) = etϕ1(t) = etϕ1(t) = et ϕ2(t) = tϕ2(t) = tϕ2(t) = t

0.0000 1.5000 0.2310 0.3355 1.5000 0.3355 0.0000
0.1099 1.6767 1.4108 1.8363 1.5282 1.4302 0.0037
0.2197 1.8301 3.4080 5.1044 1.5808 3.1472 0.0053
0.3296 1.9419 6.6104 10.2088 1.7113 6.0578 0.0065
0.4394 2.0351 11.0462 17.4666 1.8213 9.9630 0.0075
0.5493 2.1180 16.9442 27.3182 1.9183 14.8850 0.0084
0.6592 2.1945 24.5973 40.3248 2.0059 20.8491 0.0092
0.7690 2.2669 34.3687 57.1845 2.0865 27.8816 0.0099
0.8789 2.3364 46.7039 78.7571 2.1615 36.0087 0.0106
0.9888 2.4041 62.1455 106.0974 2.2320 45.2562 0.0112
1.0986 2.4706 81.3533 140.4958 2.2986 55.6496 0.0118

ϕ3(t) = ln(t + 0.01)ϕ3(t) = ln(t + 0.01)ϕ3(t) = ln(t + 0.01) ϕ4(t) =
√
tϕ4(t) =
√
tϕ4(t) =
√
t

0.0000 1.5000 34.8034 0.0107 1.5000 0.3355 0.0000
0.1099 1.6767 91.4099 0.0282 1.5295 4.6066 0.0039
0.2197 1.7173 113.9983 0.0323 1.5844 7.5242 0.0053
0.3296 1.7412 129.4109 0.0348 1.6998 11.4641 0.0064
0.4394 1.7582 141.4112 0.0367 1.7953 15.7028 0.0072
0.5493 1.7714 151.3644 0.0381 1.8782 20.2204 0.0080
0.6592 1.7821 159.9336 0.0393 1.9523 25.0003 0.0087
0.7690 1.7911 167.4955 0.0403 2.0199 30.0288 0.0093
0.8789 1.7990 174.2864 0.0412 2.0822 35.2945 0.0099
0.9888 1.8215 184.6495 0.0420 2.1404 40.7878 0.0104
1.0986 1.8783 204.8408 0.0427 2.1951 46.5003 0.0109

K3 =

3∑
k=1

(ϕ̂0(b))αk

Γ(1+αk) sup
t∈L
|fk(t, 0, 0, 0)|

= (ϕi(ln 3)−ϕi(0))
3/11

Γ( 14
11 )

sup
t∈L

∣∣∣ 72
1900(8+e2t)

∣∣∣+ (ϕi(ln 3)−ϕi(0))
3/11

Γ( 14
11 )

sup
t∈L

∣∣∣ 5e2t

9×1900

∣∣∣
+ (ϕi(ln 3)−ϕi(0))

3/11

Γ( 14
11 )

sup
t∈L

∣∣∣ 6et

1900(3+t2)

∣∣∣
= (ϕi(ln 3)−ϕi(0))

3/11

Γ( 14
11 )

[
8

1900 + 5
1900 + 6

1900

]
'


0.0133, ϕ1(t) = et,

0.0118, ϕ2(t) = t,

0.0426, ϕ3(t) = ln(t + 1),

0.0108, ϕ4(t) =
√
t.

These results are shown in Table 2 for four cases of ϕ and also, Figures 3a and 3b
show the curves of K1 and K3. Inequality (8) implies that
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t ∈ [0, ln 3]
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Figure 3. Representation of K1 and K3 for four cases of ϕ in Exam-
ple 4.2.

w1 := K1

3∑
k=1

‖Tgk‖+

3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk) = 3K1

1000 + 3(ϕi(ln 3)−ϕi(0))
3/2

100Γ( 5
2 )

'


0.4844, ϕ1(t) = et,

0.1967, ϕ2(t) = t,

0.8087, ϕ3(t) = ln(t + 1),

0.1675, ϕ4(t) =
√
t.

 < 1. (23)

Finally, inequality (5) implies that

w2 := 3 (K1K2 +K3)

[
1−K1

3∑
k=1

‖Tgk‖ −
3∑
k=1

(ϕ̂0(b))σk‖Tfk‖
Γ(1+σk)

]−1

'


1.3553, ϕ1(t) = et,

0.3689, ϕ2(t) = t,

2.8531, ϕ3(t) = ln(t + 1), t ∈
[
0, ln 3

7

]
,

0.3010, ϕ4(t) =
√
t.

 ≤ 3.05 = r. (24)

These results are shown in Table 3 and in Figures 3a and 3b, we have plotted the
results for the tripled system of hybrid FDEs (16) with new conditions in this example
and four cases of ϕi are defined by (22).

Thus, the assumptions (H1)− (H3) are satisfied and Theorem 3.2 implies that (16)
with four cases of ϕi (22) has at least one solution on [0, ln 3].

5. Conclusion and future results

In this paper, we have defined a new triple system of nonlinear hybrid FDEs under
with nonlocal integro multi point boundary conditions involving the p−Laplacian
operator and the ϕ−Caputo derivative. Base on the hybrid Dhage fixed point theorem
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Table 3. Numerical results of w1 and w2, Eqs. (23), (24) in Exam-
ple 4.2 for four cases of ϕ.

t w1 w2 w1 w2

ϕ1(t) = etϕ1(t) = etϕ1(t) = et ϕ2(t) = tϕ2(t) = tϕ2(t) = t

0.0000 0.0010 0.0016 0.0010 0.0016
0.1099 0.0073 0.0273 0.0060 0.0180

0.2197 0.0199 0.0476 0.0134 0.0310

0.3296 0.0388 0.0766 0.0248 0.0490
0.4394 0.0650 0.1178 0.0394 0.0720

0.5493 0.0999 0.1762 0.0572 0.1006

0.6592 0.1453 0.2593 0.0783 0.1358
0.7690 0.2033 0.3799 0.1027 0.1787

0.8789 0.2769 0.5610 0.1306 0.2306

0.9888 0.3692 0.8493 0.1619 0.2933
1.0986 0.4845 1.3554 0.1967 0.3689

ϕ1(t) = etϕ1(t) = etϕ1(t) = et ϕ2(t) = tϕ2(t) = tϕ2(t) = t

0.0000 0.1640 0.2334 0.0010 0.0016

0.1099 0.3905 0.8416 0.0205 0.0340

0.2197 0.4784 1.2103 0.0328 0.0530
0.3296 0.5377 1.5381 0.0476 0.0765

0.4394 0.5835 1.8557 0.0629 0.1017

0.5493 0.6214 2.1759 0.0789 0.1289
0.6592 0.6539 2.5064 0.0954 0.1583

0.7690 0.6825 2.8532 0.1126 0.1900
0.8789 0.7081 3.2215 0.1303 0.2242

0.9888 0.7438 3.8705 0.1487 0.2612

1.0986 0.8087 5.6887 0.1676 0.3011
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(a) w1, Eq. (20)
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Figure 4. Representation of w1 and w2 for four cases of ϕ in Exam-
ple 4.2.
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for a sum of three operators, the results are obtained. Two examples are presented
at the end to show the applicability of the obtained results which are generalization
for different states with derivative definition.
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