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Asymptotic Modeling of the Effect of a Thin Slab in the
Framework of Linear Elasticity with Voids
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ABSTRACT. The aim of this paper is to model the effect of a planar thin layer in the framework
of linear elasticity with voids by using the notion of impedance boundary condition. We start
from a transmission model problem which models the wave propagation between an elastic
body with small distributed voids 22— and a thin coating slab Qi (6 is supposed to be small
enough). We show how to model the effect of the thin coating by an impedance boundary
condition on the junction of the elastic two bodies. To this end, we use the technique of
asymptotic expansion with scaling. We also prove an error estimate.
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1. Introduction

1.1. Physical and numerical motivations. The theory of linear elasticity with
voids or modified elasticity can be viewed as a generalization of the theory of linear
classical elasticity. It is adequate to describe the behavior of solids with small dis-
tributed voids or pores such as granular and manufactured porous bodies where the
theory of classical elasticity is inadequate. The three-dimensional model is charac-
terized by four independent variables: The components of the displacement vector
u; (i =1,2,3) and the change in volume fraction w. The linear theory has been
developed by Nunziato and Cowin [10] as a specialization of the non-linear theory
[20].

This paper deals with the study of a transmission model problem in the context of
linear elasticity with voids set in a fixed domain (i.e. not depending on §) bonded with
a planar thin layer of thickness §. From a numerical point of view, the resolution of this
problem can not be computed accurately since the small thickness § of the thin layer
creates instabilities related to the parameter §. To avoid these numerical instabilities,
we will use the concept of impedance condition which allows us to replace the initial
transmission problem by an equivalent one which doesn’t take into account any more
the thin layer. This impedance condition is defined on the junction between the
fixed domain and the thin layer and given through an operator called the impedance
operator which is better known in English literature as the Dirichlet-to-Neumann
operator.

In addition to the numerical motivation, the importance of this paper also comes
from the fact that the results of this paper can be served as a guide in the case of a
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non planar thin layer (curved thin layer), where the formulas of the impedance will
contain the curvature [1] , so this study will be useful when one considers the general
case of a non planar thin layer.

The concept of impedance boundary condition [27] is largely used in numerous
studies, mainly in electro-magnetics and mechanics, see for instance [9, 12, 25] for
the Helmholtz equation in acoustics, [3, 14, 15] for Maxwell equations, and [18, 21] in
structure mechanics, see also [17, 22].

This paper falls within the framework of applications of the technique of asymptotic
expansion with scaling for modeling the effect of a planar thin layer in linear elastic-
ity with voids. The asymptotic technique is used in vast literature for studying the
asymptotic behavior in thin layer, see for instance [26, 24, 19, 13]. This paper is a con-
tinuation of [2, 3, 1], where the authors have derived first order approximations of the
impedance in asymmetric elasticity. To begin with, we consider a three-dimensional
model, of linear elasticity with voids in a domain Q° = R? x |—1, §[ consisting of two
bonded porous elastic bodies, Q_ = R? x ]—1,0[ and a slab Q% = R? x ]0, §[, we also
set I_ = R?x {-1}, ¥ = R? x {0} and I} = R? x {6} (see Fig. 1). We assume
that Q_ and Q‘i are homogeneous and isotropic. We restrict our consideration to the
case of elastostatics and a planar geometry, and we denote by the index + (resp. —)
to the restriction on QY (resp. on €2_ ). The transmission problem (P?) given by the
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FIGURE 1. Domain of the transmission problem.

model for the displacement ud. and the change in volume fraction w’. read as follows

(see [10, 11]):

(1) Equilibrium equations in €_

Yl Dioii (ul W) = —p, i =1,2,3,
Sy Dihj (@) — g (ud,wl) = —q_.
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1. . . L 5
(2) Equilibrium equations in Q9
3 .
23'3:1 Djoij (ui,wi) =0,1=1,2,3,
2 i1 Dy (3) = g4 (uf,wf) = 0.
(3) Dirichlet boundary conditions on I'_

uw,=0,i=1,2,3,
w? =0.

oy )
(4) Neumann boundary conditions on I'}.

3 9 ) _ S
{ ijl Otij (u+,w+6) v;=0,1=1,2,3, (3a)
D3w+ =0.

(5) Transmission conditions at the interface ¥

w_ = wé
3 PR 5 s , (4)
Zj=1 0—ij (U_aw—) vj = Zj:l O+ij (u+7w+) Vi, 1= 172335
a_Dsw® = a+D3wﬁ_.

where v = (v1,v2,v3) = (0,0,1) is the unit normal vector to X, o4;; is the stress

tensor, p_ is the body force vector, g+ is the intrinsic equilibrated body force, h is the

equilibrated stress vector, g_ is the extrinsic equilibrated body force and D; = %.

For the sake of simplicity in the next sections, we adopt the following writings:
(ui,wi) = (uftl’uftQauftBawi)a
o (ulh, ) v = (013 (uh, wl)  osos (ulh,wl) s ouss (ul, wl)),
(O’i (ui,wi) v, O[:th(JJj:) = (O':tlg (uiwi) , 0493 (u‘l,wi) , 0433 (ui,wi) ,Oz:thwi) .
The constitutive equations for the linear isotropic elasticity with voids are defined by:
O+ij (ui,wi) = 2+ et4j (ui) + Ateipp (uft) 0ij + Biwi@j, i,7,p=1,23,
hij (@l) = asDjul, j=1,2,3,
9+ (“fb»wi) = Pieipp (“ft) + Ci‘*’ivp =1,2,3,
where §;; is the Kronecker delta, e;; is the strain tensor defined by:

1
) ) S .o
Ctij (u:l:) = 5 (D'Lu:l:,] + Djuzl:i) y L) = 172737
and p4, ay, (4, Ay and B4 are material constants satisfying the inequalities:
/’Li>0; ai>0a Ci>07 )\i>07 ﬁi>05

pa +3Ae >0, (ut +3Xs) (e > 361

As was already pointed out, our aim in this paper is to derive an approximate
impedance boundary condition on the interface ¥ that incorporates in an approx-
imate way the effect of the thin slab Qi on {)_ to reduce the transmission problem
(P?%) to a boundary value problem set in the fixed domain Q_, i.e. the equilibrium
equations in Qi_, the transmission conditions on ¥ and the Neumann boundary con-
ditions on F‘i are embodied in the form of an impedance boundary condition on X
and depending on d.
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1.2. Concept of impedance in modeling. Our goal is to reduce the transmission
problem set in Q% =Q_UX U Q‘i to a boundary value problem set only on the fixed
domain Q_. The exact effect of the thin slab Qi on the domain €_ is given by the
impedance operator Ty defined by:

Ts (U67w5) = (U+ (ui,wi) Vs, a+D3wi|Z> ,

where (ui,wi) is the solution of the following boundary value problem:

Equations (2) in 3,
(P_‘i) : { Boundary conditions on I'},
u‘i:v‘s on 3, wi:zﬁ on 3,

from the transmission conditions (4), it follows that:
(o, (u,w’) s, a,D;;w‘i‘E) =T; <u‘i|2,w‘i|2) )

and the transmission problem (P?°) is then equivalent to the following impedance
problem set in _:

Equations (1) in Q_,
s
Uu_ = 01><3 on F,,
5
(P2):q wd =0 onI_,

(a_ (ud,w) s, a_Dgw‘i‘E) =Ts (u‘ilz,wfm) on X.

Since an explicit expression of the exact impedance operator Ty is not reachable for
the general case, we will just derive an effective approximation T,s of T5 with:

T.s =0T, and T, (v‘s,w‘s) = (C1,Cs,C5,Cy) (”Ué»l/fd) )

where
Apg (pg +A4) 12 s 2p4 Ay
1(“ o ) O + 203 11 + py Doy + TSN 1D2vy + pyp D120y
24 By 5
+————"—D19°,
2p4 + Ay w
dpg (pg +A4) 2p4 A
C ) ) _ +—D2 ) D2 ) 27T DL D 4 DD )
2(U’¢) O + 204 2V + 4 1U2+2/~L++)\+ 1D2v7 + pyp D1 Doy
2u4 B 5
+ P Py,
24 + Ay v

Cs (Uéa 1/}6) = 0,
and

24 By

B G 2pr +Ay) _Biwé
204 + A4 '

2pp + A4

Cy (v°,9°) = ay (DIY° + D3¢°) (D1v§ + Dovl)
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The solution (u’ ,w?) of the transmission problem (P?%) in Q_ is then approximated

5

S8 Djo_y (ui*,wi )=-p—i, i=1,2,3inQ_,
Zleh ( )_g ( i*7wi*):_q7 in Qf?
uéi*—leg onI'_ ,=0onT_,

(U, (u,,wl, )U‘E7 o Dgw *IZ) =T.s (“i*\szi*\z) on X,
and we prove the following main result of the paper:

Theorem 1.1. For given (p_,q_) in [L? (Q_)]4, the boundary value problem (P?,)
has a unique solution in the space

by the solution (u®,,w?,) of the following approximate impedance problem:

(Pi*) :

o))"

€ [L? (2)] ,
e [L2(m)]°,
=0 on I'_,

(v_, ) € [H'(
(Dlv 1, D1v_2, D1p_ )
(Dav_1, Dav_3, Dap_)
v =01x3on I'_, @p_

W, (Q_) =

and the following error estimate holds

4

- “6—*H[H1(Q,)]3 + el — CL’6—*”11{1(9,) < Co?,

e

where the constant C depends only on p_,g_ and the elasticity coefficients.

We will prove Theorem 1.1 according to the following scheme: In Section 2, we
prove the well-posedness of problem (P°). In section 3, we derive an approximate
impedance boundary condition for the thin slab Qi by using a formal Taylor ex-
pansion. In section 4, by using the techniques of asymptotic expansion with scaling
we construct and recuperate the same approximate impedance boundary condition
derived by the technique of Taylor expansion in section 3. In section 5, we state and
prove a stability result for the scaled transmission problem. In section 6, we prove
the well-posedness of the approximate impedance problem (Pf*). Finally, in section
7, we prove error estimates in an appropriate space.

2. Well-posedness of the transmission problem

In this section, we will prove the existence and uniqueness of the solution to the
transmission problem (P‘S). We consider the space W (Q‘S) defined by:

(v,9) € [L2 ()]
(1,9 = (-, p-) € [H' ()],
WAQ) = @.0)0r = (01, 04) € [H' ()]
V_ =Uy ON X, Y_ =y On X,
v =0i1xsonl'_, ¢p_=0onT_.

endowed with the norm

b

) ) 1/2
(v, )l = [||(v,,ap,)H[H1(Qf)]4 + ||(v+790+>||[H1(Qi)]4}

which is equivalent to the norm

)

2 2 1/2
@ )hwias) = (100 gyt 10 06 Frg(an ]



APPROXIMATE IMPEDANCE OF A POROUS THIN STRIP 441

with
) s () = 1 g ) + 22 Wil g )
M (o)) = Mol o) 2 i (os)
and
|(ve 0, [ = 1ol (s )+ osil s (s ) -
i (1)) (1) Zl i (2)
For all [(u‘s7 ) ] € [ (Q‘S)] we set
_ tr (u’,w?)e— (v-)) + a-Vuw® .Vep_
¢ [(u‘i,w‘s) (v— ) Q. [-i—C ci w_ + B- (Dlu_l—i—Dzu‘s_Q—i—Dg,u‘s_g)go, ]dQ_’

+ s _ trs (mr (u+,w+) et (v+)) + a+Vwi.V90+ } d0°
“ [(u+,w+) () S0+)] /95 [ +¢rwhor 4 Br (Diudy + Dauls + Dsuls) o *
where tr3 is the trace of a matrix of size 3.
Theorem 2.1. For given (p_,q_) in [L2 (Q_)]4, there exists a unique solution

(u‘s, w‘s) in W (Q‘S) to the transmission problem (P?). Tts weak formulation is given

by
a [(uévwé) v(va‘p)} =L(v,¢), V(v,p) €W (Qé) )
with

a[(w, ), ()] =a” [(ul,02), ()] +a® [(ul,wh) (o4, 04)]

and

L(v7s0)=/ (p-v_+q @ )d_.

Proof. To prove the existence and uniqueness of the solution to the transmission
problem (P‘;) in W ((25), it suffices to check that the linear form L and the bilinear
form a satisfy the hypothesis of Lax-Milgram theorem. It is clear that L is continuous
on W (Q“). For the continuity of a, we have

[ ] < [ o o [(.8) o)
(A |(Zk 1}Dku | Zk 1|Dkv k|)+2| |Z” 1|eu( ||€w (v-)]
S/n {Hﬁ | [(Drul 1+DQZ 2+ Dyuls)| e \+|Cullw 2 o] + la-] [Vl | [V I}dgf

/ [ Xl (s [Dsuln]) (oo [Dkvskl) +21pa | 327 Jeis (ud) ] less (v4)] }d(l‘s.
atlt 1B+] [ (D1uby + Daulo + Dsuls) | los] + ¢ |wd | [ot] + |os | [Vl | Vs *

Using the Cauchy-Schwarz inequality and from the definition of the space W (Q‘S),
we get

123_:1 </S_€w (u?) eij (v-) ) (lleeu N2 )) (121“31] N2 )

< e [ul || e o=l oy

<c H (uévwé)Hw(Qé) H(U790)||W(Q‘;) ’
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where ¢ is a positive constant independent of §, the remaining terms of ¢~ can also
be majorated by || (u’,w?) ||W(Q5) (v, )l sy, We get

la” [(ul,w?) ,(v_ )] < | (u‘s,wJ)HW(Qa) (v, @)l (s »

where C is a positive constant independent of 4. In the same manner, we prove that
5 6 5,48
lag [(ud,w?), (v, 00)]] < Co| (v, w )Hw(m) (v, )l (s »
where C is a positive constant independent of §. Therefore for all (u‘s, w‘s) , (v,) in
w (Q‘S), there exists a positive constant C' independent of § such that

ja [(”,0") (v, @)] | < O (") [y g 105 @)l

which prove the continuity of a on [W (95)] ®. Let us show that a is coercive, we have

() (0] = o [(s), (.0 o [(8) (0]
20— [6_11 (u‘i)]l—i— 2 — [6_22 (ui)}i—!— 2u— [6_33 (u‘i)}z
/ +4p— [8721 (u‘i)] +4p_ [6713 (u‘s_)} +4p_ [6723 (u‘s_)} d9.
Q +A- [6722 (ué_) +e_11 (ué_) +e_33 (u‘s_)}2
—|—2B_w‘i [6_11 (u‘i) +e_92 (u‘i) + e_33 (u‘S )} + (- (w‘s,)2 + a— |Vw‘i|2
210 fernn ()] 20 [ea2 (u0)]” + 210s e (u)]°,
N / g fesa ()] + s ferns ()] + dpy [eras (ud)] 4’
Qs +A4 [6+22 (U+) + et11 (u+) + €433 (ui)] , . +
+28+w [ernn (ud) + €22 (ul) +evss (ud)] + o (03) + o [Vl |

for all (u‘s,w‘s) in W (95), and let’s try to minorate a [(u‘s w‘s) (u5 w‘s)} by

ul,wd 2 sv- We start with o™ [(u2,w?), (v ,w?)]. Using the inequality
W (Q9)

<3a2+3b2—|—302 > (a+b+c)?, Va,b,cER) :
we get
2u_ [e_11 (u‘s_)}2 + 24— [e—22 (u‘i)]2 +2u_ [e_ss (u )]2
> i feons ()] 4+ e [emsn (u)]* 4 i ey (u0))’
+%— le—11 (u?) + e_ap (u’) +e_s3 (u*)]°,
which implies that

o [(ul ), (ul, )]

i femnn (W0)]” + e feoon (u2)]” + i [emgs (ul)]” ,
>/ +4M [e—a1 (u?)]” +4M [e-13 (u?)]’ +4M [e—2s (ul)] Q..
“Ja (/\++“)[6 11 (u) 4+ e—a2 (ud) +e_z3 (u)] +26_a~u5_2
x [eoan (ul) + ez (u2) +ess (u2)] + ¢ (w2)" +a [Vul |

for all (u®,w’) in [H' (Q- )]4 Using the inequality (a? + 2ab > —b?, V (a,b) € R?)
with
B_w?

(bt 5 eom (09) e () oo 02)] ana b = s
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we get

(Mo +5) [emun (u) + e (u) + ega (ul)]
+28 w7 o1 (ul) + e (ul) + e s (ul)]"+ ¢ (w2)*
B2 (0)” 512 G- (uo+3X) =382 1o
_(A+(+’£)+C W) =y e
which implies that
a” [(ul,w?), (ul,w?)]
i feman (ud)] + e [e ~22 (u)]” + - [e—s3 (u)]”
2/ +p_ [e- 21(C )™+ dp- [26 13 (u?)] aQ_,

g [oan ()] SUTADIE ()2 (g |

for all (u®,w?’) in [H' (- )] . Since we have

C_(u_ +3\y) —382
(H—+3Ay)

because (_ (p— +3Xy) > 382 and (u— +3X;) > 0, then there exists a positive

2
%) independent of ¢ such that

feonn ()] + [eoan (48] + [esa (u2)]°
tlem (24 ep ()] a0
L e ) @) vt

In the same manner, we prove that for all ui,wi) in [H L (Qi)] , we have

[e1 (u)]” + [even (u)]” + [eqas (uf)]”
o [00) ) 2 Cof | e ()] fera )| a0
? + [esas ()] + (@5)° + Ve[
G (p+324)—387

t— >0 and >0

constant C; = min (M,, a_,

o [ ) (o )] =

where Cy = min (u+,a+, ) is a positive constant independent of §.

(b++3X1)
Thus
emar (u8)]2 + feoza ()] + fe-aa (48]
o[(0), (o )] 2 € Floa ()] + [ (@)]F | de
L A feses (@) + (@0) +a [Vl |?
v ()] + s (WD) + [egas (u)]
+Cof b lesar (W) e ()] | @9
Q8 5112 512 2
+ [eqas (ud)]” + (W3) + oy [V |
Thanks to the Korn’s inequality (see [23], page 51), we obtain
a [(u‘s,w‘s) , (u‘s,w‘s)] >C H(u67w6)HiV(QJ) , for all (u67w6) ew ((26) ,

where C' is a positive constant independent of &, which proves the coercivity of a.
Therefore by Lax-Milgram theorem, the transmission problem (P°) has a unique
solution in W (95). O
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3. Derivation of the approximate impedance operator by Taylor expansion

As in [5, 6], we construct a first-order approximation of the impedance by using
Taylor expansion. The first step to obtaining an approximate impedance condition
is to express explicitly the normal derivatives of ui, Wi, 0113, 0423, 0433 and Dgwi
on Y in terms of traces on ¥ of 0413, 0423, 0433, u‘i and wi. Since we have

013 = pig (Daulyy + Diuly), 0123 = py (Dsudy + Daudy),
and
o433 = (2p4 + Ap) Dsul + Ay (Drudy + Daudy) + Bruf,
it follows that

1 1
D3u§+1 = [‘7+13 - ,u+D1u‘i3] ) D3“i2 =— [0+23 - M+D2Uig} , (5)
H4 ey
and .
Dol = —— s — s (D1l + Doul ) — Brwd ], 6
3U+ts 2t + At [U+33 +( 1Uqq + 2u+2) B+W+] (6)
and then by using (5) and (6), we get
opi1 = (204 + Ap) Drudy + Ay Dauly + Ay Dauly + By
—  Apg(petry) 5 2p4 A B 2uyBy 8 A
- %Dlu"rl + 2lﬁ++)\++ D2u+2 + Q;ﬁj—&-;l Wy + 2M+‘T‘>\+ 0433, (7)
and
op22 = (204 + M) Dauly + Ay Diudy + Ay Dauls + By

Apy (By A1) 5 2p4 Ay ) 2u4 By 8 At )
ooty Paule + s Divdy + 5550w + sty osse (8)

Using the equations (2) and the formulas (7) and (8) of o111 and o422 and the fact
that 0413 = 0431 5, 0423 = 0432, We get

_ _Apg(petAy) 2,6 2,8 2pp Ay 5 5
D30'+13 = 7WD1U+1 — ‘LL+D2U+1 — Py D1D2U+2 — ﬂ+D1D2U+2

2u4Bs o0

At
PITIED Wi hets 2#++>\+D10+33’

4 A 2
D30 03 = —%D%u‘b — g D3uly — S5 Dy Do,y — puy D1 Doul,
_ 2p4 By b __ M Do
2y 2% H T 2p g 20488
D30y33 = —D10 13 — D20 a3,
(9)
and
D2 — D208 4 D2,S 2048 (p 85 L poud
arDiwt = —oay (Diw) + Djw}) "'m( 1l + Daulsy)
204 + Ayp) — B2
C+( H+ +) B+wi+ 6+ 033 (10)
2p4 + Ay 2u4 + Ay

The second step for obtaining an approximate impedance condition is to use Taylor
expansion of 0413, 0193, 0433 and Dgwf_ in Q‘i with respect to §, we write then the
boundary conditions on Fi as follows:

0413 (6) = 0413 (0) + 0D30413 (0) + ...,

0423 (6) = 0423 (0) + 6D30423 (0) + ..., (11)
0433 ((5) = 0433 (0) + 6D30 433 (O) + ...



APPROXIMATE IMPEDANCE OF A POROUS THIN STRIP 445

and
D3’ (8) = D3w’. (0) + 6D3w. (0) + ... (12)
Using (11), (12), (9), (10) and the boundary conditions (3a) on I'}, we obtain at

order one the following approximate impedance T,s defined by its expression:

Tis (U(S?’(/)é) =9 (Cl (Uéﬂﬁ&) aCQ (Uéﬂ/Jé) ’ ( 7,(/1 ) ( 7¢5))
and thus we get problem (Pf*) in Q_.
Remark 3.1. In the case of the two-dimensional model of the linear elasticity with
voids (v‘s, ¢5) = (v‘f,vg,d)é), v = (0,1) and in the same way, we can show that the
expression of the impedance will be of the form:
*9 (’067 QZ}(S) = (O—* (Uéa 1/)6) v, Oé,Dg’l/J(s)
= (0—12 (06,1/16) y 0—22 (U6,¢5) ) Oé—Dzi/fé)
= 6(01 (’U67’(/}6) 702 (Uéal/}(S) 703 (véawé)) ’

where

§ 18y Apg(petdy) p2, 8 2u4 B 5
1 (v Y ) B (;\"+++2“+‘)" Dyvy + 2H+++>T+ Dy,

CQ (v671/}6) = 07

and

5 0\ _ 2.6 C+Q@urtA)—=B1 5 2B4pu4 5
CS ('U ’w ) *OUrDﬂ/’ - PITIE ¢ - 2H++)\+D101-

4. Construction of the asymptotic expansion and the approximate impedance
operator

Here, we construct a first approximation of the impedance by using the techniques of
asymptotic expansion with scaling as follows:

4.1. Scaling and the scaled transmission problem. When the parameter §
varies, the domain Qi also varies. The solution (ui,wi) of problem (P‘S) depends on
¢ and we cannot compare the solutions corresponding to different values of the param-
eter 6. We therefore make a change of scale to bring back the transmission problem
set in Q9 to a transmission problem set on a fixed domain, let us symbolize it with €.
So we perform a dilatation in the normal direction of Q‘i of ratio 67! to get a fixed
geometry. Accordingly, we set Q; = R?x]0,1[, I'y = R®x {1}, Q = R*x]-1,1|
and for each point (1,72, 23) € Q, we associate the point x° (z1, x9,23) € Q° as the
following:

X‘S: Q -
5 _f (x1,m0,23) 23 <0
(x1,22,23) +— X°(21,22,23) = { (21,29, 003) if 23 > 0

and we define the function (@%,@%) by:

@ (21, m2,23) = u® (z1,22,23), for all (z1,20,73) € Q_,
&% (x1,29,23) = w? (21,29, 23), for all (z1,x9,23) € Q_,
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and
) : Qp = R*x]0,1[ — R3
(w1, 22,23) = (uly (21, 2, 6x3) ,ul, (1, T2, 0m3) , Ou 5 (21, T2, 023))
@ Qp=R*xJ0,1] — R
(l’l,l’g,fﬂ;}) — Wi (x17x275x3),

Then we obtain the following scaled problem:
(1) The equations in Q. are rewritten in €2, as:

- - | ~
(E+1) IO = Dl (2/.l/+ + A+) Dluil + )\+ (Dgui2 + 52D3Ui3> + B+(A}i

+ /.L_,.DQ [D1u+2 + D2U+J 3 D3 [D1U+3 + D3u+1]

5
] ) ) e R
(Ey2):0= Do |(2u4 + Ay) Doty + At (Dlui1 + 52D3uig> + B+@5

+ 'L(;;r D5 [Dgais + Dgﬂiz} + puy Dy [Dlﬂ'ig + Dgﬂil] ,
1 . - 1 ~ ~
<D1 [y (Diidg + Dsily)] + 5Da [y (Daiids + Dsiil, )|

) )
1 (2p+ +A4)
5D [62

(E+4) 20 = 04 (D1w+ + D2 + + 6 D3w+) 5+ <D1U+1 + D2U+2 + (5 D3U+3>
— Gy

(2) The boundary conditions on I'}. are rewritten in 'y as:

(Et3):0 =

D35 + Ay (D1, + Dotuily) + 5@1} ,

(BCT4y) : 0= ,LL+%D31~L§_1 - M-&-%Dlﬂi&

(BCT4g) @ 0= #+%D31~Liz + H+%D2ai3a

(BCT,3) : 0= (2“*5%”1)3@3 + A4 (D1 + Dotllyy) + B35,
(BCT,4) : 0= %Dgai.

(3) The transmission conditions on X are rewritten as:

(CT%y) Eil =u’ 15

(CTX,) u5+2 =,

(OTs) = il =iy,

(CTXy) &) =0,

(CTS5) & ooys (@,80) = B (Dailh, + Daitly)
(CTS) : o o (@,0%) = B (Dsid, + Dyiidy)

J
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~5 ~5) (2p4 +A4)

(CTE7) : 0_33 ( w 52 D3 +3 + )\+ (D1U+1 + D2u+2) + ﬁ+w+,

(CTSs) : a_Dsi :‘%*Dgai

4.2. Asymptotic expansion of the scaled transmission problem. We expand
the solution (u‘ft, wi) of the transmission problem after scaling in the form:
5§ ~6 ~0 ~0 ~1 ~1 ~2 ~2
(ui,wi) = (Ui,wi)+6(ui7wi)+6 (ui,wi)+ .
with (ﬂ’jt, @i) for all k£ € N are independent of 4. Inserting these asymptotic expan-

sions in the transmission problem after scaling and identifying the terms with the
same power of §, we obtain the following hierarchy of boundary value problems:

(2p4 + Ay) D1 ® + Ay (Dout5? + Duky)
+B4@k 2
g Dy (D15 + Dotihy?) + g D3 (Dyuik 5 + Dauif ) in Q4

(BE1)5: 0=D

(EBCT 1),y ¢ ppDsuby +py Dty =0 on Ty, (13)

(ECTSs), ,: o-1z (W71,85 1) = py (Dsih | + Diik;) on 2,
(ECTYy), : ufy=1u", onX,
(2ps + M) Douh5? + Ay (D1l 2 + D3tk )

+B4wy b2
+py Dy [(Drih5? + Do %)) + py Ds [(D2u+3 + D5k ,)] in Qy,

(EE+2)I€72 . 0 = D2

(EBCF+2)k_1 : /J+D3ﬂ§_2 -+ LL+D2"LZ§_3 =0 on F+, (14)

(ECTS6),_y : 0oz (W10 1) = g (Dsuky, + Dotk ;) on 3,

(ECT%2),_4 - HiQ =u*, on X,

~k—2
(BEys),_: 0=Dy| 2+ +A4) Datlfs + Ay (12)1u + Dyit5?) ]

+ﬂ+w+
g Dy [(D1uf5% + Dsut i) ] + py D [(Datil5” + Dsth;?)] in Q4

(2p4 + A4) D3U+3

EBCT . L
( +3)k7 |: +)\+ (Dluurl + DZUiQ ) + 6+

~k—2 :| =0 on F+, (15>

(ECTE'])k PR . 0_33 ( k2 @ﬁfz)
= [(2ps + Ay) Dsiih s + Ay (D17 + Doul5?) + 8@ 7% on 3,

(BCTE3), ,: uky=1u"3" onX,
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and
~}—2 ~]—2 ~
(EE4a)y o 0= Oé+~(Dﬁ2w+ t?§w+ J:kDgwi) ~g—2 | In €y,
- _/BJr (D1U+1 + D2u+2 + D3u+3) - C+w+
(EBCF+4)k_1 : Dgai =0 on 1—‘+,
(ECTYs), ,: a-D3a* ' =a,;Ds@% on %,
(ECT%y),, - @i =wF on ¥,
(16)
where we set
;7 = ' =01x2inQy, @7 =7 =0 in Q4
U2 = Ui =ui=u,s=w=w;,'=0 onT
+1 T U T U T U T W W = +s
~—2  _ ~—1_ ~—1 _ ~-2  ~—-1 _ ~1 _
uyy = uj=u;=wi"=w; =u_3=0 onl,

1 ~—1)

g_13 (ﬂ: , W = 0_23 (ﬂ:l,&zl) = 0_33 (ﬁ:Q,&:Q) = Dg@il = 0 on Z

Remark 4.1.

(1) Thanks to the technique of scaling in the thin slab 0, the terms of the as-
ymptotic expansion of ﬂ‘j_ and Gi can be calculated explicitly by recurrence in
function of terms of the asymptotic expansion of @’ and @’ on X.

(2) Equations in problems (13)—(16) are second order linear differential equations
with respect to the variable x3.

(3) By integrating equations in problems (13)—(16) and using the transmission con-
ditions on ¥ and the boundary conditions on I', we can calculate ﬁi and Uui
in terms of u* , and w* on ¥.

Calculation of terms of order 0 in Q. For & = 0, an integration by part in x3
in problems (13)—(16) gives the following results:

i) = 0 inQy,

iy = “(11\2 in €y,
iy = “(12\2 in €,
W = wglz in Q.

Calculation of terms of order 1 in Q.. For k = 1, also an integration by part in
x3 in problems (13)—(16) gives the following results:

Uiy = “(13\2 in Q,
171“ = Ulq\z — x3D1u(13\z in Qg
iy, = uiQ‘E - nggu(lB‘E in Q4,
@}F = W1—|Z in Q.

Calculation of terms of order 2 in Q. For k = 2, in the same way, we get

~ 3 H
o = o — g oy O (P + Danlaps) + Beis] i @,
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A(pt A1) 2p4 +3X\
22 (2ﬁi+xi>D1“—1lz+ (ﬁffx )DlD?u 2z
ui; = ulypts 2 D D2 D
tE 1w =T Sul 1z 1“—3|2
2
zg [ (dps +2X4) .
B {@MWD ~1s + Dy Dyu® 2% +D2u_1|2 in Q4,
4(pp+Ary) 204 +3)
Wy = ulyy+as i 1) 2t 2|2+<2J++A5D1D2“ 1z
Yo = Uly
(2,L++A+)D2W w + Diul g — Doul g
(4p4++3X4) 24 +2X
23 | G Daulas + 7(2L+A++>D1D2“71\2 ] in Q.
2 + o Pewlpn + Diul gy
2,0 2,,0 2p4 8 ~0 0
P o= et Dl“’—\z +D2‘*’7\2 - a+(5#++fx+) (Dlufuz +D2“72|2>
+ T e 3 Cr(2ppt+A) =63 o

T ar@urta) Y-l

244 8 ~0 0 CrQuy+rp)-81 ¢
vy (Dluil‘z + D2u72|2) NI SaCTE o s cE

2 __2haPy
oy Cu++rt ay@uitry) T-IE 1 in Q,

L3
+2

2,0  _ P20
Diw? |y — Daw s,

Calculation of terms of order 3 in ;. For k = 3, problem (15) gives the following
relation:

g_33 (ul_m,wl_m) = (2/14,_ + )\+) Dgﬂﬁ_?) + )\+ (Dlﬁi_l + Dgﬂ}i_Q) + ﬂ+O~J_1i_ =0 on X.

Then, the asymptotic expansion of the equations in 2_, the boundary conditions on
I'_ and the transmission conditions (CT%5) — (CTEs) on X, allow us to obtain the
following results:

Terms of order 0 in _: At order 0, the terms (ug,wg) satisfy the following
boundary value problem in _:

S Doy (uo W) =—p_;, i=1,23 inQ_,
Py YD h_J( ) —g- (u2,0’) =—¢_ inQ_,
(P-)o : u =w? =0 onT_,

(a, (ug,wg)‘zl/, a,D3w0_‘2> =0 onX.

which means that at order 0, the thin slab Qﬁ_ has no effect on Q_
Terms of order 1 in Q_: At order 1, the terms (ul,w!) satisfy the following
boundary value problem in 2_:

S Doy (ul_,wi) =0,i=1,2,3 inQ_,
Z _,D; h,]( 1)—g- (ul,wl) =0 in Q_,
(P-); =wl =0 onT_,
(0'_ (ul,wi)‘z v, a_D3w£‘E) =T, (uglz,w(lm) on Y.

which means that at order 1, the effect of the thin slab Qi on §2_ is represented by
forces and equilibrated forces exerted on .

First order approximation of the impedance By linearity of the consti-
tutive equations, we find that the function (u‘i*, ) defined by: (u‘s_*,w‘S_*) =
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(u(l +oul  w® + 6w1_) satisfies:
(a, (u,,w?,) v, a,Dgw‘i*m) = (0, (v, w?) s, a,Dgwglz)
+4 (O'_ (ul_,wi) Z58 a_Dgwl_‘E> . (17)

Using the boundary conditions on ¥ of problems (P_), and (P-)
the following relation:

1> we get from (17)

(0'_ (u‘i*,w‘s_*) Z8 a_Dgwi*m) = 4 (O'_ (ul_,wl_) Z8 (X_Dgwl_lz)
= 07T, (u‘im&m) , (18)

and as we have (uglz,wglz) = (u‘i*lE - 5u£|2,wi*|2 - 5w£|2>, then the relation

(18) can be written as follows:

(0'_ (ul,,w’,) s, Oé_Dgwé_*‘Z) =T, (u‘i*lx,wé_*|2> — 6°T, (ul_‘z,wl_lz) ,

thus, if we neglect the terms of order 2 with respect to J, we recuperate the same
approximate impedance that we have obtained by Taylor formula in section 3.

5. Stability for the scaled transmission problem

After scaling, the space for studying the transmission problem (Pé) in the fixed
domain Q_ U X U Q, becomes:

() ez@]:
(U7@)|Q, = (U—,Sﬁ—) € [Hl (Q—)} )

_ 4
W (Q) - (v7@)|Q+ = (U+’SD+) € [Hl (Q+):| )
v =01x3onl'_, o_=0o0onT_|

(v-1,v-2,6v_3) = (v41,042,043) on X, and p_ = ¢4 on X,

and the variational formulation of the scaled transmission problem is written:
Find (@°,&°) € W;(Q), such that ¥ (v, ) € W5 (Q) :

L5 (0790) = a [(aivwi) ) (Uﬂ@f)] +a+ [(ﬂiv&ji) ’(U+7§0+)] )

_r~5 ~§ _ trg (o (ﬂi,@i) e— (v2)) +a_V&® .Ve_
o [(@2.82), (v p-)] _/Q|:+Cc~05<p + B (Dyii®, + Datid o + Dsii® ) o -,

and
5~ 5 ~ 1 5~
a® [(uiawi) ) (U+7 (p-‘r)} = 5ail [(Ui,Wj_) 7(U+a <)0+)] + gatl [(U+,Wi) 7(U+a §0+)]

1 ~5 ~
+673at3 [(ui,wi) ) (U-i-a 90-"-)] )
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where

(2/L+ + )\+) Dlﬁi1D1U+1
+A+ (D2ﬂ§|—2D1U+1 + Dlﬂi1Dzv+2)
+B¢ (@3 D1vg1 + @3 Davya)
ail [(ﬂi,&i) ,(U+, Lp+)] = / +u+ [(Dﬂ’zig + DQ"[Iil)] [D11}+2 + D2U+1} + dQ,
Q4 =+ (2/.L+ + )\+) D2512D2’U+2
+ap D1&4 Dipy + ay Daa§ Dagy + (0% o+
! +B+ (D1t + Do) oy

)\+ [Dg?jig, (D1U+1 + D2U+2)
+ (Dﬂjil + Dgﬂig) D3’U+3]
4 [(~5 ~5 _ +B+ [@5Dsvys + Dsud a4
a_q [(U+7w+) ’(U+7(p+)] - /(;+ +/“L+ (Dlﬁig + D3ﬂil) (D1U+3 + D3'U+1)
+ (Dzﬁig + D3ﬁ§.2) (D2v43 + Dsv42)
+C¥+D3&§~_D3g0+

dQ+7

aty [(ﬂi,fdi) ,(U+,s0+)] :/ (204 + Ay) D3ty DavysdQy,
o
and

Ls (v,p) = / (p—v—dQ_ +q_p_)dQ_.

Now, in order to estimate the error between the solution of the transmission problem
in Q_ and its approximation of order 1, which will be in section 7, we first set

Alv_,po) = HU—H[Hl(Q,)]B + ||S0—||H1(Q,) )
B(vy,p,) = { [D1v+41ll 20, ) + 1D2v42ll 12,y + 1P1v42 + Doviall 2, } 7
+ 1D1¢+ 20, ) + D20+l 2, ) + 0+l L2,
Clvy,p4) = [[D1vgs+ Dsviallpeiq,y + 1D2043 + Dsviall 2o,y + 1Ds@+ll 2 qy ) -
D(vy,04) = [Dsvssllp2a,y

for all (v,¢) € W5 (Q). After that, we state and prove the following stability result:
Theorem 5.1. Let Ls be a continuous linear form on W (£2) such that

Vo

where s is any function of ¢ > 0. Then there exists a constant C' > 0 (not depending
on §) such that the solution (ud.,&?% ) of the problem

Ly (0. 0)] < 1s [A (01 _) +VE B (g, 04) + % C (04, 04) + if D(v+,<ﬁ+)] ,

Find (ﬂ6756) € Ws(Q), such that V (v, ) € W5 (Q) :
L5 (7)790) = a [(aé—aaé—) ) (’U_,Cp_)] + a+ [(ﬂ+,a~ui) ,(U+,<p+)] ) (19)

satisfies the estimates

A@,a%) < Cl, (20)
B(a,00) < C6 il (21)
C(@,a%) < ©d3l, (22)
D(@,3) < Cé%ls. (23)



452 A. ABDALLAOUI, A. KELLECHE, AND A. BERKANI

Proof. Thanks to the Korn’s inequality, the expression A? (ﬂ‘s_,fui) is equivalent to
a” [(ud,&), (u2,&?)], and we have

2X4 D3t 5 (D1U%y + Datt’0) + 28405 D3l 5
~ ~ ~ ~ ~ ~, 2 ~ ~ 2
at, [(ui,wi) ) (ini)] = / +pr [Drds + Dsufa]” + p £D2Ui3 + Dauls]” | dy,
Q+ —|—C¥+ (Dgai)

and from the expressions of B, C and D, we get
at, [(m,wi) (ai,ai)] < (2)\; +28,)B (ai,ai) D (ui,c~0+)+(2,u+ +ay)C? (ai,ai) .

As we have
(204 + 2ﬁ+) (B.D) (@, &%) < (At +B4+) (51332 (@, &%) + 53 1 pe (., "j)) :

then by taking (55,&;) = (175,@5) in the variational formulation (19), we get the
following estimate:
( a2 (i ~6)+5B2(ﬂifi)) >S0l5< A@,30) + Vi B (,30) )>7

+1C? (@, @9) + D? (@, 4. +55 C (ui,ai) +355 D (ai,ai

where C' > 0 is a positive constant independent of §. This leads to the estimates
(20)-(23). O

6. Well-posedness of the approximate impedance problem

6.1. Existence and uniqueness of the solution to the impedance problem.
We consider the space:

(v_ o) € [H ()] -

3
W, (Q,) _ (Dl'l},l, Dqiv_o, Dl@,) € [L2 (Z)]g s
(Dav_1,Dyv_2, D) € [L*(%)]",
_=0ix3on I'_, ¢p_=0o0onT_.
endowed with the norm

1/2
||(U*7§0*)||W*(Q_) = [||(”f7<Pf)H[2H1(Q_)]4 + H(’U71|23U72|27(p7|2)’|[2H1(2)]3:|

with
2 2 2
Homs o Py = lo- 12y + 3 ol
i=1
and

2 2 2
||(”—1|Ev”—2\E’¢—\Z)H[H1(z)]3 = ||<P—IE||H1(2) + Z ||”—i\ZHH1(z:) :
For all (u,,w’,) and (v_,p_) in W, (Q_), we set

- 5 s _ trs (o— (u’.,w’.) e— (v2)) +a-Vuw’, . Ve_
“ [(u_*,w_*) > (- 807)] N /gL { +¢-wl oo + B (Dlu‘in + Dau? o + Dau{*s) Y- -,
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ax [(ué_mwi*) ,(v,ﬁp,)]

%Dlu‘i*lDlv_l + ,LLJ,-DQUi*lDQ'U_l + 23:;)\): Dzu‘i*ngv_l
—|—,u+D1u‘z*1D2v_2 + 2ii+f;+ w‘i*Dlv_l + 2ii+f;+ w‘i*ng_g
= /E _&_%DQUE*QDQUfQ + M+D1u5_*2D1’072 + 21‘1*_:‘/\1 Dlué_*lDQU,Q dx,
+M+D1u‘i*1D2v_2 + a+D1wi*D1g0_ + a+D2w‘i;Dgap_

and we state and prove the following theorem:
Theorem 6.1. For given (p_,q_) in [L2 (Q,)]4, there exists a unique solution
(u‘i*,w‘S ) in W, (2-) to the impedance problem (Pf*). Its weak formulation is

—%

given by
ag [(u‘i*,w‘i*) 7(U7,907)] =L (v,,gp,), V(U,,g@,) e W, (Qf)
with
a5 [(wl,wl,), (v )] = a™ [(ul,,02,), (v p-)] +das [(u,,0,) (v, p-)]
and
L(v—,sa—)Z/ (p—v— +q-p_)dQ_.

Proof. 1t is clear that L is continuous on W, (©_). For the continuity of a;, as in
the proof of Theorem 2.1, we have

la™ [(u’,,w?,), (v_,p)]| < C4 ||(u57*7w67*)||w*(Q7) [(v— e Mw.@_)-

where (] is a positive constant independent of 4, and by using the cauchy-Schawarz
inequality and the definition of the space W, (Q_), we get

Jas [( 0o ®.) (0 0] < Co [ (00 oy oy 10 0
where Cs is a positive constant independent of ¢, and then

‘aa_ [(u‘i*,wi*) ,(v—,w—)” < ‘a_ [(u‘i*,w‘i*) ,(U_M—)] ‘ +6 ’az [(u‘i*,wi*) ,(v_,<p_)H

<Cy H(u(i*,wi*) ‘W*(Q,) |‘(U—7@—)|‘W*(Q_)

[y

as 6 << 1, then for all (v’ ,,w’,), (v, p_) in W, (Q_), we get

+ Cs6

[ oy 10 . o)

a5 [ e w’) s (oms0)] | < O (0 ) [y oy 10— 0wy

with C' = C} + Cy, which prove the continuity of a; on [W, (Q2_)]%. For the coercivity
of ay, as in the proof of Theorem 2.1, for all (u5 wd ) in W, (Q_), we have

—% ) — %k

_ 2
07 [(0) ()] 2 O () e

with C7 is a positive constant independent of §, and since we have

2D2u5_*2D1u5_*1 Z — (DQ’UJ(S_*Q)2 — (Dlué_*l)Z,
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hen for all (u® 5 ) in W, (Q
then for all (u? ,,w?,) in W, (Q_), we get

as [(u0,08.) , (u8,,00.)]
B —(pu— _ 2 0 (p— 4+ 2
MU (Dula)” + 5505 (Dale)”
= [ | 2D ik e (Dud )+ s (D) |
z L

— (Dlwa_*)Q + o (Dgwé_*)z -+ 4(2'12#—"_—_:\)\)6 w

dx

(w?
> / M- (Dlu‘i*l)Q + H— (Dgué_*g)Q + M- (Dlu(i*g)Q + H— (Dgué_*l)Q
s I N O

e T |

C—(2u_+xr_)-p%
A

then for all (u‘s_*,(,u‘S ) in W, (2_), we get

—%

ay [(ulo ), (ul el *)]

=a” [(u‘g_*,w‘s*) , ( ul,,w )} + dax, [( ‘i*,w‘s_*) , (u‘s_*,wé_*)]

with Cy = min (u,7 a_, ) is a positive constant independent of §, and

2
2 Cl ||(u s W *)H[Hl(Q )]4 +502 H( —*1|Ev —*Q\Ea 6—*|E) ’[Hl(E)P
> C0 )| (s ) iy oy

where C' = min (C7, C50) is a positive constant not depending on §, which prove the

coercivity of ay . Therefore by Lax-Milgram theorem, the impedance problem (P°.)
has a unique solution in W, (Q2_). O

6.2. Stability for the impedance problem. In order to estimate the error be-
tween the solution of the approximate impedance and its approximation of order 1,
which will be in section 7, we first set

A(U_,(,O_) = ||(’U—a<p—)||[H1(Qf)]4’
Bl o) { D101l 2(s) + [D2v-1ll 125y + 1D1v—2|l 125 +
A [1D2v—2ll2(sy + [D1o-ll 125y + D20l 25y + lo-ll L2 (5

for all (v_,p_) € W, (2_). After that, we state and prove the following stability
result.

Theorem 6.2. Let Ls be a given linear form on W, (2_) satisfying the following
bound in ¢:

Ls (0o )| S ms (A(wo, o) + V3 Boo,po)), forall (v,p-) € W. (2-),

where myg is any function of (5 > 0. Then there exists C' > 0 (not depending on §)
such that the solution (u‘s_*, *) of the problem

{ Find (u’,,w’,) € W, (Q_), such that for all (v_,p_) € W, (Q_): (24)
L

0 [t Y (0] + das (w800, (0, 9] = Ly (v,
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satisfies the following estimates

AW, w,) < Cms, (25)
B (u‘i*,w‘i*) < C&Vm (26)
Proof. Thanks to Korn’s inequality (see [7], [23]), the expression A2 (u?,,w’,) is

equivalent to a™ [(u‘i*,w‘i*) , (u‘i*7wi*)], and we have

as (2o wl,) s (vl wl)) 2 € B2 (ul,,wl),

where C' > 0 is a positive constant not depending on 6. Then by taking (v_,¢_) =
(u‘s w® ) in the variational formulation (24), we get the estimate:

A2 (Uiaﬁwi*)"_(s 32 (U(Z»MWE*) SKm(S (A( 7*7 )—’_\/»B( )),

where K > 0 is a positive constant not depending on §. This gives directly the
estimates (25) and (26).

6.3. Asymptotic expansion for the approximate impedance problem. By
setting

O = u, +oul, +6%2, + ..

wl, = Wi, +owl, +5%W, +

—%

and inserting these expansions in the approximate impedance problem (Pf*), we get
a hierarchy of equations and boundary conditions. At order 0, we get

S Djo_y (uo W) =—p_y, i=1,2,3 inQ_,
>y Dihj (W2 )—g (W0, w?,) = —q_ in Q_,
(Ps)o : ué*zolxg onT_ L,=0onT_,

(a_ (u(l*,wo_*)lzu o Dgw *IE) = 0144 ONn X.
At order 1, we get

Y2 Djoi; (ul,,wl,)=0,i=123 inQ_,

> =1 Djh—; (Wl—*) —9- ( Lwl ) =0in Q_,
ul, =0ixgonl_, w!' =0onTl_,

1 1 1 _ 0 0
(0_ (u_*,w_*)‘E v, Oé_D3w_*‘2> =T, (u—*IE’w—*IZ) on X,

Remark 6.1. The terms (ug*,wo*) and (u wo) (respectively (ui*,wi*) and

(ul,wi)) of the expansion of ( 7*,w‘i*) and (u w‘s) are solutions of the same
boundary value problem at order 0 (respectively at order 1). Then by uniqueness, we

have

(P-),

(uo wo_*):(u(i,wg) and (ul_

— %) wl—*) = (ul—’wl—) :

*9

7. Error estimates and optimality
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7.1. Error estimate for the transmission problem. By setting

WD =l D < ST 407 (0,0,,),
R N

and making use of the problems (P_), and (P-), satisfied by (u,w’) and (ul,w?)
and also the problems (13)—(15) for k € {0, 1,2, 3}, we get

Ls (v, ) = a¥3 [(@5, &%) , (v, o4)] + 5/ puy Dyt Davy1dSdy

Q4

+8 [ pieDsutyD3viadQy +6 [ oy D3’ DapydQy
Q4 Q4

— /Q [,LL+D1173_3D1’U+3 + H+Dzﬂi3D2’L}+3] dQ+ - 520,11 [(ﬂ}r, &V)_li_) ; (U+, gﬁ_;'_)]
+

where
Ls(v,) = a~ [(ﬂ‘i —u®Y 0 —w@’1)> ,(v,,cp,)}
pat [(#@ - .5 D) ()]
and thus
L5 (0, 9)] < C8/2 [A(v-y0) + VI B (14, 04) + 5 C(oa,04) + 555 D (s 04)]

which implies, by the stability result (see Theorem 5.1), the following error estimate:

W - w@”H < 52, 27)

ot~
[ Hi(Q-)

o |

where C' is a positive constant independent of §.
Remark 7.1. We have taken

(61) _ ~0 ~1 2~2
uyy’ =uUyg+O0uyg+ 0 uls,

in order to satisfy the transmission condition
ufél) = 5u(_6§1) on X,
(8,1) , (8,1 ;
and, consequently, we have (uly ™/, wiy in the space Ws (2).
Remark 7.2. If p_ and g_ are smooth we can obtain all the terms of the asymptotic
expansion (u*,w") for k > 2, and prove an analogous error estimate. For instance
we can prove

|

o sl oo

H(Q H H(Q
[H*( 7)]3 Qo)
where

u®? =0 +5ul 4622 and W =00 + 6wl + 6%,
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7.2. Error estimate for the impedance problem. By setting

(5 1

—%

= . +owt

and
a” | (ud, — u(6’1)7w7* — w@;l) (v, 907)}

— — %

+ dax, Ku‘s_* (_(s*l),w X (51)) (v_,p_ )} =Ls(v_,p_),

and making use of the problems (P_,), and (P-,), satisfied by (u’,,w%,) and

(ul—*7 Wl—*)v we get

Ls (v_,p_) = —0%ax [(ul_*,wl_*) ,(U—7<P—)]
and thus
[Ls (0,9 )| < CO2 [A (0,0 ) +VE B(vp)],
which implies, by the stability result (see Theorem 6.2), the following error estimate:

CRD
_*_

—%

‘ v Hwi* e “H <2, (29)
[(HY(Q2-)]? H(Q_)

where C' is a positive constant independent of .

Remark 7.3. If p and ¢_ are smooth we can obtain all the terms of the asymptotic
expansion (uk wk ) for k£ > 2, and prove an analogous error estimate. For instance

* 9
we can prove

5 (5 2)
.-

[H ()] HY(Q) ~
where

u(_572) _ (5 2) _

u’, +oul, + 6%, and w WO, 0wk, 4+ 6%W? .

7.3. Final error estimate and optimality. This subsection is devoted to the error

estimate between the solution of the transmission problem in _, and the solution

of the approximate impedance problem. As we have ((u%,,w?,) = (u”,w’) and

(ul,,wl,) = (u1 wh ) (see Remark 6.1) then by triangular inequality, we can write
@y T H"J _w**HHl Q)

—%
0

< Hu, —ul ~ 5“£H[Hl(9_)]?» + Hu,* —u—, —ou

Sl oy
+H@§*_wg_5WI*HH1(Q,)+HO‘}5**_(’UE* wlf*HHl(Q,V
and in virtue of (29) and (27), we find

78~y + 182 =, < 572

where the constant C' depends only on p_, ¢g_ and the elasticity coefficients. Indeed,
if the data p_ and g_ are smooth enough such that we can determinate (uQ_,wz)
and ( 2 w2, ), then by (28) the last error estimate which is not optimal may be
ameliorated as follows:

||“ —ul —dul || (HiQ )P S ||ali —ul —oul — 52“2—||[H1(Q,)]3 +4° ||“2—H[H1(Q,)]3

< C10°% 4+ 0,62 < €62,
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and
B2 =l =l g, = B2 - el —dwl =% gy + 07 W2l o
< C18°7 + 08% < C5°.
Using (30), similar estimates for (u‘i* —ul, —out,,wl, —w?, — (5w1_*) can be proved

in the same manner as outlined above.
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