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Asymptotic Modeling of the Effect of a Thin Slab in the
Framework of Linear Elasticity with Voids
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Abstract. The aim of this paper is to model the effect of a planar thin layer in the framework
of linear elasticity with voids by using the notion of impedance boundary condition. We start

from a transmission model problem which models the wave propagation between an elastic

body with small distributed voids Ω− and a thin coating slab Ωδ+ (δ is supposed to be small

enough). We show how to model the effect of the thin coating by an impedance boundary
condition on the junction of the elastic two bodies. To this end, we use the technique of

asymptotic expansion with scaling. We also prove an error estimate.
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1. Introduction

1.1. Physical and numerical motivations. The theory of linear elasticity with
voids or modified elasticity can be viewed as a generalization of the theory of linear
classical elasticity. It is adequate to describe the behavior of solids with small dis-
tributed voids or pores such as granular and manufactured porous bodies where the
theory of classical elasticity is inadequate. The three-dimensional model is charac-
terized by four independent variables: The components of the displacement vector
ui (i = 1, 2, 3) and the change in volume fraction ω. The linear theory has been
developed by Nunziato and Cowin [10] as a specialization of the non-linear theory
[20].

This paper deals with the study of a transmission model problem in the context of
linear elasticity with voids set in a fixed domain (i.e. not depending on δ) bonded with
a planar thin layer of thickness δ. From a numerical point of view, the resolution of this
problem can not be computed accurately since the small thickness δ of the thin layer
creates instabilities related to the parameter δ. To avoid these numerical instabilities,
we will use the concept of impedance condition which allows us to replace the initial
transmission problem by an equivalent one which doesn’t take into account any more
the thin layer. This impedance condition is defined on the junction between the
fixed domain and the thin layer and given through an operator called the impedance
operator which is better known in English literature as the Dirichlet-to-Neumann
operator.

In addition to the numerical motivation, the importance of this paper also comes
from the fact that the results of this paper can be served as a guide in the case of a
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non planar thin layer (curved thin layer), where the formulas of the impedance will
contain the curvature [1] , so this study will be useful when one considers the general
case of a non planar thin layer.

The concept of impedance boundary condition [27] is largely used in numerous
studies, mainly in electro-magnetics and mechanics, see for instance [9, 12, 25] for
the Helmholtz equation in acoustics, [8, 14, 15] for Maxwell equations, and [18, 21] in
structure mechanics, see also [17, 22].

This paper falls within the framework of applications of the technique of asymptotic
expansion with scaling for modeling the effect of a planar thin layer in linear elastic-
ity with voids. The asymptotic technique is used in vast literature for studying the
asymptotic behavior in thin layer, see for instance [26, 24, 19, 13]. This paper is a con-
tinuation of [2, 3, 4], where the authors have derived first order approximations of the
impedance in asymmetric elasticity. To begin with, we consider a three-dimensional
model, of linear elasticity with voids in a domain Ωδ = R2 × ]−1, δ[ consisting of two
bonded porous elastic bodies, Ω− = R2 × ]−1, 0[ and a slab Ωδ+ = R2 × ]0, δ[ , we also

set Γ− = R2 × {−1} , Σ = R2 × {0} and Γδ+ = R2 × {δ} (see Fig. 1). We assume

that Ω− and Ωδ+ are homogeneous and isotropic. We restrict our consideration to the
case of elastostatics and a planar geometry, and we denote by the index + (resp. −)
to the restriction on Ωδ+ (resp. on Ω− ). The transmission problem (P δ) given by the

Figure 1. Domain of the transmission problem.

model for the displacement uδ± and the change in volume fraction ωδ± read as follows
(see [10, 11]):
(1) Equilibrium equations in Ω−{ ∑3

j=1Djσ−ij
(
uδ−, ω

δ
−
)

= −p−i, i = 1, 2, 3,∑3
j=1Djh−j

(
ωδ−
)
− g−

(
uδ−, ω

δ
−
)

= −q−.
(1)
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(2) Equilibrium equations in Ωδ+{ ∑3
j=1Djσ+ij

(
uδ+, ω

δ
+

)
= 0, i = 1, 2, 3,∑3

j=1Djh+j

(
ωδ+
)
− g+

(
uδ+, ω

δ
+

)
= 0.

(2)

(3) Dirichlet boundary conditions on Γ−{
uδ−i = 0, i = 1, 2, 3,

ωδ− = 0.

(4) Neumann boundary conditions on Γδ+{ ∑3
j=1 σ+ij

(
uδ+, ω

δ
+

)
νj = 0, i = 1, 2, 3,

D3ω
δ
+ = 0.

(3a)

(5) Transmission conditions at the interface Σ
uδ−i = uδ+i, , i = 1, 2, 3,

ωδ− = ωδ+,∑3
j=1 σ−ij

(
uδ−, ω

δ
−
)
νj =

∑3
j=1 σ+ij

(
uδ+, ω

δ
+

)
νj , i = 1, 2, 3,

α−D3ω
δ
− = α+D3ω

δ
+.

(4)

where ν = (ν1, ν2, ν3) = (0, 0, 1) is the unit normal vector to Σ, σ±ij is the stress
tensor, p− is the body force vector, g± is the intrinsic equilibrated body force, h± is the
equilibrated stress vector, q− is the extrinsic equilibrated body force and Dj = ∂

∂xj
.

For the sake of simplicity in the next sections, we adopt the following writings:(
uδ±, ω

δ
±
)

=
(
uδ±1, u

δ
±2, u

δ
±3, ω

δ
±
)
,

σ±
(
uδ±, ω

δ
±
)
ν =

(
σ±13

(
uδ±, ω

δ
±
)
, σ±23

(
uδ±, ω

δ
±
)
, σ±33

(
uδ±, ω

δ
±
))
,(

σ±
(
uδ±, ω

δ
±
)
ν, α±D3ω

δ
±
)

=
(
σ±13

(
uδ±, ω

δ
±
)
, σ±23

(
uδ±, ω

δ
±
)
, σ±33

(
uδ±, ω

δ
±
)
, α±D3ω

δ
±
)
.

The constitutive equations for the linear isotropic elasticity with voids are defined by:

σ±ij
(
uδ±, ω

δ
±
)

= 2µ±e±ij
(
uδ±
)

+ λ±e±pp
(
uδ±
)
δij + β±ω

δ
±δij , i, j, p = 1, 2, 3,

h±j
(
ωδ±
)

= α±Djω
δ
±, j = 1, 2, 3,

g±
(
uδ±, ω

δ
±
)

= β±e±pp
(
uδ±
)

+ ζ±ω
δ
±, p = 1, 2, 3,

where δij is the Kronecker delta, e±ij is the strain tensor defined by:

e±ij
(
uδ±
)

=
1

2

(
Diu

δ
±j +Dju

δ
±i
)
, i, j = 1, 2, 3,

and µ±, α±, ζ±, λ± and β± are material constants satisfying the inequalities:

µ± > 0, α± > 0, ζ± > 0, λ± > 0, β± > 0,

µ± + 3λ± > 0, (µ± + 3λ±) ζ± > 3β2
±.

As was already pointed out, our aim in this paper is to derive an approximate
impedance boundary condition on the interface Σ that incorporates in an approx-
imate way the effect of the thin slab Ωδ+ on Ω− to reduce the transmission problem

(P δ) to a boundary value problem set in the fixed domain Ω−, i.e. the equilibrium
equations in Ωδ+, the transmission conditions on Σ and the Neumann boundary con-

ditions on Γδ+ are embodied in the form of an impedance boundary condition on Σ
and depending on δ.
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1.2. Concept of impedance in modeling. Our goal is to reduce the transmission
problem set in Ωδ = Ω− ∪Σ ∪Ωδ+ to a boundary value problem set only on the fixed

domain Ω−. The exact effect of the thin slab Ωδ+ on the domain Ω− is given by the
impedance operator Tδ defined by:

Tδ
(
vδ, ψδ

)
:=
(
σ+

(
uδ+, ω

δ
+

)
ν|Σ, α+D3ω

δ
+|Σ

)
,

where
(
uδ+, ω

δ
+

)
is the solution of the following boundary value problem:

(P δ+) :

 Equations (2) in Ωδ+,
Boundary conditions on Γδ+,
uδ+ = vδ on Σ, ωδ+ = ψδ on Σ,

from the transmission conditions (4), it follows that:(
σ−
(
uδ−, ω

δ
−
)
ν|Σ, α−D3ω

δ
−|Σ

)
= Tδ

(
uδ−|Σ, ω

δ
−|Σ

)
,

and the transmission problem (P δ) is then equivalent to the following impedance
problem set in Ω−:

(P δ−) :


Equations (1) in Ω−,
uδ− = 01×3 on Γ−,
ωδ− = 0 on Γ−,(
σ−
(
uδ−, ω

δ
−
)
ν|Σ, α−D3ω

δ
−|Σ

)
= Tδ

(
uδ−|Σ, ω

δ
−|Σ

)
on Σ.

Since an explicit expression of the exact impedance operator Tδ is not reachable for
the general case, we will just derive an effective approximation T∗δ of Tδ with:

T∗δ = δT∗ and T∗
(
vδ, ψδ

)
= (C1, C2, C3, C4)

(
vδ, ψδ

)
,

where

C1

(
vδ, ψδ

)
=

4µ+ (µ+ + λ+)

(λ+ + 2µ+)
D2

1v
δ
1 + µ+D

2
2v
δ
1 +

2µ+λ+

2µ+ + λ+
D1D2v

δ
2 + µ+D1D2v

δ
2

+
2µ+β+

2µ+ + λ+
D1ψ

δ,

C2

(
vδ, ψδ

)
=

4µ+ (µ+ + λ+)

(λ+ + 2µ+)
D2

2v
δ
2 + µ+D

2
1v
δ
2 +

2µ+λ+

2µ+ + λ+
D1D2v

δ
1 + µ+D1D2v

δ
1

+
2µ+β+

2µ+ + λ+
D2ψ

δ,

C3

(
vδ, ψδ

)
= 0,

and

C4

(
vδ, ψδ

)
= α+

(
D2

1ψ
δ +D2

2ψ
δ
)
− 2µ+β+

2µ+ + λ+

(
D1v

δ
1 +D2v

δ
2

)
−
ζ+ (2µ+ + λ+)− β2

+

2µ+ + λ+
ψδ.
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The solution (uδ−, ω
δ
−) of the transmission problem (P δ) in Ω− is then approximated

by the solution (uδ−∗, ω
δ
−∗) of the following approximate impedance problem:

(
P δ−∗

)
:


∑3
j=1Djσ−ij

(
uδ−∗, ω

δ
−∗
)

= −p−i, i = 1, 2, 3 in Ω−,∑3
j=1Djh−j

(
ωδ−∗

)
− g−

(
uδ−∗, ω

δ
−∗
)

= −q− in Ω−,

uδ−∗ = 01×3 on Γ−, ω
δ
−∗ = 0 on Γ−,(

σ−
(
uδ−∗, ω

δ
−∗
)
ν|Σ, α−D3ω

δ
−∗|Σ

)
= T∗δ

(
uδ−∗|Σ, ω

δ
−∗|Σ

)
on Σ,

and we prove the following main result of the paper:

Theorem 1.1. For given (p−, q−) in
[
L2 (Ω−)

]4
, the boundary value problem

(
P δ−∗

)
has a unique solution in the space

W∗ (Ω−) =


(v−, ϕ−) ∈

[
H1 (Ω−)

]4
:

(D1v−1, D1v−2, D1ϕ−) ∈
[
L2 (Σ)

]3
,

(D2v−1, D2v−2, D2ϕ−) ∈
[
L2 (Σ)

]3
,

v− = 01×3 on Γ−, ϕ− = 0 on Γ−,


and the following error estimate holds∥∥uδ− − uδ−∗∥∥[H1(Ω−)]3

+
∥∥ωδ− − ωδ−∗∥∥H1(Ω−)

≤ Cδ2,

where the constant C depends only on p−, q− and the elasticity coefficients.
We will prove Theorem 1.1 according to the following scheme: In Section 2, we

prove the well-posedness of problem (P δ). In section 3, we derive an approximate
impedance boundary condition for the thin slab Ωδ+ by using a formal Taylor ex-
pansion. In section 4, by using the techniques of asymptotic expansion with scaling
we construct and recuperate the same approximate impedance boundary condition
derived by the technique of Taylor expansion in section 3. In section 5, we state and
prove a stability result for the scaled transmission problem. In section 6, we prove
the well-posedness of the approximate impedance problem

(
P δ−∗

)
. Finally, in section

7, we prove error estimates in an appropriate space.

2. Well-posedness of the transmission problem

In this section, we will prove the existence and uniqueness of the solution to the
transmission problem

(
P δ
)
. We consider the space W

(
Ωδ
)

defined by:

W
(
Ωδ
)

=



(v, ϕ) ∈
[
L2
(
Ωδ
)]4

:

(v, ϕ)|Ω−
= (v−, ϕ−) ∈

[
H1 (Ω−)

]4
,

(v, ϕ)|Ωδ+
= (v+, ϕ+) ∈

[
H1
(
Ωδ+
)]4

,

v− = v+ on Σ, ϕ− = ϕ+ on Σ,
v− = 01×3 on Γ−, ϕ− = 0 on Γ−.


,

endowed with the norm

‖(v, ϕ)‖W (Ωδ) =
[
‖(v−, ϕ−)‖2[H1(Ω−)]4 + ‖(v+, ϕ+)‖2[H1(Ωδ+)]

4

]1/2
,

which is equivalent to the norm

|(v, ϕ)|W (Ωδ) =
[
|(v−, ϕ−)|2[H1

0 (Ω−)]
4 + |(v+, ϕ+)|2[H1

0(Ωδ+)]
4

]1/2
,
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with ∥∥(v±, ϕ±

)∥∥2[
H1
(

Ωδ
±

)]4 = ‖ϕ±‖2H1
(

Ωδ
±

) +

3∑
i=1

‖v±i‖2H1
(

Ωδ
±

) ,
and ∣∣(v±, ϕ±

)∣∣2[
H1

0

(
Ωδ

±

)]4 = |ϕ±|2H1
0

(
Ωδ

±

) +

3∑
i=1

|v±i|2H1
0

(
Ωδ

±

) .
For all

[(
uδ, ωδ

)
, (v, ϕ)

]
∈
[
W
(
Ωδ
)]2

, we set

a−
[(
uδ−, ω

δ
−

)
, (v−, ϕ−)

]
=

∫
Ω−

[
tr3

(
σ−
(
uδ−, ω

δ
−
)
e− (v−)

)
+ α−∇ωδ−.∇ϕ−

+ζ−ω
δ
−ϕ− + β−

(
D1u

δ
−1 +D2u

δ
−2 +D3u

δ
−3

)
ϕ−

]
dΩ−,

a+
[(
uδ+, ω

δ
+

)
, (v+, ϕ+)

]
=

∫
Ωδ+

[
tr3

(
σ+

(
uδ+, ω

δ
+

)
e+ (v+)

)
+ α+∇ωδ+.∇ϕ+

+ζ+ω
δ
+ϕ+ + β+

(
D1u

δ
+1 +D2u

δ
+2 +D3u

δ
+3

)
ϕ+

]
dΩδ+,

where tr3 is the trace of a matrix of size 3.

Theorem 2.1. For given (p−, q−) in
[
L2 (Ω−)

]4
, there exists a unique solution(

uδ, ωδ
)

in W
(
Ωδ
)

to the transmission problem (P δ). Its weak formulation is given
by

a
[(
uδ, ωδ

)
, (v, ϕ)

]
= L (v, ϕ) , ∀ (v, ϕ) ∈W

(
Ωδ
)
,

with

a
[(
uδ, ωδ

)
, (v, ϕ)

]
= a−

[(
uδ−, ω

δ
−
)
, (v−, ϕ−)

]
+ a+

[(
uδ+, ω

δ
+

)
, (v+, ϕ+)

]
,

and

L (v, ϕ) =

∫
Ω−

(p−.v− + q−ϕ−) dΩ−.

Proof. To prove the existence and uniqueness of the solution to the transmission
problem

(
P δ
)

in W
(
Ωδ
)
, it suffices to check that the linear form L and the bilinear

form a satisfy the hypothesis of Lax-Milgram theorem. It is clear that L is continuous
on W

(
Ωδ
)
. For the continuity of a, we have∣∣∣a [(uδ, ωδ) , (v, ϕ)

]∣∣∣ ≤ ∣∣∣a− [(uδ−, ωδ−) , (v−, ϕ−)
]∣∣∣+

∣∣∣a+
[(
uδ+, ω

δ
+

)
, (v+, ϕ+)

]∣∣∣
≤
∫

Ω−

[
|λ−|

(∑3
k=1

∣∣Dkuδ−k∣∣) (∑3
k=1 |Dkv−k|

)
+ 2 |µ−|

∑3
i,j=1

∣∣eij (uδ−)∣∣ |eij (v−)|
+ |β−|

∣∣(D1u
δ
−1 +D2u

δ
−2 +D3u

δ
−3

)∣∣ |ϕ−|+ |ζ−|
∣∣ωδ−∣∣ |ϕ−|+ |α−|

∣∣∇ωδ−∣∣ |∇ϕ−|

]
dΩ−

+

∫
Ωδ+

[
|λ+|

(∑3
k=1

∣∣Dkuδ+k∣∣) (∑3
k=1 |Dkv+k|

)
+ 2 |µ+|

∑3
i,j=1

∣∣eij (uδ+)∣∣ |eij (v+)|
+ |β+|

∣∣(D1u
δ
+1 +D2u

δ
+2 +D3u

δ
+3

)∣∣ |ϕ+|+ |ζ+|
∣∣ωδ+∣∣ |ϕ+|+ |α+|

∣∣∇ωδ+∣∣ |∇ϕ+|

]
dΩδ+.

Using the Cauchy-Schwarz inequality and from the definition of the space W
(
Ωδ
)
,

we get

3∑
i,j=1

(∫
Ω−

eij
(
uδ−
)
eij (v−) dΩ−

)
≤

 3∑
i,j=1

∥∥eij (uδ−)∥∥L2(Ω−)

 3∑
i,j=1

‖eij (v−)‖L2(Ω−)


≤ c

∥∥uδ−∥∥[H1(Ω−)]3
‖v−‖[H1(Ω−)]3

≤ c
∥∥(uδ, ωδ)∥∥

W (Ωδ)
‖(v, ϕ)‖W (Ωδ) ,
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where c is a positive constant independent of δ, the remaining terms of a− can also
be majorated by

∥∥(uδ, ωδ)∥∥
W (Ωδ)

‖(v, ϕ)‖W (Ωδ), we get∣∣a− [(uδ−, ωδ−) , (v−, ϕ−)
]∣∣ ≤ C1

∥∥(uδ, ωδ)∥∥
W (Ωδ)

‖(v, ϕ)‖W (Ωδ) ,

where C1 is a positive constant independent of δ. In the same manner, we prove that∣∣a+

[(
uδ+, ω

δ
+

)
, (v+, ϕ+)

]∣∣ ≤ C2

∥∥(uδ, ωδ)∥∥
W (Ωδ)

‖(v, ϕ)‖W (Ωδ) ,

where C2 is a positive constant independent of δ. Therefore for all
(
uδ, ωδ

)
, (v, ϕ) in

W
(
Ωδ
)
, there exists a positive constant C independent of δ such that∣∣a [(uδ, ωδ) , (v, ϕ)

]∣∣ ≤ C ∥∥(uδ, ωδ)∥∥
W (Ωδ)

‖(v, ϕ)‖W (Ωδ) ,

which prove the continuity of a on
[
W
(
Ωδ
)]2

. Let us show that a is coercive, we have

a
[(
uδ, ωδ

)
,
(
uδ, ωδ

)]
= a−

[(
uδ−, ω

δ
−

)
,
(
vδ−, ϕ

δ
−

)]
+ a+

[(
uδ+, ω

δ
+

)
,
(
vδ+, ϕ

δ
+

)]

=

∫
Ω−


2µ−

[
e−11

(
uδ−
)]2

+ 2µ−
[
e−22

(
uδ−
)]2

+ 2µ−
[
e−33

(
uδ−
)]2

+4µ−
[
e−21

(
uδ−
)]2

+ 4µ−
[
e−13

(
uδ−
)]2

+ 4µ−
[
e−23

(
uδ−
)]2

+λ−
[
e−22

(
uδ−
)

+ e−11

(
uδ−
)

+ e−33

(
uδ−
)]2

+2β−ω
δ
−
[
e−11

(
uδ−
)

+ e−22

(
uδ−
)

+ e−33

(
uδ−
)]

+ ζ−
(
ωδ−
)2

+ α−
∣∣∇ωδ−∣∣2

 dΩ−

+

∫
Ωδ+


2µ+

[
e+11

(
uδ+
)]2

+ 2µ+

[
e+22

(
uδ−
)]2

+ 2µ+

[
e+33

(
uδ+
)]2

+4µ+

[
e+21

(
uδ+
)]2

+ 4µ+

[
e+13

(
uδ+
)]2

+ 4µ+

[
e+23

(
uδ+
)]2

+λ+

[
e+22

(
uδ+
)

+ e+11

(
uδ+
)

+ e+33

(
uδ+
)]2

+2β+ω
δ
+

[
e+11

(
uδ+
)

+ e+22

(
uδ+
)

+ e+33

(
uδ+
)]

+ ζ+
(
ωδ+
)2

+ α+

∣∣∇ωδ+∣∣2
 dΩδ+,

for all
(
uδ, ωδ

)
in W

(
Ωδ
)
, and let’s try to minorate a

[(
uδ, ωδ

)
,
(
uδ, ωδ

)]
by∥∥(uδ, ωδ)∥∥2

W (Ωδ)
. We start with a−

[(
uδ−, ω

δ
−
)
,
(
uδ−, ω

δ
−
)]

. Using the inequality(
3a2 + 3b2 + 3c2 ≥ (a+ b+ c)

2
, ∀a, b, c ∈ R

)
,

we get

2µ−
[
e−11

(
uδ−
)]2

+ 2µ−
[
e−22

(
uδ−
)]2

+ 2µ−
[
e−33

(
uδ−
)]2

≥ µ−
[
e−11

(
uδ−
)]2

+ µ−
[
e−22

(
uδ−
)]2

+ µ−
[
e−33

(
uδ−
)]2

+
µ−
3

[
e−11

(
uδ−
)

+ e−22

(
uδ−
)

+ e−33

(
uδ−
)]2

,

which implies that

a−
[(
uδ−, ω

δ
−
)
,
(
uδ−, ω

δ
−
)]

≥
∫

Ω−


µ−
[
e−11

(
uδ−
)]2

+ µ−
[
e−22

(
uδ−
)]2

+ µ−
[
e−33

(
uδ−
)]2

+4µ−
[
e−21

(
uδ−
)]2

+ 4µ−
[
e−13

(
uδ−
)]2

+ 4µ−
[
e−23

(
uδ−
)]2

+
(
λ+ + µ−

3

) [
e−11

(
uδ−
)

+ e−22

(
uδ−
)

+ e−33

(
uδ−
)]2

+ 2β−ω̃
δ
−

×
[
e−11

(
uδ−
)

+ e−22

(
uδ−
)

+ e−33

(
uδ−
)]

+ ζ−
(
ωδ−
)2

+ α−
∣∣∇ωδ−∣∣2

 dΩ−,

for all
(
uδ−, ω

δ
−
)

in
[
H1 (Ω−)

]4
. Using the inequality

(
a2 + 2ab ≥ −b2, ∀ (a, b) ∈ R2

)
with

a =

√(
λ+ +

µ−
3

) [
e−11

(
uδ−
)

+ e−22

(
uδ−
)

+ e−33

(
uδ−
)]

and b =
β−ω

δ
−√(

λ+ + µ−
3

) ,
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we get (
λ+ +

µ−
3

) [
e−11

(
uδ−
)

+ e−22

(
uδ−
)

+ e−33

(
uδ−
)]2

+2β−ω
δ
−
[
e−11

(
uδ−
)

+ e−22

(
uδ−
)

+ e−33

(
uδ−
)]2

+ ζ−
(
ωδ−
)2

≥ −
β2
−
(
ωδ−
)2(

λ+ + µ−
3

) + ζ−
(
ωδ−
)2

=
ζ− (µ− + 3λ+)− 3β2

−
(µ− + 3λ+)

(
ωδ−
)2
,

which implies that

a−
[(
uδ−, ω

δ
−
)
,
(
uδ−, ω

δ
−
)]

≥
∫

Ω−

 µ−
[
e−11

(
uδ−
)]2

+ µ−
[
e−22

(
uδ−
)]2

+ µ−
[
e−33

(
uδ−
)]2

+4µ−
[
e−21

(
uδ−
)]2

+ 4µ−
[
e−13

(
uδ−
)]2

+4µ−
[
e−23

(
uδ−
)]2

+
ζ−(µ−+3λ+)−3β2

−
(µ−+3λ+)

(
ωδ−
)2

+ α−
∣∣∇ωδ−∣∣2

 dΩ−,

for all
(
uδ−, ω

δ
−
)

in
[
H1 (Ω−)

]4
. Since we have

µ− > 0 and
ζ− (µ− + 3λ+)− 3β2

−
(µ− + 3λ+)

> 0

because ζ− (µ− + 3λ+) ≥ 3β2
− and (µ− + 3λ+) > 0, then there exists a positive

constant C1 = min
(
µ−, α−,

ζ−(µ−+3λ−)−3β2
−

(µ−+3λ−)

)
independent of δ such that

a−
[(
uδ−, ω

δ
−
)
,
(
uδ−, ω

δ
−
)]
≥ C1

∫
Ω−


[
e−11

(
uδ−
)]2

+
[
e−22

(
uδ−
)]2

+
[
e−33

(
uδ−
)]2

+
[
e−21

(
uδ−
)]2

+
[
e−13

(
uδ−
)]2

+
[
e−23

(
uδ−
)]2

+
(
ωδ−
)2

+
∣∣∇ωδ−∣∣2

 dΩ−.

In the same manner, we prove that for all
(
uδ+, ω

δ
+

)
in
[
H1
(
Ωδ+
)]4

, we have

a+
[(
uδ+, ω

δ
+

)
,
(
uδ+, ω

δ
+

)]
≥ C2

∫
Ωδ+


[
e+11

(
uδ+
)]2

+
[
e+22

(
uδ+
)]2

+
[
e+33

(
uδ+
)]2

+
[
e+21

(
uδ+
)]2

+
[
e+13

(
uδ+
)]2

+
[
e+23

(
uδ+
)]2

+
(
ωδ+
)2

+
∣∣∇ωδ+∣∣2

 dΩδ+,

where C2 = min
(
µ+, α+,

ζ+(µ++3λ+)−3β2
+

(µ++3λ+)

)
is a positive constant independent of δ.

Thus

a
[(
uδ, ωδ

)
,
(
uδ, ωδ

)]
≥C1

∫
Ω−


[
e−11

(
uδ−
)]2

+
[
e−22

(
uδ−
)]2

+
[
e−33

(
uδ−
)]2

+
[
e−21

(
uδ−
)]2

+
[
e−13

(
uδ−
)]2

+
[
e−23

(
uδ−
)]2

+
(
ωδ−
)2

+ α−
∣∣∇ωδ−∣∣2

 dΩ−

+ C2

∫
Ωδ+


[
e+11

(
uδ+
)]2

+
[
e+22

(
uδ+
)]2

+
[
e+33

(
uδ+
)]2

+
[
e+21

(
uδ+
)]2

+
[
e+13

(
uδ+
)]2

+
[
e+23

(
uδ+
)]2

+
(
ωδ+
)2

+ α+

∣∣∇ωδ+∣∣2
 dΩδ+.

Thanks to the Korn’s inequality (see [23], page 51), we obtain

a
[(
uδ, ωδ

)
,
(
uδ, ωδ

)]
≥ C

∥∥(uδ, ωδ)∥∥2

W (Ωδ)
, for all

(
uδ, ωδ

)
∈W

(
Ωδ
)
,

where C is a positive constant independent of δ, which proves the coercivity of a.
Therefore by Lax-Milgram theorem, the transmission problem (P δ) has a unique
solution in W

(
Ωδ
)
. �
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3. Derivation of the approximate impedance operator by Taylor expansion

As in [5, 6], we construct a first-order approximation of the impedance by using
Taylor expansion. The first step to obtaining an approximate impedance condition
is to express explicitly the normal derivatives of uδ+, ω

δ
+, σ+13, σ+23, σ+33 and D3ω

δ
+

on Σ in terms of traces on Σ of σ+13, σ+23, σ+33, u
δ
+ and ωδ+. Since we have

σ+13 = µ+

(
D3u

δ
+1 +D1u

δ
+3

)
, σ+23 = µ+

(
D3u

δ
+2 +D2u

δ
+3

)
,

and

σ+33 = (2µ+ + λ+)D3u
δ
+3 + λ+

(
D1u

δ
+1 +D2u

δ
+2

)
+ β+ω

δ
+,

it follows that

D3u
δ
+1 =

1

µ+

[
σ+13 − µ+D1u

δ
+3

]
, D3u

δ
+2 =

1

µ+

[
σ+23 − µ+D2u

δ
+3

]
, (5)

and

D3u
δ
+3 =

1

2µ+ + λ+

[
σ+33 − λ+

(
D1u

δ
+1 +D2u

δ
+2

)
− β+ω

δ
+

]
, (6)

and then by using (5) and (6), we get

σ+11 = (2µ+ + λ+)D1u
δ
+1 + λ+D2u

δ
+2 + λ+D3u

δ
+3 + β+ω

δ
+

= 4µ+(µ++λ+)
(λ++2µ+) D1u

δ
+1 + 2µ+λ+

2µ++λ+
D2u

δ
+2 + 2µ+β+

2µ++λ+
ωδ+ + λ+

2µ++λ+
σ+33, (7)

and

σ+22 = (2µ+ + λ+)D2u
δ
+2 + λ+D1u

δ
+1 + λ+D3u

δ
+3 + β+ω

δ
+

= 4µ+(µ++λ+)
(λ++2µ+) D2u

δ
+2 + 2µ+λ+

2µ++λ+
D1u

δ
+1 + 2µ+β+

2µ++λ+
ωδ+ + λ+

2µ++λ+
σ+33. (8)

Using the equations (2) and the formulas (7) and (8) of σ+11 and σ+22 and the fact
that σ+13 = σ+31 , σ+23 = σ+32, we get

D3σ+13 = − 4µ+(µ++λ+)
(λ++2µ+) D2

1u
δ
+1 − µ+D

2
2u
δ
+1 −

2µ+λ+

2µ++λ+
D1D2u

δ
+2 − µ+D1D2u

δ
+2

− 2µ+β+

2µ++λ+
D1ω

δ
+ −

λ+

2µ++λ+
D1σ+33,

D3σ+23 = − 4µ+(µ++λ+)
(λ++2µ+) D2

2u
δ
+2 − µ+D

2
1u
δ
+2 −

2µ+λ+

2µ++λ+
D1D2u

δ
+1 − µ+D1D2u

δ
+1

− 2µ+β+

2µ++λ+
D2ω

δ
+ −

λ+

2µ++λ+
D2σ+33,

D3σ+33 = −D1σ+13 −D2σ+23,
(9)

and

α+D
2
3ω

δ
+ = −α+

(
D2

1ω
δ
+ +D2

2ω
δ
+

)
+

2µ+β+

2µ+ + λ+

(
D1u

δ
+1 +D2u

δ
+2

)
+
ζ+ (2µ+ + λ+)− β2

+

2µ+ + λ+
ωδ+ +

β+

2µ+ + λ+
σ+33. (10)

The second step for obtaining an approximate impedance condition is to use Taylor
expansion of σ+13, σ+23, σ+33 and D3ω

δ
+ in Ωδ+ with respect to δ, we write then the

boundary conditions on Γδ+ as follows: σ+13 (δ) = σ+13 (0) + δD3σ+13 (0) + ...,
σ+23 (δ) = σ+23 (0) + δD3σ+23 (0) + ...,
σ+33 (δ) = σ+33 (0) + δD3σ+33 (0) + ...,

(11)
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and

D3ω
δ
+ (δ) = D3ω

δ
+ (0) + δD2

3ω
δ
+ (0) + .... (12)

Using (11), (12), (9), (10) and the boundary conditions (3a) on Γδ+, we obtain at
order one the following approximate impedance T∗δ defined by its expression:

T∗δ
(
vδ, ψδ

)
= δ

(
C1

(
vδ, ψδ

)
, C2

(
vδ, ψδ

)
, C3

(
vδ, ψδ

)
, C4

(
vδ, ψδ

))
,

and thus we get problem
(
P δ−∗

)
in Ω−.

Remark 3.1. In the case of the two-dimensional model of the linear elasticity with
voids

(
vδ, ψδ

)
=
(
vδ1, v

δ
2, ψ

δ
)
, ν = (0, 1) and in the same way, we can show that the

expression of the impedance will be of the form:

T∗δ
(
vδ, ψδ

)
=

(
σ−
(
vδ, ψδ

)
ν, α−D2ψ

δ
)

=
(
σ−12

(
vδ, ψδ

)
, σ−22

(
vδ, ψδ

)
, α−D2ψ

δ
)

= δ
(
C1

(
vδ, ψδ

)
, C2

(
vδ, ψδ

)
, C3

(
vδ, ψδ

))
,

where

C1

(
vδ, ψδ

)
= 4µ+(µ++λ+)

(λ++2µ+) D2
1v
δ
1 + 2µ+β+

2µ++λ+
D1ψ

δ,

C2

(
vδ, ψδ

)
= 0,

and

C3

(
vδ, ψδ

)
= α+D

2
1ψ

δ − ζ+(2µ++λ+)−β2
+

2µ++λ+
ψδ − 2β+µ+

2µ++λ+
D1v

δ
1.

4. Construction of the asymptotic expansion and the approximate impedance
operator

Here, we construct a first approximation of the impedance by using the techniques of
asymptotic expansion with scaling as follows:

4.1. Scaling and the scaled transmission problem. When the parameter δ
varies, the domain Ωδ+ also varies. The solution

(
uδ±, ω

δ
±
)

of problem
(
P δ
)

depends on
δ and we cannot compare the solutions corresponding to different values of the param-
eter δ. We therefore make a change of scale to bring back the transmission problem
set in Ωδ to a transmission problem set on a fixed domain, let us symbolize it with Ω.
So we perform a dilatation in the normal direction of Ωδ+ of ratio δ−1 to get a fixed

geometry. Accordingly, we set Ω+ = R2× ]0, 1[, Γ+ = R2×{1}, Ω = R2× ]−1, 1[
and for each point (x1, x2, x3) ∈ Ω, we associate the point χδ (x1, x2, x3) ∈ Ωδ as the
following:

χδ : Ω → Ωδ

(x1, x2, x3) 7→ χδ (x1, x2, x3) =

{
(x1, x2, x3) if x3 ≤ 0
(x1, x2, δx3) if x3 > 0

.

and we define the function
(
ũδ±, ω̃

δ
±
)

by:

ũδ− (x1, x2, x3) = uδ− (x1, x2, x3) , for all (x1, x2, x3) ∈ Ω−,
ω̃δ− (x1, x2, x3) = ωδ− (x1, x2, x3) , for all (x1, x2, x3) ∈ Ω−,
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and

ũδ+ : Ω+ = R2× ]0, 1[ → R3

(x1, x2, x3) 7→
(
uδ+1 (x1, x2, δx3) , uδ+2 (x1, x2, δx3) , δuδ+3 (x1, x2, δx3)

)
,

ω̃δ+ : Ω+ = R2× ]0, 1[ → R
(x1, x2, x3) 7→ ωδ+ (x1, x2, δx3) ,

Then we obtain the following scaled problem:
(1) The equations in Ωδ+ are rewritten in Ω+ as:

(E+1) : 0 = D1

[
(2µ+ + λ+)D1ũ

δ
+1 + λ+

(
D2ũ

δ
+2 +

1

δ2
D3ũ

δ
+3

)
+ β+ω̃

δ
+

]
+ µ+D2

[
D1ũ

δ
+2 +D2ũ

δ
+1

]
+
µ+

δ2
D3

[
D1ũ

δ
+3 +D3ũ

δ
+1

]
,

(E+2) : 0 = D2

[
(2µ+ + λ+)D2ũ

δ
+2 + λ+

(
D1ũ

δ
+1 +

1

δ2
D3ũ

δ
+3

)
+ β+ω̃

δ
+

]
+
µ+

δ2
D3

[
D2ũ

δ
+3 +D3ũ

δ
+2

]
+ µ+D1

[
D1ũ

δ
+2 +D2ũ

δ
+1

]
,

(E+3) : 0 =
1

δ
D1

[
µ+

(
D1ũ

δ
+3 +D3ũ

δ
+1

)]
+

1

δ
D2

[
µ+

(
D2ũ

δ
+3 +D3ũ

δ
+2

)]
+

1

δ
D3

[
(2µ+ + λ+)

δ2
D3ũ

δ
+3 + λ+

(
D1ũ

δ
+1 +D2ũ

δ
+2

)
+ β+ω̃

δ
+

]
,

(E+4) : 0 = α+

(
D2

1ω̃
δ
+ +D2

2ω̃
δ
+ +

1

δ2
D2

3ω̃
δ
+

)
− β+

(
D1ũ

δ
+1 +D2ũ

δ
+2 +

1

δ2
D3ũ

δ
+3

)
− ζ+ω̃δ+.

(2) The boundary conditions on Γδ+ are rewritten in Γ+ as:

(BCΓ+1) : 0 = µ+
1

δ
D3ũ

δ
+1 + µ+

1

δ
D1ũ

δ
+3,

(BCΓ+2) : 0 = µ+
1

δ
D3ũ

δ
+2 + µ+

1

δ
D2ũ

δ
+3,

(BCΓ+3) : 0 =
(2µ+ + λ+)

δ2
D3ũ

δ
+3 + λ+

(
D1ũ

δ
+1 +D2ũ

δ
+2

)
+ β+ω̃

δ
+,

(BCΓ+4) : 0 =
1

δ
D3ω̃

δ
+.

(3) The transmission conditions on Σ are rewritten as:

(CTΣ1) : ũδ+1 = ũδ−1,

(CTΣ2) : ũδ+2 = ũδ−2,

(CTΣ3) :
1

δ
ũδ+3 = ũδ−3,

(CTΣ4) : ω̃δ+ = ω̃δ−,

(CTΣ5) : σ−13

(
ũδ−, ω̃

δ
−
)

=
µ+

δ

(
D3ũ

δ
+1 +D1ũ

δ
+3

)
,

(CTΣ6) : σ−23

(
ũδ−, ω̃

δ
−
)

=
µ+

δ

(
D3ũ

δ
+2 +D2ũ

δ
+3

)
,
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(CTΣ7) : σ−33

(
ũδ−, ω̃

δ
−
)

=
(2µ+ + λ+)

δ2
D3ũ

δ
+3 + λ+

(
D1ũ

δ
+1 +D2ũ

δ
+2

)
+ β+ω̃

δ
+,

(CTΣ8) : α−D3ω̃
δ
− =

α+

δ
D3ω̃

δ
+.

4.2. Asymptotic expansion of the scaled transmission problem. We expand
the solution

(
ũδ±, ω̃

δ
±
)

of the transmission problem after scaling in the form:(
ũδ±, ω̃

δ
±
)

=
(
ũ0
±, ω̃

0
±
)

+ δ
(
ũ1
±, ω̃

1
±
)

+ δ2
(
ũ2
±, ω̃

2
±
)

+ ...,

with
(
ũk±, ω̃

k
±
)

for all k ∈ N are independent of δ. Inserting these asymptotic expan-
sions in the transmission problem after scaling and identifying the terms with the
same power of δ, we obtain the following hierarchy of boundary value problems:

(EE+1)k−2 : 0 = D1

[
(2µ+ + λ+)D1ũ

k−2
+1 + λ+

(
D2ũ

k−2
+2 +D3ũ

k
+3

)
+β+ω̃

k−2
+

]
+µ+D2

(
D1ũ

k−2
+2 +D2ũ

k−2
+1

)
+ µ+D3

(
D1ũ

k
+3 +D3ũ

k
+1

)
in Ω+,

(EBCΓ+1)k−1 : µ+D3ũ
k
+1 + µ+D1ũ

k
+3 = 0 on Γ+,

(ECTΣ5)k−1 : σ−13

(
ũk−1
− , ω̃k−1

−
)

= µ+

(
D3ũ

k
+1 +D1ũ

k
+3

)
on Σ,

(ECTΣ1)k : ũk+1 = ũk−1 on Σ,

(13)



(EE+2)k−2 : 0 = D2

[
(2µ+ + λ+)D2ũ

k−2
+2 + λ+

(
D1ũ

k−2
+1 +D3ũ

k
+3

)
+β+ω̃

k−2
+

]
+µ+D1

[(
D1ũ

k−2
+2 +D2ũ

k−2
+1

)]
+ µ+D3

[(
D2ũ

k
+3 +D3ũ

k
+2

)]
in Ω+,

(EBCΓ+2)k−1 : µ+D3ũ
k
+2 + µ+D2ũ

k
+3 = 0 on Γ+,

(ECTΣ6)k−1 : σ−23

(
ũk−1
− , ω̃k−1

−
)

= µ+

(
D3ũ

k
+2 +D2ũ

k
+3

)
on Σ,

(ECTΣ2)k−1 : ũk+2 = ũk−2 on Σ,

(14)



(EE+3)k−3 : 0 = D3

[
(2µ+ + λ+)D3ũ

k
+3 + λ+

(
D1ũ

k−2
+1 +D2ũ

k−2
+2

)
+β+ω̃

k−2
+

]
+µ+D1

[(
D1ũ

k−2
+3 +D3ũ

k−2
+1

)]
+ µ+D2

[(
D2ũ

k−2
+3 +D3ũ

k−2
+2

)]
in Ω+,

(EBCΓ+3)k−2 :

[
(2µ+ + λ+)D3ũ

k
+3

+λ+

(
D1ũ

k−2
+1 +D2ũ

k−2
+2

)
+ β+ω̃

k−2
+

]
= 0 on Γ+,

(ECTΣ7)k−2 : σ−33

(
ũk−2
− , ω̃k−2

−
)

=
[
(2µ+ + λ+)D3ũ

k
+3 + λ+

(
D1ũ

k−2
+1 +D2ũ

k−2
+2

)
+ β+ω̃

k−2
+

]
on Σ,

(ECTΣ3)k−1 : ũk+3 = ũk−1
−3 on Σ,

(15)
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and

(EE+4)k−2 : 0 =

[
α+

(
D2

1ω̃
k−2
+ +D2

2ω̃
k−2
+ +D2

3ω̃
k
+

)
−β+

(
D1ũ

k−2
+1 +D2ũ

k−2
+2 +D3ũ

k
+3

)
− ζ+ω̃k−2

+

]
in Ω+,

(EBCΓ+4)k−1 : D3ω̃
k
+ = 0 on Γ+,

(ECTΣ8)k−1 : α−D3ω̃
k−1
− = α+D3ω̃

k
+ on Σ,

(ECTΣ4)k : ω̃k+ = ω̃k− on Σ,
(16)

where we set

ũ−2
+ = ũ−1

+ = 01×2 in Ω+, ω̃
−2
+ = ω̃−1

+ = 0 in Ω+,

ũ−2
+1 = ũ−1

+1 = ũ−2
+2 = ũ−1

+2 = ω̃−2
+ = ω̃−1

+ = 0 on Γ+,

ũ−2
+1 = ũ−1

+1 = ũ−1
−2 = ω̃−2

+ = ω̃−1
+ = ũ−1

−3 = 0 on Σ,

σ−13

(
ũ−1
− , ω̃−1

−
)

= σ−23

(
ũ−1
− , ω̃−1

−
)

= σ−33

(
ũ−2
− , ω̃−2

−
)

= D3ω̃
−1
− = 0 on Σ.

Remark 4.1.
(1) Thanks to the technique of scaling in the thin slab Ωδ+, the terms of the as-

ymptotic expansion of ũδ+ and ω̃δ+ can be calculated explicitly by recurrence in

function of terms of the asymptotic expansion of ũδ− and ω̃δ− on Σ.
(2) Equations in problems (13)−(16) are second order linear differential equations

with respect to the variable x3.
(3) By integrating equations in problems (13)−(16) and using the transmission con-

ditions on Σ and the boundary conditions on Γ+, we can calculate ũδ+ and ω̃δ+
in terms of uk−, and ωk− on Σ.

Calculation of terms of order 0 in Ω+. For k = 0, an integration by part in x3

in problems (13)−(16) gives the following results:

ũ0
+3 = 0 in Ω+,

ũ0
+1 = u0

−1|Σ in Ω+,

ũ0
+2 = u0

−2|Σ in Ω+,

ω̃0
+ = ω0

−|Σ in Ω+.

Calculation of terms of order 1 in Ω+. For k = 1, also an integration by part in
x3 in problems (13)−(16) gives the following results:

ũ1
+3 = u0

−3|Σ in Ω+,

ũ1
+1 = u1

−1|Σ − x3D1u
0
−3|Σ in Ω+,

ũ1
+2 = u1

−2|Σ − x3D2u
0
−3|Σ in Ω+,

ω̃1
+ = ω1

−|Σ in Ω+.

Calculation of terms of order 2 in Ω+. For k = 2, in the same way, we get

ũ2
+3 = u1

−3|Σ −
x3

(2µ+ + λ+)

[
λ+

(
D1u

0
−1|Σ +D2u

0
−2|Σ

)
+ β+ω

0
−|Σ

]
in Ω+,
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ũ2
+1 = u2

−1|Σ + x3

[
4(µ++λ+)
(2µ++λ+)D

2
1u

0
−1|Σ + 2µ++3λ+

(2µ++λ+)D1D2u
0
−2|Σ

+ 2β+

(2µ++λ+)D1ω
0
−|Σ +D2

2u
0
−1|Σ −D1u

1
−3|Σ

]

−x
2
3

2

[
(4µ+ + 2λ+)

(2µ+ + λ+)
D2

1u
0
−1|Σ +D1D2u

0
−2|Σ +D2

2u
0
−1|Σ

]
in Ω+,

ũ2
+2 = u2

−2|Σ + x3

[
4(µ++λ+)
(2µ++λ+)D

2
2u

0
−2|Σ + 2µ++3λ+

(2µ++λ+)D1D2u
0
−1|Σ

+ 2β+

(2µ++λ+)D2ω
0
−|Σ +D2

1u
0
−2|Σ −D2u

1
−3|Σ

]

−x
2
3

2

[
(4µ++3λ+)
(2µ++λ+) D

2
2u

0
−2|Σ + 2µ++2λ+

(2µ++λ+)D1D2u
0
−1|Σ

+ β+

(2µ++λ+)D2ω
0
−|Σ +D2

1u
0
−2|Σ

]
in Ω+,

ω̃2
+ = ω2

−|Σ + x3

 D2
1ω

0
−|Σ +D2

2ω
0
−|Σ −

2µ+β+

α+(2µ++λ+)

(
D1ũ

0
−1|Σ +D2u

0
−2|Σ

)
− ζ+(2µ++λ+)−β3

+

α+(2µ++λ+) ω0
−|Σ


+
x2

3

2

[
2µ+β+

α+(2µ++λ+)

(
D1ũ

0
−1|Σ +D2u

0
−2|Σ

)
+

ζ+(2µ++λ+)−β3
+

α+(2µ++λ+) ω0
−|Σ

−D2
1ω

0
−|Σ −D

2
2ω

0
−|Σ

]
in Ω+,

Calculation of terms of order 3 in Ω+. For k = 3, problem (15) gives the following
relation:

σ−33

(
u1
−|Σ, ω

1
−|Σ

)
= (2µ+ + λ+)D3ũ

3
+3 + λ+

(
D1ũ

1
+1 +D2ũ

1
+2

)
+ β+ω̃

1
+ = 0 on Σ.

Then, the asymptotic expansion of the equations in Ω−, the boundary conditions on
Γ− and the transmission conditions (CTΣ5)− (CTΣ8) on Σ, allow us to obtain the
following results:
Terms of order 0 in Ω−: At order 0, the terms

(
u0
−, ω

0
−
)

satisfy the following
boundary value problem in Ω−:

(P−)0 :


∑3
j=1Djσ−ij

(
u0
−, ω

0
−
)

= −p−i, i = 1, 2, 3 in Ω−,∑3
j=1Djh−j

(
ω0
−
)
− g−

(
u0
−, ω

0
−
)

= −q− in Ω−,

u0
− = ω0

− = 0 on Γ−,(
σ−
(
u0
−, ω

0
−
)
|Σ ν, α−D3ω

0
−|Σ

)
= 0 on Σ.

which means that at order 0, the thin slab Ωδ+ has no effect on Ω−
Terms of order 1 in Ω−: At order 1, the terms

(
u1
−, ω

1
−
)

satisfy the following
boundary value problem in Ω−:

(P−)1 :


∑3
j=1Djσ−ij

(
u1
−, ω

1
−
)

= 0, i = 1, 2, 3 in Ω−,∑3
j=1Djh−j

(
ω1
−
)
− g−

(
u1
−, ω

1
−
)

= 0 in Ω−,

u1
− = ω1

− = 0 on Γ−,(
σ−
(
u1
−, ω

1
−
)
|Σ ν, α−D3ω

1
−|Σ

)
= T∗

(
u0
−|Σ, ω

0
−|Σ

)
on Σ.

which means that at order 1, the effect of the thin slab Ωδ+ on Ω− is represented by
forces and equilibrated forces exerted on Σ.
First order approximation of the impedance. By linearity of the consti-
tutive equations, we find that the function

(
uδ−∗, ω

δ
−∗
)

defined by:
(
uδ−∗, ω

δ
−∗
)

=
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u0
− + δu1

−, ω
0
− + δω1

−
)

satisfies:(
σ−
(
uδ−∗, ω

δ
−∗
)
ν|Σ, α−D3ω

δ
−∗|Σ

)
=

(
σ−
(
u0
−, ω

0
−
)
ν|Σ, α−D3ω

0
−|Σ

)
+δ
(
σ−
(
u1
−, ω

1
−
)
ν|Σ, α−D3ω

1
−|Σ

)
. (17)

Using the boundary conditions on Σ of problems (P−)0 and (P−)1, we get from (17)
the following relation:(

σ−
(
uδ−∗, ω

δ
−∗
)
ν|Σ, α−D3ω

δ
−∗|Σ

)
= δ

(
σ−
(
u1
−, ω

1
−
)
ν|Σ, α−D3ω

1
−|Σ

)
= δT∗

(
u0
−|Σ, ω

0
−|Σ

)
, (18)

and as we have
(
u0
−|Σ, ω

0
−|Σ

)
=
(
uδ−∗|Σ − δu

1
−|Σ, ω

δ
−∗|Σ − δω

1
−|Σ

)
, then the relation

(18) can be written as follows:(
σ−
(
uδ−∗, ω

δ
−∗
)
ν|Σ, α−D3ω

δ
−∗|Σ

)
= δT∗

(
uδ−∗|Σ, ω

δ
−∗|Σ

)
− δ2T∗

(
u1
−|Σ, ω

1
−|Σ

)
,

thus, if we neglect the terms of order 2 with respect to δ, we recuperate the same
approximate impedance that we have obtained by Taylor formula in section 3.

5. Stability for the scaled transmission problem

After scaling, the space for studying the transmission problem
(
P δ
)

in the fixed
domain Ω− ∪ Σ ∪ Ω+ becomes:

Wδ (Ω) =



(v, ϕ) ∈
[
L2 (Ω)

]4
:

(v, ϕ)|Ω−
= (v−, ϕ−) ∈

[
H1 (Ω−)

]4
,

(v, ϕ)|Ω+
= (v+, ϕ+) ∈

[
H1 (Ω+)

]4
,

v− = 01×3 on Γ−, ϕ− = 0 on Γ−,
(v−1, v−2, δv−3) = (v+1, v+2, v+3) on Σ, and ϕ− = ϕ+ on Σ,


and the variational formulation of the scaled transmission problem is written:

Find
(
ũδ, ω̃δ

)
∈ Wδ (Ω) , such that ∀ (v, ϕ) ∈Wδ (Ω) :

Lδ (v, ϕ) = a−
[(
ũδ−, ω̃

δ
−
)
, (v−, ϕ−)

]
+ a+

[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
,

with

a−
[(
ũδ−, ω̃

δ
−
)
, (v−, ϕ−)

]
=

∫
Ω−

[
tr3

(
σ−
(
ũδ−, ω̃

δ
−
)
e− (v−)

)
+ α−∇ω̃δ−.∇ϕ−

+ζ−ω̃
δ
−ϕ− + β−

(
D1ũ

δ
−1 +D2ũ

δ
−2 +D3ũ

δ
−3

)
ϕ−

]
dΩ−,

and

a+
[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
= δa+

+1

[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
+

1

δ
a+
−1

[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
+

1

δ3
a+
−3

[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
,
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where

a+
+1

[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
=

∫
Ω+



(2µ+ + λ+)D1ũ
δ
+1D1v+1

+λ+

(
D2ũ

δ
+2D1v+1 +D1ũ

δ
+1D2v+2

)
+β+

(
ω̃δ+D1v+1 + ω̃δ+D2v+2

)
+µ+

[(
D1ũ

δ
+2 +D2ũ

δ
+1

)]
[D1v+2 +D2v+1] +

+ (2µ+ + λ+)D2ũ
δ
+2D2v+2

+α+D1ω̃
δ
+D1ϕ+ + α+D2ω̃

δ
+D2ϕ+ + ζ+ω̃

δ
+ϕ+

+β+

(
D1ũ

δ
+1 +D2ũ

δ
+2

)
ϕ+


dΩ,

a+
−1

[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
=

∫
Ω+



λ+

[
D3ũ

δ
+3 (D1v+1 +D2v+2)

+
(
D1ũ

δ
+1 +D2ũ

δ
+2

)
D3v+3

]
+β+

[
ω̃δ+D3v+3 +D3ũ

δ
+3ϕ+

]
+µ+

(
D1ũ

δ
+3 +D3ũ

δ
+1

)
(D1v+3 +D3v+1)

+µ+

(
D2ũ

δ
+3 +D3ũ

δ
+2

)
(D2v+3 +D3v+2)

+α+D3ω̃
δ
+D3ϕ+

 dΩ+,

a+
−3

[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
=

∫
Ω+

(2µ+ + λ+)D3ũ
δ
+3D2v+3dΩ+,

and

Lδ (v, ϕ) =

∫
Ω−

(p−.v−dΩ− + q−ϕ−) dΩ−.

Now, in order to estimate the error between the solution of the transmission problem
in Ω− and its approximation of order 1, which will be in section 7, we first set

A (v−, ϕ−) = ‖v−‖[H1(Ω−)]3 + ‖ϕ−‖H1(Ω−) ,

B (v+, ϕ+) =

[ ‖D1v+1‖L2(Ω+) + ‖D2v+2‖L2(Ω+) + ‖D1v+2 +D2v+1‖L2(Ω+)

+ ‖D1ϕ+‖L2(Ω+) + ‖D2ϕ+‖L2(Ω+) + ‖ϕ+‖L2(Ω+)

]
,

C (v+, ϕ+) = ‖D1v+3 +D3v+1‖L2(Ω+) + ‖D2v+3 +D3v+2‖L2(Ω+) + ‖D3ϕ+‖L2(Ω+) ,

D (v+, ϕ+) = ‖D3v+3‖L2(Ω+) ,

for all (v, ϕ) ∈Wδ (Ω). After that, we state and prove the following stability result:
Theorem 5.1. Let Lδ be a continuous linear form on Wδ (Ω) such that

|Lδ (v, ϕ)| ≤ lδ
[
A (v−, ϕ−) +

√
δ B (v+, ϕ+) +

1√
δ
C (v+, ϕ+) +

1

δ
√
δ
D (v+, ϕ+)

]
,

where lδ is any function of δ > 0. Then there exists a constant C > 0 (not depending
on δ) such that the solution

(
ũδ±, ω̃

δ
±
)

of the problem

Find
(
ũδ, ω̃δ

)
∈ Wδ (Ω) , such that ∀ (v, ϕ) ∈Wδ (Ω) :

Lδ (v, ϕ) = a−
[(
ũδ−, ω̃

δ
−
)
, (v−, ϕ−)

]
+ a+

[(
ũδ+, ω̃

δ
+

)
, (v+, ϕ+)

]
, (19)

satisfies the estimates

A
(
ũδ−, ω̃

δ
−
)
≤ Clδ, (20)

B
(
ũδ+, ω̃

δ
+

)
≤ Cδ−

1
2 lδ, (21)

C
(
ũδ+, ω̃

δ
+

)
≤ Cδ

1
2 lδ, (22)

D
(
ũδ+, ω̃

δ
+

)
≤ Cδ

3
2 lδ. (23)
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Proof. Thanks to the Korn’s inequality, the expression A2
(
ũδ−, ω̃

δ
−
)

is equivalent to

a−
[(
ũδ−, ω̃

δ
−
)
,
(
ũδ−, ω̃

δ
−
)]

, and we have

a+
−1

[(
ũδ+, ω̃

δ
+

)
,
(
ũδ+, ω̃

δ
+

)]
=

∫
Ω+

 2λ+D3ũ
δ
+3

(
D1ũ

δ
+1 +D2ũ

δ
+2

)
+ 2β+ω̃

δ
+D3ũ

δ
+3

+µ+

[
D1ũ

δ
+3 +D3ũ

δ
+1

]2
+ µ+

[
D2ũ

δ
+3 +D3ũ

δ
+2

]2
+α+

(
D3ω̃

δ
+

)2
 dΩ+,

and from the expressions of B, C and D, we get

a+
−1

[(
ũδ+, ω̃

δ
+

)
,
(
ũδ+, ω̃

δ
+

)]
≤ (2λ+ + 2β+)B

(
ũδ+, ω̃

δ
+

)
D
(
ũδ+, ω̃

δ
+

)
+(2µ+ + α+)C2

(
ũδ+, ω̃

δ
+

)
.

As we have

(2λ+ + 2β+)
1

δ
(B.D)

(
ũδ+, ω̃

δ
+

)
≤ (λ+ + β+)

(
δB2

(
ũδ+, ω̃

δ
+

)
+

1

δ3
D2
(
ũδ+, ω̃

δ
+

))
,

then by taking
(
ṽδ, ϕ̃δ

)
=
(
ũδ, ω̃δ

)
in the variational formulation (19), we get the

following estimate:(
A2
(
ũδ−, ω̃

δ
−
)

+ δ B2
(
ũδ+, ω̃

δ
+

)
+ 1
δC

2
(
ũδ+, ω̃

δ
+

)
+ 1

δ3D
2
(
ũδ+, ω̃

δ
+

) ) ≤ Clδ ( A
(
ũδ−, ω̃

δ
−
)

+
√
δ B

(
ũδ+, ω̃

δ
+

)
+ 1√

δ
C
(
ũδ+, ω̃

δ
+

)
+ 1

δ
√
δ
D
(
ũδ+, ω̃

δ
+

) ) ,
where C > 0 is a positive constant independent of δ. This leads to the estimates
(20)-(23). �

6. Well-posedness of the approximate impedance problem

6.1. Existence and uniqueness of the solution to the impedance problem.
We consider the space:

W∗ (Ω−) =


(v−, ϕ−) ∈

[
H1 (Ω−)

]4
:

(D1v−1, D1v−2, D1ϕ−) ∈
[
L2 (Σ)

]3
,

(D2v−1, D2v−2, D2ϕ−) ∈
[
L2 (Σ)

]3
,

v− = 01×3 on Γ−, ϕ− = 0 on Γ−.

 ,

endowed with the norm

‖(v−, ϕ−)‖W∗(Ω−) =
[
‖(v−, ϕ−)‖2[H1(Ω−)]4 +

∥∥(v−1|Σ, v−2|Σ, ϕ−|Σ
)∥∥2

[H1(Σ)]3

]1/2
,

with

‖(v−, ϕ−)‖2[H1(Ω−)]4 = ‖ϕ−‖2H1(Ω−) +

3∑
i=1

‖v−i‖2H1(Ω−) ,

and ∥∥(v−1|Σ, v−2|Σ, ϕ−|Σ
)∥∥2

[H1(Σ)]3
=
∥∥ϕ−|Σ∥∥2

H1(Σ)
+

2∑
i=1

∥∥v−i|Σ∥∥2

H1(Σ)
.

For all
(
uδ−∗, ω

δ
−∗
)

and (v−, ϕ−) in W∗ (Ω−), we set

a−
[(
uδ−∗, ω

δ
−∗

)
, (v−, ϕ−)

]
=

∫
Ω−

[
tr3

(
σ−
(
uδ−∗, ω

δ
−∗
)
e− (v−)

)
+ α−∇ωδ−∗.∇ϕ−

+ζ−ω
δ
−∗ϕ− + β−

(
D1u

δ
−∗1 +D2u

δ
−∗2 +D3u

δ
−∗3

)
ϕ−

]
dΩ−,
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aΣ

[(
uδ−∗, ω

δ
−∗

)
, (v−, ϕ−)

]

=

∫
Σ



4µ+(µ++λ+)
(λ++2µ+)

D1u
δ
−∗1D1v−1 + µ+D2u

δ
−∗1D2v−1 +

2µ+λ+

2µ++λ+
D2u

δ
−∗2D1v−1

+µ+D1u
δ
−∗1D2v−2 +

2µ+β+
2µ++λ+

ωδ−∗D1v−1 +
2µ+β+

2µ++λ+
ωδ−∗D2v−2

+
4µ+(µ++λ+)
(λ++2µ+)

D2u
δ
−∗2D2v−2 + µ+D1u

δ
−∗2D1v−2 +

2µ+λ+

2µ++λ+
D1u

δ
−∗1D2v−2

+µ+D1u
δ
−∗1D2v−2 + α+D1ω

δ
−∗D1ϕ− + α+D2ω

δ
−∗D2ϕ−

− 2µ+β+
2µ++λ+

(
D1u

δ
−∗1 +D2u

δ
−∗2

)
ϕ− +

ζ+(2µ++λ+)−β2
+

2µ++λ+
ωδ−∗ϕ−


dΣ,

and we state and prove the following theorem:

Theorem 6.1. For given (p−, q−) in
[
L2 (Ω−)

]4
, there exists a unique solution(

uδ−∗, ω
δ
−∗
)

in W∗ (Ω−) to the impedance problem
(
P δ−∗

)
. Its weak formulation is

given by

a−δ
[(
uδ−∗, ω

δ
−∗
)
, (v−, ϕ−)

]
= L (v−, ϕ−) , ∀ (v−, ϕ−) ∈W∗ (Ω−)

with

a−δ
[(
uδ−∗, ω

δ
−∗
)
, (v−, ϕ−)

]
= a−

[(
uδ−∗, ω

δ
−∗
)
, (v−, ϕ−)

]
+δaΣ

[(
uδ−∗, ω

δ
−∗
)
, (v−, ϕ−)

]
,

and

L (v−, ϕ−) =

∫
Ω−

(p−.v− + q−ϕ−) dΩ−.

Proof. It is clear that L is continuous on W∗ (Ω−). For the continuity of a−δ , as in
the proof of Theorem 2.1, we have∣∣a− [(uδ−∗, ωδ−∗) , (v−, ϕ−)

]∣∣ ≤ C1

∥∥(uδ−∗, ωδ−∗)∥∥W∗(Ω−)
‖(v−, ϕ−)‖W∗(Ω−) ,

where C1 is a positive constant independent of δ, and by using the cauchy-Schawarz
inequality and the definition of the space W∗ (Ω−) , we get∣∣aΣ

[(
uδ−∗, ω

δ
−∗
)
, (v−, ϕ−)

]∣∣ ≤ C2

∥∥(uδ−∗, ωδ−∗)∥∥W∗(Ω−)
‖(v−, ϕ−)‖W∗(Ω−) ,

where C2 is a positive constant independent of δ, and then∣∣∣a−δ [(uδ−∗, ω
δ
−∗

)
, (v−, ϕ−)

]∣∣∣ ≤ ∣∣∣a− [(uδ−∗, ω
δ
−∗

)
, (v−, ϕ−)

]∣∣∣+ δ
∣∣∣aΣ

[(
uδ−∗, ω

δ
−∗

)
, (v−, ϕ−)

]∣∣∣
≤ C1

∥∥∥(uδ−∗, ω
δ
−∗

)∥∥∥
W∗(Ω−)

‖(v−, ϕ−)‖W∗(Ω−)

+ C2δ
∥∥∥(uδ−∗, ω

δ
−∗

)∥∥∥
W∗(Ω−)

‖(v−, ϕ−)‖W∗(Ω−) ,

as δ << 1, then for all
(
uδ−∗, ω

δ
−∗
)
, (v−, ϕ−) in W∗ (Ω−), we get∣∣a−δ [(uδ−∗, ωδ−∗) , (v−, ϕ−)

]∣∣ ≤ C ∥∥(uδ−∗, ωδ−∗)∥∥W∗(Ω−)
‖(v−, ϕ−)‖W∗(Ω−) .

with C = C1 +C2, which prove the continuity of a−δ on [W∗ (Ω−)]
2
. For the coercivity

of a−δ , as in the proof of Theorem 2.1, for all
(
uδ−∗, ω

δ
−∗
)

in W∗ (Ω−), we have

a−
[(
uδ−∗, ω

δ
−∗
)
,
(
uδ−∗, ω

δ
−∗
)]
≥ C1

∥∥(uδ−∗, ωδ−∗)∥∥2

[H1(Ω−)]4
,

with C1 is a positive constant independent of δ, and since we have

2D2u
δ
−∗2D1u

δ
−∗1 ≥ −

(
D2u

δ
−∗2
)2 − (D1u

δ
−∗1
)2
,
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then for all
(
uδ−∗, ω

δ
−∗
)

in W∗ (Ω−), we get

aΣ

[(
uδ−∗, ω

δ
−∗
)
,
(
uδ−∗, ω

δ
−∗
)]

=

∫
Σ


4µ−(µ−+λ−)

(λ−+2µ−)

(
D1u

δ
−∗1
)2

+ 4µ−(µ−+λ−)
(λ−+2µ−)

(
D2u

δ
−∗2
)2

+ 2µ−(2µ−+3λ−)
2µ−+λ−

D2u
δ
−∗2D1u

δ
−∗1 + µ−

(
D1u

δ
−∗2
)2

+ µ−
(
D2u

δ
−∗1
)2

+α−
(
D1ω

δ
−∗
)2

+ α−
(
D2ω

δ
−∗
)2

+
ζ−(2µ−+λ−)−β2

−
2µ−+λ−

(
ωδ−∗

)2
 dΣ

≥
∫

Σ

[
µ−
(
D1u

δ
−∗1
)2

+ µ−
(
D2u

δ
−∗2
)2

+ µ−
(
D1u

δ
−∗2
)2

+ µ−
(
D2u

δ
−∗1
)2

+α−
(
D1ω

δ
−∗
)2

+ α−
(
D2ω

δ
−∗
)2

+
ζ−(2µ−+λ−)−β2

−
2µ−+λ−

(
ωδ−∗

)2
]
dΣ

≥ C2

∥∥∥(uδ−∗1|Σ, uδ−∗2|Σ, ωδ−∗|Σ)∥∥∥2

[H1(Σ)]3
,

with C2 = min
(
µ−, α−,

ζ−(2µ−+λ−)−β2
−

2µ−+λ−

)
is a positive constant independent of δ, and

then for all
(
uδ−∗, ω

δ
−∗
)

in W∗ (Ω−), we get

a−δ
[(
uδ−∗, ω

δ
−∗
)
,
(
uδ−∗, ω

δ
−∗
)]

= a−
[(
uδ−∗, ω

δ
−∗
)
,
(
uδ−∗, ω

δ
−∗
)]

+ δaΣ

[(
uδ−∗, ω

δ
−∗
)
,
(
uδ−∗, ω

δ
−∗
)]

≥ C1

∥∥(uδ−∗, ωδ−∗)∥∥2

[H1(Ω−)]4
+ δC2

∥∥∥(uδ−∗1|Σ, uδ−∗2|Σ, ωδ−∗|Σ)∥∥∥2

[H1(Σ)]3

≥ Cδ
∥∥(uδ−∗, ωδ−∗)∥∥2

W∗(Ω−)
,

where C = min (C1, C2δ) is a positive constant not depending on δ, which prove the
coercivity of a−δ . Therefore by Lax-Milgram theorem, the impedance problem (P δ−∗)
has a unique solution in W∗ (Ω−). �

6.2. Stability for the impedance problem. In order to estimate the error be-
tween the solution of the approximate impedance and its approximation of order 1,
which will be in section 7, we first set

A (v−, ϕ−) = ‖(v−, ϕ−)‖[H1(Ω−)]4 ,

B (v−, ϕ−) =

[
‖D1v−1‖L2(Σ) + ‖D2v−1‖L2(Σ) + ‖D1v−2‖L2(Σ) +

‖D2v−2‖L2(Σ) + ‖D1ϕ−‖L2(Σ) + ‖D2ϕ−‖L2(Σ) + ‖ϕ−‖L2(Σ)

]
.

for all (v−, ϕ−) ∈ W∗ (Ω−). After that, we state and prove the following stability
result.
Theorem 6.2. Let Lδ be a given linear form on W∗ (Ω−) satisfying the following
bound in δ:

|Lδ (v−, ϕ−)| ≤ mδ

(
A (v−, ϕ−) +

√
δ B (v−, ϕ−)

)
, for all (v−, ϕ−) ∈W∗ (Ω−) ,

where mδ is any function of δ > 0. Then there exists C > 0 (not depending on δ)
such that the solution

(
uδ−∗, ω

δ
−∗
)

of the problem{
Find

(
uδ−∗, ω

δ
−∗
)
∈W∗ (Ω−) , such that for all (v−, ϕ−) ∈W∗ (Ω−) :

a−
[(
uδ−∗, ω

δ
−∗
)
, (v−, ϕ−)

]
+ δaΣ

[(
uδ−∗, ω

δ
−∗
)
, (v−, ϕ−)

]
= Lδ (v−, ϕ−) ,

(24)
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satisfies the following estimates

A
(
uδ−∗, ω

δ
−∗
)
≤ Cmδ, (25)

B
(
uδ−∗, ω

δ
−∗
)
≤ C δ−1/2mδ. (26)

Proof. Thanks to Korn’s inequality (see [7], [23]), the expression A2
(
uδ−∗, ω

δ
−∗
)

is

equivalent to a−
[(
uδ−∗, ω

δ
−∗
)
,
(
uδ−∗, ω

δ
−∗
)]

, and we have

aΣ

((
uδ−∗, ω

δ
−∗
)
,
(
uδ−∗, ω

δ
−∗
))
≥ C B2

(
uδ−∗, ω

δ
−∗
)
,

where C > 0 is a positive constant not depending on δ. Then by taking (v−, ϕ−) =(
uδ−∗, ω

δ
−∗
)

in the variational formulation (24), we get the estimate:

A2
(
uδ−∗, ω

δ
−∗
)

+ δ B2
(
uδ−∗, ω

δ
−∗
)
≤ Kmδ

(
A
(
uδ−∗, ω

δ
−∗
)

+
√
δ B

(
uδ−∗, ω

δ
−∗
))
,

where K > 0 is a positive constant not depending on δ. This gives directly the
estimates (25) and (26).

6.3. Asymptotic expansion for the approximate impedance problem. By
setting

uδ−∗ = u0
−∗ + δu1

−∗ + δ2u2
−∗ + ...

ωδ−∗ = ω0
−∗ + δω1

−∗ + δ2ω2
−∗ + ...

and inserting these expansions in the approximate impedance problem
(
P δ−∗

)
, we get

a hierarchy of equations and boundary conditions. At order 0, we get

(P−∗)0 :


∑3
j=1Djσ−ij

(
u0
−∗, ω

0
−∗
)

= −p−i, i = 1, 2, 3 in Ω−,∑3
j=1Djh−j

(
ω0
−∗
)
− g−

(
u0
−∗, ω

0
−∗
)

= −q− in Ω−,

u0
−∗ = 01×3 on Γ−, ω

0
−∗ = 0 on Γ−,(

σ−
(
u0
−∗, ω

0
−∗
)
|Σ ν, α−D3ω

0
−∗|Σ

)
= 01×4 on Σ.

At order 1, we get

(P−∗)1 :


∑3
j=1Djσ−ij

(
u1
−∗, ω

1
−∗
)

= 0, i = 1, 2, 3 in Ω−,∑3
j=1Djh−j

(
ω1
−∗
)
− g−

(
u1
−∗, ω

1
−∗
)

= 0 in Ω−,

u1
−∗ = 01×3 on Γ−, ω

1
−∗ = 0 on Γ−,(

σ−
(
u1
−∗, ω

1
−∗
)
|Σ ν, α−D3ω

1
−∗|Σ

)
= T∗

(
u0
−∗|Σ, ω

0
−∗|Σ

)
on Σ,

Remark 6.1. The terms
(
u0
−∗, ω

0
−∗
)

and
(
u0
−, ω

0
−
)

(respectively
(
u1
−∗, ω

1
−∗
)

and(
u1
−, ω

1
−
)
) of the expansion of

(
uδ−∗, ω

δ
−∗
)

and
(
uδ−, ω

δ
−
)

are solutions of the same
boundary value problem at order 0 (respectively at order 1). Then by uniqueness, we
have (

u0
−∗, ω

0
−∗
)

=
(
u0
−, ω

0
−
)

and
(
u1
−∗, ω

1
−∗
)

=
(
u1
−, ω

1
−
)
.

7. Error estimates and optimality



456 A. ABDALLAOUI, A. KELLECHE, AND A. BERKANI

7.1. Error estimate for the transmission problem. By setting

u
(δ,1)
− = u0

− + δu1
−, u

(δ,1)
+ = ũ0

+ + δũ1
+ + δ2

(
0, 0, ũ2

+3

)
,

ω
(δ,1)
− = ω0

− + δω1
−, ω

(δ,1)
+ = ω̃0

+ + δω̃1
+,

and making use of the problems (P−)0 and (P−)1 satisfied by
(
u0
−, ω

0
−
)

and
(
u1
−, ω

1
−
)

and also the problems (13)−(15) for k ∈ {0, 1, 2, 3}, we get

Lδ (v, ϕ) = a+
−3

[(
ũ3

+, ω̃
3
+

)
, (v+, ϕ+)

]
+ δ

∫
Ω+

µ+D3ũ
2
+1D3v+1dΩ+

+ δ

∫
Ω+

µ+D3ũ
2
+2D3v+2dΩ+ + δ

∫
Ω+

α+D3ω̃
2
+D3ϕ+dΩ+

− δ
∫

Ω+

[
µ+D1ũ

2
+3D1v+3 + µ+D2ũ

2
+3D2v+3

]
dΩ+ − δ2a+

+1

[(
ũ1

+, ω̃
1
+

)
, (v+, ϕ+)

]
where

Lδ (v, ϕ) = a−
[(
ũδ− − u

(δ,1)
− , ω̃δ− − ω

(δ,1)
−

)
, (v−, ϕ−)

]
+ a+

[(
ũδ+ − u

(δ,1)
+ , ω̃δ+ − ω

(δ,1)
+

)
, (v+, ϕ+)

]
,

and thus

|Lδ (v, ϕ)| ≤ Cδ3/2
[
A (v−, ϕ−) +

√
δ B (v+, ϕ+) + 1√

δ
C (v+, ϕ+) + 1

δ
√
δ
D (v+, ϕ+)

]
,

which implies, by the stability result (see Theorem 5.1), the following error estimate:∥∥∥uδ− − u(δ,1)
−

∥∥∥
[H1(Ω−)]3

+
∥∥∥ωδ− − ω(δ,1)

−

∥∥∥
H1(Ω−)

≤ Cδ3/2, (27)

where C is a positive constant independent of δ.
Remark 7.1. We have taken

u
(δ,1)
+3 = ũ0

+3 + δũ1
+3 + δ2ũ2

+3,

in order to satisfy the transmission condition

u
(δ,1)
+3 = δu

(δ,1)
−3 on Σ,

and, consequently, we have
(
u

(δ,1)
± , ω

(δ,1)
±

)
in the space Wδ (Ω) .

Remark 7.2. If p− and q− are smooth we can obtain all the terms of the asymptotic
expansion

(
uk−, ω

k
−
)

for k ≥ 2, and prove an analogous error estimate. For instance
we can prove ∥∥∥uδ− − u(δ,2)

−

∥∥∥
[H1(Ω−)]3

+
∥∥∥ωδ− − ω(δ,2)

−

∥∥∥
H1(Ω−)

≤ Cδ5/2, (28)

where

u
(δ,2)
− = u0

− + δu1
− + δ2u2

− and ω
(δ,2)
− = ω0

− + δω1
− + δ2ω2

−.
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7.2. Error estimate for the impedance problem. By setting

u
(δ,1)
−∗ = u0

−∗ + δu1
−∗,

ω
(δ,1)
−∗ = ω0

−∗ + δω1
−∗,

and

a−
[(
uδ−∗ − u

(δ,1)
−∗ , ω−∗ − ω(δ,1)

−∗

)
, (v−, ϕ−)

]
+ δaΣ

[(
uδ−∗ − u

(δ,1)
−∗ , ω−∗ − ω(δ,1)

−∗

)
, (v−, ϕ−)

]
= Lδ (v−, ϕ−) ,

and making use of the problems (P−∗)0 and (P−∗)1 satisfied by (u0
−∗, ω

0
−∗) and

(u1
−∗, ω

1
−∗), we get

Lδ (v−, ϕ−) = −δ2aΣ

[(
u1
−∗, ω

1
−∗
)
, (v−, ϕ−)

]
and thus

|Lδ (v−, ϕ−)| ≤ Cδ3/2
[
A (v−, ϕ−) +

√
δ B (v−, ϕ−)

]
,

which implies, by the stability result (see Theorem 6.2), the following error estimate:∥∥∥uδ−∗ − u(δ,1)
−∗

∥∥∥
[H1(Ω−)]3

+
∥∥∥ωδ−∗ − ω(δ,1)

−∗

∥∥∥
H1(Ω−)

≤ Cδ3/2, (29)

where C is a positive constant independent of δ.
Remark 7.3. If p− and q− are smooth we can obtain all the terms of the asymptotic
expansion

(
uk−∗, ω

k
−∗
)

for k ≥ 2, and prove an analogous error estimate. For instance
we can prove ∥∥∥uδ−∗ − u(δ,2)

−∗

∥∥∥
[H1(Ω−)]3

+
∥∥∥ωδ−∗ − ω(δ,2)

−∗

∥∥∥
H1(Ω−)

≤ Cδ5/2, (30)

where

u
(δ,2)
−∗ = u0

−∗ + δu1
−∗ + δ2u2

−∗ and ω
(δ,2)
−∗ = ω0

−∗ + δω1
−∗ + δ2ω2

−∗.

7.3. Final error estimate and optimality. This subsection is devoted to the error
estimate between the solution of the transmission problem in Ω−, and the solution
of the approximate impedance problem. As we have (

(
u0
−∗, ω

0
−∗
)

=
(
u0
−, ω

0
−
)

and(
u1
−∗, ω

1
−∗
)

=
(
u1
−, ω

1
−
)

(see Remark 6.1) then by triangular inequality, we can write∥∥ũδ− − uδ−∗∥∥[H1(Ω−)]3
+
∥∥ω̃δ− − ωδ−∗∥∥H1(Ω−)

≤
∥∥ũδ− − u0

− − δu1
−
∥∥

[H1(Ω−)]3
+
∥∥uδ−∗ − u0

−∗ − δu1
−∗
∥∥

[H1(Ω−)]3

+
∥∥ω̃δ− − ω0

− − δω1
−
∥∥
H1(Ω−)

+
∥∥ωδ−∗ − ω0

−∗ − δω1
−∗
∥∥
H1(Ω−)

,

and in virtue of (29) and (27), we find∥∥ũδ− − uδ−∗∥∥[H1(Ω−)]3
+
∥∥ω̃δ− − ωδ−∗∥∥H1(Ω−)

≤ Cδ3/2,

where the constant C depends only on p−, q− and the elasticity coefficients. Indeed,
if the data p− and q− are smooth enough such that we can determinate

(
u2
−, ω

2
−
)

and
(
u2
−∗, ω

2
−∗
)
, then by (28) the last error estimate which is not optimal may be

ameliorated as follows:∥∥ũδ− − u0
− − δu1

−
∥∥

[H1(Ω−)]3
≤
∥∥ũδ− − u0

− − δu1
− − δ2u2

−
∥∥

[H1(Ω−)]3
+ δ2

∥∥u2
−
∥∥

[H1(Ω−)]3

≤ C1δ
5/2 + C2δ

2 ≤ Cδ2,
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and∥∥ω̃δ− − ω0
− − δω1

−
∥∥
H1(Ω−)

≤
∥∥ω̃δ− − ω0

− − δω1
− − δ2ω2

−
∥∥
H1(Ω−)

+ δ2
∥∥ω2
−
∥∥
H1(Ω−)

≤ C1δ
5/2 + C2δ

2 ≤ Cδ2.

Using (30), similar estimates for
(
uδ−∗ − u0

−∗ − δu1
−∗, ω

δ
−∗ − ω0

−∗ − δω1
−∗
)

can be proved
in the same manner as outlined above.
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