# On Integer Sequences Associated with Admissible Prime *k*-tuples

IGORIS BELOVAS AND MARTYNAS SABALIAUSKAS

ABSTRACT. It is conjectured that every admissible k-tuple matches infinitely many positions in the sequence of prime numbers. The investigations of this hypothesis have led to many important results; however, the problem remains unsolved. In this work, the problem is studied from the experimental mathematics side. Integer sequences associated with the distribution of admissible prime k-tuples in the intervals  $(s^n; s^{n+1}]$  are studied experimentally, using the probabilistic Miller-Rabin primality test and parallel computing technologies. The obtained result gives us one more argument in favor of the infinitude of admissible prime k-tuples conjecture.

2020 Mathematics Subject Classification. Primary 11A41; Secondary 11N05, 11Y55. Key words and phrases. prime k-tuples, integer sequences, Hardy-Littlewood conjecture.

## 1. Introduction

One of the most famous unsolved tasks in mathematics (after the Riemann hypothesis and already proved Fermat theorem) is the problem of the twin primes (pairs of prime numbers with a difference of two). The conjecture states that there are infinitely many twin primes. The paradoxical contrast between the elementary formulation and the deep underlying content, resisting the efforts of mathematicians for decades, is striking. This old problem remains relevant nowadays. Its (or its generalizations) analytical (see [1, 2, 3]) or numerical (cf. [4, 5]) studies appear annually.

The Polignac conjecture (stating that there are infinitely many primes with difference n) and the Hardy-Littlewood conjecture on admissible prime k-tuples generalize the twin primes conjecture. If  $p + h_j \in \mathbb{P}$ ,  $0 \leq j \leq k$ , then the sequence  $H = \{p + h_j\}$  is a prime k-tuple and #H = k + 1. Next, if the sequence H does not form a complete residue class with respect to any prime, i.e.,  $\#\{H \mod p\} < p$ , for all  $p \in \mathbb{P}$ , then the prime k-tuple is called admissible. Note that  $\#\{H \mod p\}$  equals the number of distinct residues of  $0, h_1, ..., h_k \pmod{p}$ .

Let  $\operatorname{Li}(m, x)$  denote *m*-th offset logarithmic integral, m > 0,

$$\operatorname{Li}(m,x) = \int_{2}^{x} \frac{dt}{(\log t)^{m}} = \frac{x}{(\log x)^{m}} - \frac{2}{(\log 2)^{m}} + m\operatorname{Li}(m+1,x)$$
$$= \sum_{j=0}^{r} \frac{m^{(j)}x}{(\log x)^{m+j}} + O\left(\frac{x}{(\log x)^{m+r+1}}\right), \qquad r \in \mathbb{N}_{0}.$$
(1)

Received June 30, 2024. Accepted March 20, 2025.

Here  $m^{(j)}$  stands for the rising factorial,  $m^{(j)} = \Gamma(m+j)/\Gamma(m)$ . Hardy and Littlewood [6] considered the asymptotic density of prime constellations. In its most optimistic form of the error term, the conjecture is formulated as follows (cf. [2, 5]).

**Proposition 1.1.** (Hardy and Littlewood). Let  $\pi_H(x)$  be the admissible prime k-tuple counting function, then

$$\pi_H(x) = \#\{p \le x \mid p + h_j \in \mathbb{P}; \ j \in [1,k]\} = C_H \mathrm{Li}(k+1,x) + O(x^{1/2+\varepsilon}), \quad (2)$$

where  $\varepsilon$  is a small positive quantity and  $C_H$  is the prime k-tuple constant,

$$C_H = 2^k \prod_{p \ge 3} \left( 1 - \frac{\#\{H \mod p\}}{p} \right) \left( 1 - \frac{1}{p} \right)^{-(k+1)}.$$
 (3)

**Remark 1.1.** Calculating the constant  $C_H$  by the formula (3), we get, e.g.,

$$C_{(0,2,6)} = C_{(0,4,6)} = \frac{9}{2} \prod_{p \ge 5} \frac{p^2(p-3)}{(p-1)^3} \approx 2.858248596,$$

$$C_{(0,4,6,10)} = 2C_{(0,2,6,8)} = 27 \prod_{p \ge 5} \frac{p^3(p-4)}{(p-1)^4} \approx 8.302361726,$$

$$C_{(0,4,6,10,12)} = C_{(0,2,6,8,12)} = \frac{50625}{2048} \prod_{p \ge 7} \frac{p^4(p-5)}{(p-1)^5} \approx 10.131794949,$$

$$C_{(0,4,6,10,12,16)} = \frac{759375}{8192} \prod_{p \ge 7} \frac{p^5(p-6)}{(p-1)^6} \approx 17.298612309.$$

All limits in the paper, unless specified, are taken as  $x \to \infty$  or  $n \to \infty$ .

### 2. Sequences, associated with admissible prime k-tuples

Let us consider integer sequences  $\{a_{n,H}\}$ , associated with admissible prime k-tuples,

$$a_{n,H} = \#\{s^n (4)$$

It is possible to formulate a result about the ratio of the adjacent elements of the sequence  $\{a_{n,H}\}$ .

**Proposition 2.1.** Let  $\theta_s = 1/\log s$ . Then under Proposition 1.1 we have

$$\rho_n := \frac{a_{n+1,H}}{a_{n,H}} = \underbrace{s - s(k+1) \sum_{j=0}^3 \frac{\omega_j}{n^{j+1}}}_{:=\hat{\rho}_n} + O\left(\frac{1}{n^5}\right).$$
(5)

Here

$$\begin{aligned} \omega_0 &= 1, \qquad \omega_1 = \theta_s - 2 - \frac{k}{2} - \frac{1}{s-1}, \\ \omega_2 &= (\theta_s^2 - \theta_s)k + (3\theta_s^2 - 4\theta_s) + \frac{(k+8)(k+3)}{6} - \frac{k+1}{(s-1)^2} + \frac{2-2\theta_s}{s-1}, \\ \omega_3 &= \left(\theta_s^3 - \theta_s^2 + \frac{1}{2}\theta_s\right)k^2 + \left(8\theta_s^3 - 9\theta_s^2 + \frac{11}{2}\theta_s\right)k \\ &+ \left(13\theta_s^3 - 17\theta_s^2 + 12\theta_s\right) - \frac{(k+6)(k^2 + 15k + 32)}{24} - \frac{(k+1)^2}{(s-1)^3} \\ &- \frac{k^2/2 + (3\theta_s - 3/2)k - 6\theta_s + 7}{(s-1)^2} - \frac{(3\theta_s^2 + 1/2)k + 9\theta_s^2 - 6\theta_s + 4}{s-1}. \end{aligned}$$
(6)

*Proof.* Using formulas (2) and (1) we obtain

$$\pi_H(x) = C_H x \left( \sum_{j=0}^r (k+1)^{(j)} (\log x)^{-k-j-1} + O\left( (\log x)^{-k-r-2} \right) \right).$$

Let us consider the ratio

$$\begin{split} r_n &= \frac{\pi_H(s^{n+1})}{\pi_H(s^n)} = s \frac{\sum_{j=0}^r (k+1)^{(j)} (n+1)^{-k-j-1} \theta_s^{k+j+1} + O(n^{-k-r-2})}{\sum_{j=0}^r (k+1)^{(j)} n^{-k-j-1} \theta_s^{k+j+1} + O(n^{-k-r-2})} \\ &= s \frac{\sum_{j=0}^r (k+1)^{(j)} \theta_s^j n^{-j} (1+n^{-1})^{-k-j-1} + O(n^{-r-1})}{\sum_{j=0}^r (k+1)^{(j)} \theta_s^j n^{-j} + O(n^{-r-1})} \\ &= s \left( \sum_{j=0}^r (k+1)^{(j)} \theta_s^j \sum_{q=0}^{r-j} \binom{-k-j-1}{q} \frac{1}{n^{q+j}} + O\left(\frac{1}{n^{r+1}}\right) \right) \\ &\times \left( 1 + \sum_{q=1}^r (-1)^q \left( \sum_{j=1}^r \frac{(k+1)^{(j)} \theta_s^j}{n^j} \right)^q + O\left(\frac{1}{n^{r+1}}\right) \right) \\ &= s \left( \sum_{i=0}^r \frac{\alpha_i}{n^i} + O\left(\frac{1}{n^{r+1}}\right) \right) \left( \sum_{i=0}^r \frac{\beta_i}{n^i} + O\left(\frac{1}{n^{r+1}}\right) \right), \end{split}$$

where

$$\alpha_{i} = (k+1)^{(i)} \theta_{s}^{i} \underbrace{\sum_{j=0}^{i} \frac{(-1)^{j}}{j!}}_{:=\exp_{i}(-1/\theta_{s})} \theta_{s}^{-j},$$

$$\beta_{i} = \theta_{s}^{i} \sum_{q=0}^{r} (-1)^{q} \underbrace{\sum_{\substack{k_{1}+\ldots+k_{r}=q\\k_{1}+\ldots+rk_{r}=i}}}_{k_{1}+\ldots+rk_{r}=i} \binom{i}{k_{1},\ldots,k_{r}} \prod_{j=1}^{r} \left( (k+1)^{(j)} \right)^{k_{j}}.$$
(7)

Thus

$$r_{n} = s \sum_{j=0}^{r} \frac{\gamma_{j}}{n^{j}} + O\left(\frac{1}{n^{r+1}}\right),$$
  

$$\gamma_{j} = \sum_{q=0}^{j} \alpha_{q} \beta_{j-q} = \theta_{s}^{j} \sum_{q=0}^{j} (k+1)^{(q)} \exp_{q}\left(-\frac{1}{\theta_{s}}\right)$$
  

$$\times \sum_{i=0}^{r} (-1)^{i} \sum_{\substack{k_{1}+\ldots+k_{r}=i\\k_{1}+\ldots+rk_{r}=j-q}} {i \choose k_{1},\ldots,k_{r}} \prod_{t=1}^{r} \left((k+1)^{(t)}\right)^{k_{t}}.$$
(8)

We have

$$\begin{split} r_n &= s - s \frac{k+1}{n} + s \frac{k+1}{n^2} \left( 1 - \theta_s + \frac{k}{2} \right) \\ &+ s \frac{k+1}{n^3} \left( (\theta_s - \theta_s^2)k + (2\theta_s - 3\theta_s^2) - \frac{(k+2)(k+3)}{6} \right) \\ &+ s \frac{k+1}{n^4} \left( \left( \theta_s^2 - \theta_s^3 - \frac{1}{2}\theta_s \right) k^2 + \left( 6\theta_s^2 - 8\theta_s^3 - \frac{5}{2}\theta_s \right) k \\ &+ \left( 8\theta_s^2 - 13\theta_s^3 - 3\theta_s \right) + \frac{(k+2)(k+3)(k+4)}{24} \right) + O\left( \frac{1}{n^5} \right) \\ &= s - \frac{s(k+1)}{n} \left( \eta_0 + \frac{\eta_1}{n} + \frac{\eta_2}{n^2} + \frac{\eta_3}{n^3} + O\left( \frac{1}{n^4} \right) \right). \end{split}$$

Here

$$\begin{split} \eta_0 &= 1, \qquad \eta_1 = \theta_s - 1 - \frac{k}{2}, \\ \eta_2 &= (\theta_s^2 - \theta_s)k + (3\theta_s^2 - 2\theta_s) + \frac{(k+2)(k+3)}{6}, \\ \eta_3 &= \left(\theta_s^3 - \theta_s^2 + \frac{1}{2}\theta_s\right)k^2 + \left(8\theta_s^3 - 6\theta_s^2 + \frac{5}{2}\theta_s\right)k \\ &+ \left(13\theta_s^3 - 8\theta_s^2 + 3\theta_s\right) - \frac{(k+2)(k+3)(k+4)}{24}. \end{split}$$

Returning to the ratio of adjacent elements of the sequence  $\{a_{n,H}\}$ , we receive that

$$\rho_n = \frac{a_{n+1,H}}{a_{n,H}} = \frac{\pi_H(s^{n+2}) - \pi_H(s^{n+1})}{\pi_H(s^{n+1}) - \pi_H(s^n)} = \frac{r_{n+1} - 1}{1 - r_n^{-1}}$$
$$= \left( (s^2 - s) - \sum_{j=0}^3 \frac{s^2(k+1)}{(n+1)^{j+1}} \eta_j + O\left(\frac{1}{n^5}\right) \right)$$
$$\times \left( s - \left( 1 - \sum_{j=0}^3 \frac{k+1}{n^{j+1}} \eta_j + O\left(\frac{1}{n^5}\right) \right)^{-1} \right)^{-1}.$$

248

Thus,

$$\begin{split} \rho_n &= s \left( 1 - \frac{s(k+1)}{s-1} \sum_{j=0}^3 \frac{\eta_j}{n^{j+1}} \left( 1 + \frac{1}{n} \right)^{-j-1} + O\left(\frac{1}{n^5}\right) \right) \\ &\times \left( 1 - \frac{k+1}{n(s-1)} \sum_{j=0}^3 \frac{\eta_j}{n^j} - \frac{(k+1)^2}{n^2(s-1)} \left( 1 + \frac{2\eta_1}{n} + \frac{\eta_1^2 + 2\eta_2}{n^2} \right) \right. \\ &- \frac{(k+1)^3}{n^3(s-1)} \left( 1 + \frac{3\eta_1}{n} \right) - \frac{(k+1)^4}{n^4(s-1)} + O\left(\frac{1}{n^5}\right) \right)^{-1} \\ &= s \left( 1 - \frac{s(k+1)}{s-1} \left( \frac{1}{n} + \frac{\eta_1 - 1}{n^2} + \frac{\eta_2 - 2\eta_1 + 1}{n^3} \right) \right) \\ &+ \frac{\eta_3 - 3\eta_2 + 3\eta_1 - 1}{n^4} + O\left(\frac{1}{n^5}\right) \right) \\ &\times \left( 1 - \frac{k+1}{s-1} \left( \frac{1}{n} + \frac{\eta_1 + k + 1}{n^2} + \frac{\eta_2 + 2(k+1)\eta_1 + (k+1)^2}{n^3} \right) \right) \\ &+ \frac{\eta_3 + (k+1)(\eta_1^2 + 2\eta_2) + 3(k+1)^2\eta_1 + (k+1)^3}{n^4} + O\left(\frac{1}{n^5}\right) \right) \right)^{-1}, \end{split}$$
ng the statement of the proposition.

yielding the statement of the proposition.

Figure 1 illustrates the approximation (5) with the ratios of the adjacent elements of the sequences  $\{a_{n,H}\}$  taken in the intervals  $(3^n, 3^{n+1}]$ .



FIGURE 1. Relative error of the approximation,  $|1 - \hat{\rho}_n / \rho_n|$ , for s = 3.

The coefficients  $(\omega_1, \omega_2, \omega_3)^T$  of the expansion (5), values of the ratios of the adjacent elements  $\rho_n$ , their estimates  $\hat{\rho}_n$ , and the relative error of the approximation  $|1 - \hat{\rho}_n / \rho_n|$  are presented in Section 5 (see Tables 2-6).

**Corollary 2.1.** Let  $\rho_1$  and  $\rho_2$  be the ratios of the adjacent elements of integer sequences  $\{a_{n,H_1}\}$  and  $\{a_{n,H_2}\}$ , associated with admissible prime k-tuples (cf. (4)). Then, under conditions of Proposition 2.1, we have

$$\frac{\rho_n(s_1)}{\rho_n(s_2)} = \begin{cases} \frac{s_1}{s_2} \left( 1 + \frac{k+1}{n^2} \left( \frac{\log(s_1/s_2)}{\log s_1 \log s_2} + \frac{s_2 - s_1}{(s_2 - 1)(s_1 - 1)} \right) + O\left(\frac{1}{n^3}\right) \right), & k = k_1 = k_2, \\ \frac{s_1}{s_2} \left( 1 + \frac{k_2 - k_1}{n} + \frac{B(s_1, s_2, k_1, k_2)}{n^2} + O\left(\frac{1}{n^3}\right) \right), & k_1 \neq k_2, s_1 \neq s_2. \end{cases}$$

Here

$$B(s_1, s_2, k_1, k_2) = (k_2 + 1) \left(\frac{1}{\log s_2} - \frac{1}{s_2 - 1}\right) - (k_1 + 1) \left(\frac{1}{\log s_1} - \frac{1}{s_1 - 1}\right) + \frac{3}{2}(k_1 - k_2) + \frac{1}{2}(k_1 - k_2)^2.$$

#### 3. Algorithms and software

We have chosen probabilistic primality tests instead of classical sieve methods for calculating integer sequences associated with admissible prime k-tuples to process more significant amounts of data in a given time. The most efficient probabilistic primality test is Miller-Rabin's with  $O(wq^2 \log q \log \log q)$  complexity. It uses the fast Fourier transform method of q-digit integer multiplication (w is the number of iterations). In our numerical experiments, we have chosen the value w = 9, since it has been shown (cf. [7]) that the selection of the value w = 5 gives 2 misidentifications of ~  $1.5 \times 10^{12}$  potential twin prime pairs.

[7] showed that C/C++ OpenMP technology performs the Miller-Rabin test about 9 times faster than Python multiprocessing. Hence we use MinGW-w64 4.3.5 C/C++ compilator, 32 GB DDR4 RAM 4266 MHz, AMD Ryzen 9 5950x 16C/16T 4.9 GHz CPU assigning 30 threads for calculations. Figure 2 demonstrates that the running time of k-tuples is exponential.



FIGURE 2. Computation time of k-tuples (shown on a logarithmic scale).

## 4. New integer sequences, associated with admissible prime k-tuples

Investigating the distribution of admissible prime k-tuples in exponentially growing intervals  $(2^n; 2^{n+1}]$ , we have obtained the following sequences  $\{a_{n,\hat{H}}\}$ , defined by (4) (see Table 1).

| Ĥ                     | $\{a_{n,\hat{H}}\}$                                                                      |
|-----------------------|------------------------------------------------------------------------------------------|
| (0,2)                 | $1, 1, 1, 2, 2, 3, 7, 7, 12, 26, 45, 70, 113, 215, 355, 666, \dots$                      |
| (0,4)                 | $1, 1, 1, 1, 2, 6, 4, 11, 15, 23, 44, 64, 131, 197, 359, 658, \ldots$                    |
| (0, 6)                | $0,2,2,3,5,7,11,17,28,55,79,142,241,434,719,\ldots$                                      |
| (0, 2, 6)             | 0 2 2 1 2 5 4 6 8 20 22 28 40 03 126 248 427                                             |
| (0, 4, 6)             | 0, 2, 2, 1, 2, 0, 4, 0, 0, 20, 22, 20, 49, 99, 120, 240, 421,                            |
| (0, 6, 12)            | $0,\ 2,\ 1,\ 2,\ 3,\ 3,\ 4,\ 4,\ 9,\ 22,\ 22,\ 38,\ 56,\ 93,\ 134,\ 255,\ 405,\ \ldots$  |
| (0, 2, 6, 8)          | $0,  1,  1,  0,  0,  1,  1,  0,  1,  2,  3,  1,  5,  7,  5,  15,  19,  44,  71,  \ldots$ |
| (0, 6, 12, 18)        | $0, 1, 1, 0, 2, 0, 1, 0, 2, 5, 5, 6, 9, 13, 10, 37, 37, 84, 127, \ldots$                 |
| (0, 2, 6, 8, 12)      | 0 2 1 0 0 2 0 0 0 2 1 1 3 4 3 3 8 18 21 46 67                                            |
| (0, 4, 6, 10, 12)     | 0, 2, 1, 0, 0, 2, 0, 0, 0, 2, 1, 1, 3, 4, 5, 5, 6, 10, 21, 40, 01,                       |
| (0, 4, 6, 10, 12, 16) | $0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 3, 4, 5, \dots$                |

TABLE 1. First terms of sequences, associated with the distribution of admissible prime k-tuples in  $(2^n; 2^{n+1}]$  intervals.

The first sequence of the table is known as the number of lesser twin primes in range  $(2^n, 2^{n+1}]$  and is included in the OEIS database as A095017 entry (see [8]). The rest of the sequences in Table 1 are new to the authors' knowledge. Table 3 in the next section provides a more comprehensive composition of these sequences. Information on their properties is also presented in Tables 4 and 5 of Section 5.

## 5. Tables of coefficients and ratios

This section illustrates the numerical results of the study. First, the coefficients of the principal of Proposition 1.1 (see expansion (5)) are given in Table 2.

Sequences associated with admissible prime k-tuples. Table 3 shows the sequences  $\{a_{n,H}\}$ , which are associated with the distribution of admissible prime k-tuples in the intervals  $(2^n; 2^{n+1}]$ . These sequences provide a numerical insight into the distribution of prime k-tuples as n increases.

The computation of each subsequent term took, on average, twice as long as the previous one. Furthermore, our computed data can be used for further theoretical research and hypothesis testing related to the distribution of primes and their k-tuples.

|   | Ω          | 1         | 2          | 3          | 4          | 5          |
|---|------------|-----------|------------|------------|------------|------------|
|   | $\omega_1$ | -2.057305 | -2.557305  | -3.057305  | -3.557305  | -4.057305  |
| 2 | $\omega_2$ | +4.226611 | +6.198618  | +8.503959  | +11.142632 | +14.114640 |
|   | $\omega_3$ | -4.659449 | -10.578615 | -18.462264 | -28.560393 | -41.123005 |
|   | $\omega_1$ | -2.089761 | -2.589761  | -3.089761  | -3.589761  | -4.089761  |
| 3 | $\omega_2$ | +4.352706 | +6.354336  | +8.689299  | +11.357595 | +14.359225 |
|   | $\omega_3$ | -9.202326 | -15.277740 | -23.341654 | -33.644068 | -46.434984 |
|   | $\omega_1$ | -2.111986 | -2.611986  | -3.111986  | -3.611986  | -4.111986  |
| 4 | $\omega_2$ | +4.438177 | +6.459394  | +8.813945  | +11.501828 | +14.523045 |
|   | $\omega_3$ | -9.520378 | -15.698872 | -23.881193 | -34.317341 | -47.257316 |
|   | $\omega_1$ | -2.128665 | -2.628665  | -3.128665  | -3.628665  | -4.128665  |
| 5 | $\omega_2$ | +4.501886 | +6.537442  | +8.906331  | +11.608553 | +14.644108 |
|   | $\omega_3$ | -9.634525 | -15.888455 | -24.157173 | -34.690679 | -47.738973 |
|   | $\omega_1$ | -2.141889 | -2.641889  | -3.141889  | -3.641889  | -4.141889  |
| 6 | $\omega_2$ | +4.552153 | +6.598863  | +8.978906  | +11.692283 | +14.738993 |
|   | $\omega_3$ | -9.722456 | -16.035108 | -24.370935 | -34.979938 | -48.112116 |

TABLE 2. Coefficients of  $\rho_n(s,k)$  expansion,  $\Omega = (\omega_1, \omega_2, \omega_3)^T$ .

**Ratios and estimates of adjacent elements.** Table 4 presents the values of ratios of the adjacent elements of the sequences  $\{a_{n,H}\}$ , for s = 2. These ratios provide insight into the growth rate of the sequences as n increases.

Estimates and relative errors. Table 5 provides the estimates of the ratios of the adjacent elements  $\hat{\rho}_n$ , for s = 2. The relative error of these approximations,  $|1-\hat{\rho}_n/\rho_n|$ , is presented in Table 6. These tables help understand the approximations' accuracy and the sequences' behavior.

## References

- S. Aletheia-Zomlefe, L. Fukshansky, S. Garcia, The Bateman-Horn conjecture: Heuristic, history, and applications, *Expo. Math.* 38 (2020), 430-479. DOI: 10.1016/j.exmath.2019.04.005
- W. Banks, K. Ford, T. Tao, Large prime gaps and probabilistic models, arXiv:1908.08613 (2023), 1-42. https://arxiv.org/abs/1908.08613
- [3] J. Maynard, The twin prime conjecture, Japan. J. Math. 14 (2019), 175-206. DOI: 10.1007/s11537-019-1837-z
- [4] G. Di Pietro, Numerical analysis approach to twin primes conjecture, Notes Number Theory Discrete Math. 27 (2021), no. 3, 175-183. DOI: 10.7546/nntdm.2021.27.3.175-183
- [5] L. Tóth, On the asymptotic density of prime k-tuples and a conjecture of Hardy and Littlewood, CMST 25 (2019), no. 3, 143-148. DOI:10.12921/cmst.2019.0000033
- [6] G. Hardy, J. Littlewood, Some problems of 'partitio numerorum'; iii: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70. DOI:10.1007/BF02403921
- [7] I. Belovas, M. Sabaliauskas, P. Mykolaitis, On the calculation of integer sequences, associated with twin primes, *Lietuvos matematikos rinkinys* 64 (2023), 1-7. DOI:10.15388/LMR.2023.33586

| n  | (0, 2)                   | (0, 4)      | (0, 6)                   | (0, 2, 6), (0, 4, 6)    | (0, 6, 12)                         | (0, 2, 6, 8) | (0, 6, 12, 18) | (0, 2, 6, 8, 12), (0, 4, 6, 10, 12) | (0, 4, 6, 10, 12, 16) |
|----|--------------------------|-------------|--------------------------|-------------------------|------------------------------------|--------------|----------------|-------------------------------------|-----------------------|
| 1  | 1                        | 1           | 0                        | 0                       | 0                                  | 0            | 0              | 0                                   | 0                     |
| 2  | 1                        | 1           | 2                        | 2                       | 2                                  | 1            | 1              | 2                                   | 1                     |
| 3  | 1                        | 1           | 2                        | 2                       | 1                                  | 1            | 1              | 1                                   | 0                     |
| 4  | 2                        | 1           | 3                        | 1                       | 2                                  | 0            | 0              | 0                                   | 0                     |
| 5  | 2                        | 2           | 5                        | 2                       | 3                                  | 0            | 2              | 0                                   | 0                     |
| 6  | 3                        | 6           | 7                        | 5                       | 3                                  | 1            | 0              | 2                                   | 1                     |
| 7  | 7                        | 4           | 11                       | 4                       | 4                                  | 1            | 1              | 0                                   | 0                     |
| 8  | 7                        | 11          | 17                       | 6                       | 4                                  | 0            | 0              | 0                                   | 0                     |
| 9  | 12                       | 15          | 28                       | 8                       | 9                                  | 1            | 2              | 0                                   | 0                     |
| 10 | 26                       | 23          | 55                       | 20                      | 22                                 | 2            | 5              | 2                                   | 0                     |
| 11 | 45                       | 44          | 79                       | 22                      | 22                                 | 3            | 5              | 1                                   | 0                     |
| 12 | 70                       | 64          | 142                      | 28                      | 38                                 | 1            | 6              | 1                                   | 0                     |
| 13 | 113                      | 131         | 241                      | 49                      | 56                                 | 5            | 9              | 3                                   | 1                     |
| 14 | 215                      | 197         | 434                      | 93                      | 93                                 | 7            | 13             | 4                                   | 1                     |
| 15 | 355                      | 359         | 719                      | 126                     | 134                                | 5            | 10             | 3                                   | 1                     |
| 16 | 666                      | 658         | 1291                     | 248                     | 255                                | 15           | 37             | 3                                   | 0                     |
| 17 | 1153                     | 1160        | 2319                     | 427                     | 405                                | 19           | 37             | 8                                   | 0                     |
| 18 | 2071                     | 2071        | 4171                     | 727                     | 738                                | 44           | 84             | 18                                  | 0                     |
| 19 | 3785                     | 3751        | 7538                     | 1188                    | 1218                               | 71           | 127            | 21                                  | 0                     |
| 20 | 6965                     | 6820        | 13569                    | 2121                    | 2072                               | 132          | 222            | 46                                  | 3                     |
| 21 | 12495                    | 12445       | 24824                    | 3602                    | 3550                               | 174          | 330            | 67                                  | 4                     |
| 22 | 22643                    | 22561       | 45263                    | 6265                    | 6288                               | 312          | 589            | 104                                 | 5                     |
| 23 | 41608                    | 41670       | 82579                    | 11028                   | 10866                              | 510          | 973            | 148                                 | 10                    |
| 24 | 76371                    | 76289       | 152839                   | 19391                   | 19338                              | 800          | 1603           | 238                                 | 17                    |
| 25 | 140944                   | 141009      | 282165                   | 34418                   | 34280                              | 1420         | 2826           | 402                                 | 27                    |
| 26 | 261752                   | 262183      | 523710                   | 61909                   | 61711                              | 2398         | 4817           | 638                                 | 24                    |
| 27 | 484968                   | 485670      | 970747                   | 109704                  | 109838                             | 4173         | 8398           | 1071                                | 54                    |
| 28 | 904799                   | 904901      | 1808934                  | 197133                  | 197631                             | 7163         | 14535          | 1746                                | 62                    |
| 29 | 1689477                  | 1688468     | 3378523                  | 357691                  | 356480                             | 12745        | 25318          | 3076                                | 128                   |
| 30 | 3160113                  | 3159596     | 6318344                  | 644999                  | 645909                             | 22028        | 44343          | 5075                                | 209                   |
| 31 | 5928904                  | 5930172     | 11857968                 | 1173390                 | 1175337                            | 39006        | 78147          | 8615                                | 331                   |
| 32 | 11139071                 | 11135222    | 22269858                 | 2134316                 | 2134721                            | 68563        | 137689         | 14716                               | 564                   |
| 33 | 20970782                 | 20966894    | 41934802                 | 3903603                 | 3904019                            | 121966       | 243218         | 25596                               | 943                   |
| 34 | 39535081                 | 39542450    | 79077648                 | 7150609                 | 7148315                            | 216777       | 433223         | 43999                               | 1538                  |
| 35 | 74697745                 | 74704771    | 149384651                | 13123864                | 13121139                           | 387063       | 773260         | 76772                               | 2607                  |
| 36 | 141342490                | 141326344   | 282669548                | 24153689                | 24148320                           | 692082       | 1383986        | 133163                              | 4430                  |
| 37 | 267812262                | 267809109   | 535618852                | 44554336                | 44544051                           | 1244485      | 2485964        | 233878                              | 7848                  |
| 38 | 508194094                | 508203585   | 1016436932               | 82351638                | 82350169                           | 2238795      | 4477993        | 407964                              | 13035                 |
| 39 | 965623233                | 965648995   | 1931330869               | 152516401               | 152508600                          | 4041399      | 8080760        | 718976                              | 22370                 |
| 40 | 1837147717               | 1837225037  | 3674340893               | 283007306               | 282970529                          | 7309042      | 14618433       | 1269874                             | 38331                 |
| 41 | 3499726481               | 3499687076  | 6999275265               | 526130626               | 526071622                          | 13262623     | 26534704       | 2249196                             | 66314                 |
| 42 | 6674251373               | 6674155761  | 13348507170              | $97\overline{9745175}$  | 979782916                          | 24120000     | 48249844       | 3995303                             | 115580                |
| 43 | $12\overline{7}42529417$ | 12742483159 | $25\overline{484958671}$ | $18\overline{27631459}$ | $18\overline{276011}\overline{33}$ | 43958007     | 87921567       | 7104747                             | 201046                |

TABLE 3. Sequences  $\{a_{n,H}\}$ , associated with the distribution of admissible prime k-tuples in  $(2^n; 2^{n+1}]$  intervals.

 [8] OEIS Foundation Inc., Entry A095017 in The On-Line Encyclopedia of Integer Sequences, http: //oeis.org/A095017, [on-line; accessed 2023-11-23] (2023).

(Igoris Belovas, Martynas Sabaliauskas) FACULTY OF MATHEMATICS AND INFORMATICS, VILNIUS UNIVERSITY, LT-04812 VILNIUS, LITHUANIA *E-mail address*: Igoris.Belovas@mif.vu.lt, Martynas.Sabaliauskas@mif.vu.lt

TABLE 4. Values of  $\rho_n$ , the ratio of the adjacent elements of the sequences  $\{a_{n,H}\}, s = 2$ .

| n  | (0, 2)                  | (0, 4)                  | (0, 6)                  | (0, 2, 6), (0, 4, 6) | (0, 6, 12)              | (0,2,6,8)               | (0, 6, 12, 18) | (0, 2, 6, 8, 12), (0, 4, 6, 10, 12) | (0, 4, 6, 10, 12, 16) |
|----|-------------------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|----------------|-------------------------------------|-----------------------|
| 1  | 1                       | 1                       | undefined               | undefined            | undefined               | undefined               | undefined      | undefined                           | undefined             |
| 2  | 1                       | 1                       | 1                       | 1                    | 0.5                     | 1                       | 1              | 0.5                                 | 0                     |
| 3  | 2                       | 1                       | 1.5                     | 0.5                  | 2                       | 0                       | 0              | 0                                   | undefined             |
| 4  | 1                       | 2                       | 1.66666667              | 2                    | 1.5                     | undefined               | undefined      | undefined                           | undefined             |
| 5  | 1.5                     | 3                       | 1.4                     | 2.5                  | 1                       | undefined               | 0              | undefined                           | undefined             |
| 6  | 2.333333333             | 0.66666667              | 1.57142857              | 0.8                  | 1.333333333             | 1                       | undefined      | 0                                   | 0                     |
| 7  | 1                       | 2.75                    | 1.54545455              | 1.5                  | 1                       | 0                       | 0              | undefined                           | undefined             |
| 8  | 1.71428571              | 1.36363636              | 1.64705882              | 1.333333333          | 2.25                    | undefined               | undefined      | undefined                           | undefined             |
| 9  | 2.166666667             | 1.533333333             | 1.96428571              | 2.5                  | 2.44444444              | 2                       | 2.5            | undefined                           | undefined             |
| 10 | 1.73076923              | 1.91304348              | 1.43636364              | 1.1                  | 1                       | 1.5                     | 1              | 0.5                                 | undefined             |
| 11 | 1.55555556              | 1.45454545              | 1.79746835              | 1.2727272727         | 1.72727273              | 0.333333333             | 1.2            | 1                                   | undefined             |
| 12 | 1.61428571              | 2.04687500              | 1.69718310              | 1.75                 | 1.47368421              | 5                       | 1.5            | 3                                   | undefined             |
| 13 | 1.90265487              | 1.50381679              | 1.80082988              | 1.89795918           | 1.66071429              | 1.4                     | 1.44444444     | 1.33333333                          | 1                     |
| 14 | 1.65116279              | 1.82233503              | 1.65668203              | 1.35483871           | 1.44086022              | 0.71428571              | 0.76923077     | 0.75                                | 1                     |
| 15 | 1.87605634              | 1.83286908              | 1.79554937              | 1.96825397           | 1.90298507              | 3                       | 3.7            | 1                                   | 0                     |
| 16 | 1.73123123              | 1.76291793              | 1.79628195              | 1.72177419           | 1.58823529              | 1.26666667              | 1              | 2.66666667                          | undefined             |
| 17 | 1.79618387              | 1.78534483              | 1.79862009              | 1.70257611           | 1.82222222              | 2.31578947              | 2.27027027     | 2.25                                | undefined             |
| 18 | 1.82761951              | 1.81120232              | 1.80724047              | 1.63411279           | 1.65040650              | 1.61363636              | 1.51190476     | 1.16666667                          | undefined             |
| 19 | 1.84015852              | 1.81818182              | 1.80007960              | 1.78535354           | 1.70114943              | 1.85915493              | 1.74803150     | 2.19047619                          | undefined             |
| 20 | 1.79396985              | 1.82478006              | 1.82946422              | 1.69825554           | 1.71332046              | 1.31818182              | 1.48648649     | 1.45652174                          | 1.33333333            |
| 21 | 1.81216487              | 1.81285657              | 1.82335643              | 1.73931149           | 1.77126761              | 1.79310345              | 1.78484848     | 1.55223881                          | 1.25                  |
| 22 | 1.83756569              | 1.84699260              | 1.82442613              | 1.76025539           | 1.72805344              | 1.63461538              | 1.65195246     | 1.42307692                          | 2                     |
| 23 | 1.83548837              | 1.83078954              | 1.85082164              | 1.75834240           | 1.77967973              | 1.56862745              | 1.64748201     | 1.60810811                          | 1.7                   |
| 24 | 1.84551728              | 1.84835297              | 1.84615838              | 1.77494714           | 1.77267556              | 1.775                   | 1.76294448     | 1.68907563                          | 1.58823529            |
| 25 | 1.85713475              | 1.85933522              | 1.85604168              | 1.79873903           | 1.80020420              | 1.68873239              | 1.70452937     | 1.58706468                          | 0.88888889            |
| 26 | 1.85277667              | 1.85240843              | 1.85359646              | 1.77202022           | 1.77987717              | 1.74020017              | 1.74340876     | 1.67868339                          | 2.25                  |
| 27 | 1.86568805              | 1.86320135              | 1.86344537              | 1.79695362           | 1.79929533              | 1.71651090              | 1.73076923     | 1.63025210                          | 1.14814815            |
| 28 | 1.86724013              | 1.86591461              | 1.86768727              | 1.81446536           | 1.80376560              | 1.77928242              | 1.74186447     | 1.76174112                          | 2.06451613            |
| 29 | 1.87046820              | 1.87127976              | 1.87014977              | 1.80322960           | 1.81190810              | 1.72836406              | 1.75144166     | 1.64986996                          | 1.63281250            |
| 30 | 1.87616835              | 1.87687666              | 1.87675252              | 1.81921212           | 1.81966345              | 1.77074632              | 1.76233002     | 1.69753695                          | 1.58373206            |
| 31 | 1.87877405              | 1.87772328              | 1.87805010              | 1.81893147           | 1.81626291              | 1.75775522              | 1.76192304     | 1.70818340                          | 1.70392749            |
| 32 | 1.88263294              | 1.88293453              | 1.88302961              | 1.82897144           | 1.82881932              | 1.77888949              | 1.76643014     | 1.73933134                          | 1.67198582            |
| 33 | 1.88524591              | 1.88594696              | 1.88572842              | 1.83179719           | 1.83101440              | 1.77735598              | 1.78121274     | 1.71897953                          | 1.63096501            |
| 34 | 1.88940412              | 1.88922970              | 1.88908819              | 1.83534913           | 1.83555691              | 1.78553537              | 1.78490062     | 1.74485784                          | 1.69505852            |
| 35 | 1.89219219              | 1.89179810              | 1.89222618              | 1.84044036           | 1.84041340              | 1.78803451              | 1.78980679     | 1.73452561                          | 1.69927119            |
| 36 | 1.89477532              | 1.89496948              | 1.89485870              | 1.84461827           | 1.84460248              | 1.79817565              | 1.79623493     | 1.75632871                          | 1.77155756            |
| 37 | 1.89757590              | 1.89763368              | 1.89768700              | 1.84834172           | 1.84873551              | 1.79897307              | 1.80131048     | 1.74434534                          | 1.66093272            |
| 38 | 1.90010715              | 1.90012236              | 1.90009907              | 1.85201418           | 1.85195248              | 1.80516707              | 1.80454949     | 1.76235158                          | 1.71614883            |
| 39 | $1.902551\overline{28}$ | $1.902580\overline{59}$ | $1.902491\overline{67}$ | 1.85558605           | 1.85543982              | $1.808542\overline{54}$ | 1.80904185     | 1.76622585                          | 1.71350022            |
| 40 | 1.90497827              | 1.90487665              | 1.90490634              | 1.85907083           | 1.85910393              | 1.81455011              | 1.81515379     | 1.77119620                          | 1.73003574            |
| 41 | 1.90707800              | 1.90707215              | 1.90712705              | 1.86217096           | 1.86245157              | 1.81864477              | 1.81836752     | 1.77632496                          | 1.74292005            |
| 42 | $1.909207\overline{30}$ | 1.90922772              | $1.909199\overline{16}$ | 1.86541512           | $1.865312\overline{31}$ | $1.822471\overline{27}$ | 1.82221453     | 1.77827489                          | 1.73945319            |

TABLE 5. Estimates  $\hat{\rho}_n$ , for s = 2.

| n  | (0,2)                   | (0, 4)                  | (0, 6)                  | (0, 2, 6), (0, 4, 6)    | (0, 6, 12)              | (0,2,6,8)               | (0, 6, 12, 18) | (0, 2, 6, 8, 12), (0, 4, 6, 10, 12) | (0, 4, 6, 10, 12, 16) |
|----|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------|-------------------------------------|-----------------------|
| 1  | 7.96057168              | 7.96057168              | 7.96057168              | 37.6238145              | 37.6238145              | 98.1248807              | 98.1248807     | 201.750659                          | 362.788039            |
| 2  | 1.10886179              | 1.10886179              | 1.10886179              | 2.15397477              | 2.15397477              | 4.84178323              | 4.84178323     | 9.81521772                          | 17.8422088            |
| 3  | 1.18495611              | 1.18495611              | 1.18495611              | 1.11100046              | 1.11100046              | 1.35467978              | 1.35467978     | 2.01830132                          | 3.22886373            |
| 4  | 1.32296696              | 1.32296696              | 1.32296696              | 1.12580523              | 1.12580523              | 1.04260340              | 1.04260340     | 1.09791965                          | 1.32412462            |
| 5  | 1.42373772              | 1.42373772              | 1.42373772              | 1.21777424              | 1.21777424              | 1.07040122              | 1.07040122     | 0.98847768                          | 0.98206266            |
| 6  | 1.49803322              | 1.49803322              | 1.49803322              | 1.30300873              | 1.30300873              | 1.14507093              | 1.14507093     | 1.02598439                          | 0.94905690            |
| 7  | 1.55498728              | 1.55498728              | 1.55498728              | 1.37400142              | 1.37400142              | 1.21946688              | 1.21946688     | 1.09150316                          | 0.99106274            |
| 8  | 1.60011141              | 1.60011141              | 1.60011141              | 1.43260330              | 1.43260330              | 1.28534788              | 1.28534788     | 1.15792688                          | 1.05041036            |
| 9  | 1.63680028              | 1.63680028              | 1.63680028              | 1.48141999              | 1.48141999              | 1.34225678              | 1.34225678     | 1.21874471                          | 1.11062268            |
| 10 | 1.66724954              | 1.66724954              | 1.66724954              | 1.52259376              | 1.52259376              | 1.39132254              | 1.39132254     | 1.27286456                          | 1.16684852            |
| 11 | 1.69294464              | 1.69294464              | 1.69294464              | 1.55774649              | 1.55774649              | 1.43383792              | 1.43383792     | 1.32069212                          | 1.21791889            |
| 12 | 1.71492902              | 1.71492902              | 1.71492902              | 1.58809234              | 1.58809234              | 1.47093622              | 1.47093622     | 1.36299224                          | 1.26388845            |
| 13 | 1.73395862              | 1.73395862              | 1.73395862              | 1.61454735              | 1.61454735              | 1.50354549              | 1.50354549     | 1.40054295                          | 1.30519963            |
| 14 | 1.75059545              | 1.75059545              | 1.75059545              | 1.63781181              | 1.63781181              | 1.53241121              | 1.53241121     | 1.43403668                          | 1.34238333            |
| 15 | 1.76526648              | 1.76526648              | 1.76526648              | 1.65842880              | 1.65842880              | 1.55813081              | 1.55813081     | 1.46406213                          | 1.37595189            |
| 16 | 1.77830223              | 1.77830223              | 1.77830223              | 1.67682533              | 1.67682533              | 1.58118518              | 1.58118518     | 1.49111150                          | 1.40636453            |
| 17 | 1.78996268              | 1.78996268              | 1.78996268              | 1.69334155              | 1.69334155              | 1.60196416              | 1.60196416     | 1.51559449                          | 1.43402046            |
| 18 | 1.80045524              | 1.80045524              | 1.80045524              | 1.70825162              | 1.70825162              | 1.62078630              | 1.62078630     | 1.53785244                          | 1.45926227            |
| 19 | 1.80994747              | 1.80994747              | 1.80994747              | 1.72177893              | 1.72177893              | 1.63791402              | 1.63791402     | 1.55817078                          | 1.48238260            |
| 20 | 1.81857623              | 1.81857623              | 1.81857623              | 1.73410731              | 1.73410731              | 1.65356525              | 1.65356525     | 1.57678936                          | 1.50363141            |
| 21 | 1.82645445              | 1.82645445              | 1.82645445              | 1.74538939              | 1.74538939              | 1.66792234              | 1.66792234     | 1.59391080                          | 1.52322255            |
| 22 | 1.83367614              | 1.83367614              | 1.83367614              | 1.75575297              | 1.75575297              | 1.68113895              | 1.68113895     | 1.60970725                          | 1.54133955            |
| 23 | 1.84032021              | 1.84032021              | 1.84032021              | 1.76530583              | 1.76530583              | 1.69334545              | 1.69334545     | 1.62432575                          | 1.55814054            |
| 24 | 1.84645337              | 1.84645337              | 1.84645337              | 1.77413953              | 1.77413953              | 1.70465314              | 1.70465314     | 1.63789258                          | 1.57376227            |
| 25 | 1.85213245              | 1.85213245              | 1.85213245              | 1.78233235              | 1.78233235              | 1.71515758              | 1.71515758     | 1.65051674                          | 1.58832351            |
| 26 | 1.85740613              | 1.85740613              | 1.85740613              | 1.78995159              | 1.78995159              | 1.72494131              | 1.72494131     | 1.66229277                          | 1.60192782            |
| 27 | 1.86231635              | 1.86231635              | 1.86231635              | 1.79705545              | 1.79705545              | 1.73407593              | 1.73407593     | 1.67330305                          | 1.61466585            |
| 28 | 1.86689948              | 1.86689948              | 1.86689948              | 1.80369453              | 1.80369453              | 1.74262389              | 1.74262389     | 1.68361968                          | 1.62661730            |
| 29 | 1.87118716              | 1.87118716              | 1.87118716              | 1.80991299              | 1.80991299              | 1.75063988              | 1.75063988     | 1.69330602                          | 1.63785243            |
| 30 | 1.87520709              | 1.87520709              | 1.87520709              | 1.81574959              | 1.81574959              | 1.75817203              | 1.75817203     | 1.70241797                          | 1.64843346            |
| 31 | 1.87898361              | 1.87898361              | 1.87898361              | 1.82123844              | 1.82123844              | 1.76526281              | 1.76526281     | 1.71100504                          | 1.65841564            |
| 32 | 1.88253818              | 1.88253818              | 1.88253818              | 1.82640974              | 1.82640974              | 1.77194989              | 1.77194989     | 1.71911122                          | 1.66784822            |
| 33 | 1.88588982              | 1.88588982              | 1.88588982              | 1.83129026              | 1.83129026              | 1.77826676              | 1.77826676     | 1.72677572                          | 1.67677522            |
| 34 | 1.88905544              | 1.88905544              | 1.88905544              | 1.83590386              | 1.83590386              | 1.78424332              | 1.78424332     | 1.73403362                          | 1.68523608            |
| 35 | 1.89205012              | 1.89205012              | 1.89205012              | 1.84027186              | 1.84027186              | 1.78990632              | 1.78990632     | 1.74091640                          | 1.69326628            |
| 36 | 1.89488733              | 1.89488733              | 1.89488733              | 1.84441335              | 1.84441335              | 1.79527981              | 1.79527981     | 1.74745235                          | 1.70089780            |
| 37 | 1.89757918              | 1.89757918              | 1.89757918              | 1.84834552              | 1.84834552              | 1.80038542              | 1.80038542     | 1.75366702                          | 1.70815953            |
| 38 | $1.900136\overline{58}$ | $1.900136\overline{58}$ | $1.900136\overline{58}$ | $1.852083\overline{83}$ | 1.85208383              | $1.805242\overline{67}$ | 1.80524267     | 1.75958349                          | 1.71507766            |
| 39 | $1.902569\overline{35}$ | $1.902569\overline{35}$ | $1.902569\overline{35}$ | 1.85564229              | $1.855642\overline{29}$ | $1.809869\overline{26}$ | 1.80986926     | 1.76522271                          | 1.72167596            |
| 40 | 1.90488638              | 1.90488638              | 1.90488638              | 1.85903357              | 1.85903357              | 1.81428122              | 1.81428122     | 1.77060368                          | 1.72797606            |
| 41 | 1.90709575              | $1.907095\overline{75}$ | $1.907095\overline{75}$ | $1.862269\overline{17}$ | $1.862269\overline{17}$ | $1.818493\overline{16}$ | 1.81849316     | 1.77574375                          | 1.73399768            |
| 42 | 1.90920479              | 1.90920479              | 1.90920479              | 1.86535958              | 1.86535958              | 1.82251835              | 1.82251835     | 1.78065870                          | 1.73975887            |

TABLE 6. Relative error of the approximation,  $|1 - \hat{\rho}_n / \rho_n|$ , for s = 2.

| n  | (0, 2)     | (0, 4)                  | (0, 6)                  | (0, 2, 6), (0, 4, 6) | (0, 6, 12)              | (0, 2, 6, 8)            | (0, 6, 12, 18) | (0, 2, 6, 8, 12), (0, 4, 6, 10, 12) | (0, 4, 6, 10, 12, 16) |
|----|------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|----------------|-------------------------------------|-----------------------|
| 1  | 6.96057168 | 6.96057168              | undefined               | undefined            | undefined               | undefined               | undefined      | undefined                           | undefined             |
| 2  | 0.10886179 | 0.10886179              | 0.10886179              | 1.15397477           | 3.30794954              | 3.84178323              | 3.84178323     | 18.6304354                          | undefined             |
| 3  | 0.40752194 | 0.18495611              | 0.21002926              | 1.22200093           | 0.44449977              | undefined               | undefined      | undefined                           | undefined             |
| 4  | 0.32296696 | 0.33851652              | 0.20621982              | 0.43709739           | 0.24946318              | undefined               | undefined      | undefined                           | undefined             |
| 5  | 0.05084152 | 0.52542076              | 0.01695552              | 0.51289030           | 0.21777424              | undefined               | undefined      | undefined                           | undefined             |
| 6  | 0.35798576 | 1.24704983              | 0.04670613              | 0.62876092           | 0.02274345              | 0.14507093              | undefined      | undefined                           | undefined             |
| 7  | 0.55498728 | 0.43455008              | 0.00616824              | 0.08399906           | 0.37400142              | undefined               | undefined      | undefined                           | undefined             |
| 8  | 0.06660168 | 0.17341503              | 0.02850379              | 0.07445248           | 0.36328742              | undefined               | undefined      | undefined                           | undefined             |
| 9  | 0.24455372 | 0.06747844              | 0.16671986              | 0.40743201           | 0.39396455              | 0.32887161              | 0.46309729     | undefined                           | undefined             |
| 10 | 0.03670027 | 0.12848320              | 0.16074335              | 0.38417614           | 0.52259376              | 0.07245164              | 0.39132254     | 1.54572913                          | undefined             |
| 11 | 0.08832156 | 0.16389944              | 0.05815052              | 0.22394367           | 0.09814677              | 3.30151375              | 0.19486493     | 0.32069212                          | undefined             |
| 12 | 0.06234541 | 0.16217208              | 0.01045610              | 0.09251866           | 0.07763409              | 0.70581276              | 0.01937586     | 0.54566925                          | undefined             |
| 13 | 0.08866361 | 0.15303847              | 0.03713358              | 0.14932452           | 0.02779945              | 0.07396106              | 0.04091611     | 0.05040721                          | 0.30519963            |
| 14 | 0.06021978 | 0.03936684              | 0.05668765              | 0.20886110           | 0.13669028              | 1.14537569              | 0.99213457     | 0.91204891                          | 0.34238333            |
| 15 | 0.05905465 | 0.03688349              | 0.01686553              | 0.15741118           | 0.12851193              | 0.48062306              | 0.57888357     | 0.46406213                          | undefined             |
| 16 | 0.02718932 | 0.00872661              | 0.01000941              | 0.02610613           | 0.05577891              | 0.24830409              | 0.58118518     | 0.44083319                          | undefined             |
| 17 | 0.00346356 | 0.00258653              | 0.00481337              | 0.00542388           | 0.07072720              | 0.30824275              | 0.29437293     | 0.32640245                          | undefined             |
| 18 | 0.01486320 | 0.00593367              | 0.00375447              | 0.04536947           | 0.03504901              | 0.00443095              | 0.07201613     | 0.31815924                          | undefined             |
| 19 | 0.01641764 | 0.00452889              | 0.00548191              | 0.03560897           | 0.01212680              | 0.11900079              | 0.06299513     | 0.28866116                          | undefined             |
| 20 | 0.01371616 | 0.00339977              | 0.00595146              | 0.02111094           | 0.01213249              | 0.25442881              | 0.11239844     | 0.08257180                          | 0.12772356            |
| 21 | 0.00788537 | 0.00750081              | 0.00169908              | 0.00349443           | 0.01461000              | 0.06981254              | 0.06551040     | 0.02684638                          | 0.21857804            |
| 22 | 0.00211669 | 0.00720980              | 0.00507009              | 0.00255782           | 0.01602933              | 0.02846148              | 0.01766788     | 0.13114563                          | 0.22933022            |
| 23 | 0.00263245 | 0.00520577              | 0.00567393              | 0.00396022           | 0.00807668              | 0.07950772              | 0.02783851     | 0.01008492                          | 0.08344674            |
| 24 | 0.00050723 | 0.00102773              | 0.00015979              | 0.00045501           | 0.00082585              | 0.03963204              | 0.03306476     | 0.03030240                          | 0.00911264            |
| 25 | 0.00269356 | 0.00387384              | 0.00210622              | 0.00912122           | 0.00992768              | 0.01564794              | 0.00623528     | 0.03998077                          | 0.78686395            |
| 26 | 0.00249866 | 0.00269794              | 0.00205529              | 0.01011916           | 0.00566018              | 0.00876845              | 0.01059273     | 0.00976397                          | 0.28803208            |
| 27 | 0.00180721 | 0.00047499              | 0.00060587              | 0.00005667           | 0.00124486              | 0.01023298              | 0.00191054     | 0.02640754                          | 0.40632187            |
| 28 | 0.00018243 | 0.00052782              | 0.00042180              | 0.00593609           | 0.00003940              | 0.02060299              | 0.00043598     | 0.04434332                          | 0.21210725            |
| 29 | 0.00038437 | 0.00004949              | 0.00055471              | 0.00370635           | 0.00110111              | 0.01288838              | 0.00045778     | 0.02632696                          | 0.00308665            |
| 30 | 0.00051235 | 0.00088955              | 0.00082346              | 0.00190331           | 0.00215087              | 0.00710113              | 0.00235937     | 0.00287536                          | 0.04085375            |
| 31 | 0.00011154 | 0.00067120              | 0.00049706              | 0.00126831           | 0.00273943              | 0.00427113              | 0.00189552     | 0.00165184                          | 0.02670997            |
| 32 | 0.00005034 | 0.00021050              | 0.00026098              | 0.00140062           | 0.00131756              | 0.00390109              | 0.00312480     | 0.01162523                          | 0.00247466            |
| 33 | 0.00034155 | 0.00003030              | 0.00008559              | 0.00027674           | 0.00015066              | 0.00051243              | 0.00165392     | 0.00453536                          | 0.02808779            |
| 34 | 0.00018454 | 0.00009224              | 0.00001733              | 0.00030225           | 0.00018902              | 0.00072362              | 0.00036826     | 0.00620349                          | 0.00579475            |
| 35 | 0.00007509 | 0.00013321              | 0.00009305              | 0.00009156           | 0.00007691              | 0.00104686              | 0.00005561     | 0.00368446                          | 0.00353382            |
| 36 | 0.00005911 | 0.00004335              | 0.00001511              | 0.00011109           | 0.00010253              | 0.00161043              | 0.00053174     | 0.00505393                          | 0.03988567            |
| 37 | 0.00000173 | 0.00002872              | 0.00005681              | 0.00000205           | 0.00021095              | 0.00078508              | 0.00051355     | 0.00534394                          | 0.02843391            |
| 38 | 0.00001549 | $0.000007\overline{48}$ | $0.000019\overline{74}$ | 0.00003761           | 0.00007093              | 0.00004188              | 0.00038413     | 0.00157068                          | 0.00062417            |
| 39 | 0.00000950 | 0.00000591              | 0.00004083              | 0.00003031           | 0.00010912              | 0.00073359              | 0.00045738     | 0.00056796                          | 0.00477137            |
| 40 | 0.00004824 | 0.00000511              | 0.00001048              | 0.00002004           | 0.00003785              | 0.00014819              | 0.00048071     | 0.00033453                          | 0.00119054            |
| 41 | 0.00000931 | $0.000012\overline{37}$ | $0.000016\overline{41}$ | 0.00005274           | $0.000097\overline{93}$ | $0.000083\overline{37}$ | 0.00006909     | 0.00032720                          | 0.00511920            |
| 42 | 0.00000131 | 0.00001201              | 0.00000295              | 0.00002977           | $0.000025\overline{34}$ | 0.00002583              | 0.00016673     | 0.00134052                          | 0.00017573            |