Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 52(2), 2025, Pages 460-484, DOI: 10.52846/ami.v52i2.1993
ISSN: 1223-6934

On Edge Metric Dimension of Extended Kayak Paddle Graph
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ABSTRACT. Graph with no edge intersection other than endpoints and that can be embedded
on a plane is termed as a planar graph. A subset of vertices of a graph G is said to be an edge
resolving set, if each edge in the graph is uniquely identified by its distances to the vertices
in the edge resolving set. The smallest cardinality of an edge resolving set for G is called
the edge metric dimension and is denoted by edim(G). In this article, we determine the edge
metric dimension and independent edge metric dimensions for 3-cycle and 4-cycle extended
kayak paddle graphs.
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1. Introduction

A graph consists of vertices connected by edges each of which is connected to a pair
of unique vertices. Also, graph theory, a significant branch of discrete mathematics
that studies graphs, has a wide array of applications across various fields. That
includes internet search: search engines use graphs to understand the relationships
between web pages, which can determine the importance and relevance of a webpage
for a particular search query. Navigation Apps: navigation apps uses graph theory to
model road networks. Also, graph algorithms helps in finding the shortest or fastest
route between two points, considering factors like traffic conditions and road closures.
Medical Imaging: graph theory also helps in medical imaging to analyze complex
structures and improves tasks like tumor detection, and organ segmentation which
helps in treatment [1]. There are many types of graphs one such type of graph is a
planar graph, which has a unique set of properties since it can be drawn on a flat
surface without any edges intersecting there are many applications to it as well [2].

A planar graph is a graph that can be drawn on a plane surface, such as a piece
of paper, without edges crossing, and edge intersection happens only at their ver-
tices. Also, planar graphs are simpler compared to non-planar graphs, and they have
some prominent applications, such as Image processing and computer vision: planar
graph helps build relationships between pixels in an image, which helps in image seg-
mentation and shape matching [2]. Fingerprint classification: planar graphs help in
fingerprint recognition using algorithms, which are useful in optimizing and finding
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structural similarities that enhance the matching process for fingerprints from data-
base [3]. Road networks: the construction of bridges and underpasses will be a major
factor in traffic management. Planar graphs help in the design of road networks that
solve issues like the crowdedness of the streets associated with urban communities [4].

Slater first gave the concept of metric dimension [5] in 1975, using the term locating
set for certain location problems in graphs. Harary and Melter [6] used the term
resolving set when they studied the same concept. After these two introductory
papers, more work on this concept has been presented by several authors regarding
applications as well as theoretical properties. The families of planar graphs, convex
polytopes, molecular graphs, etc. with constant metric dimension have been explored
by many researchers. There are many variants of the metric dimension, such as edge-
metric dimension, local metric dimension, fault-tolerant metric dimension, strong
metric dimension, and many more that have been introduced and studied from time
to time [7, 8, 9, 10].

Further, the concept of edge metric dimension (EMD) was introduced by Kelenc
et al. [I1]. They have demonstrated several characteristics of this graph parameter
and computed it for several families of the planar and non-planar graphs. Wei et al.
studied this notion for certain classes of complex planar graphs [12]. They have also
computed edge metric dimension for connected bipartite graphs in [13]. Peterin et al.
determined the edge metric dimension of the join, lexicographic, and corona product
of graphs [14]. Nasir et al. computed it for prism graph and n-sunlet graph [15].
Zhang and Gao computed edge metric dimension for antiprism graph, web graph,
and certain convex polytope graphs [16]. Ahsan et al. determined these notions for
flower graph, and its related graphs [17]. Singh et al. studied edge metric dimension
for Dutch windmill graph and French windmill graph of two classes of windmill graphs
[18]. Sharma et al. determined the edge metric dimension for a complex molecular
graph [19]. Masmali et al. calculated the edge metric dimension for some antiviral
drug structures [20]. Farooq et al. computed the edge metric dimension for certain
chemical networks [21].

In this paper, we have determined the edge metric dimension and independent edge
metric dimension for 3 & 4-cycle extended kayak paddle graphs. To attain this, we
present the structure of the manuscript as follows: the introduction of planar graphs,
metric dimensions, and edge metric dimensions, has been presented in Section 1;
Section 2 is dedicated to basic definitions and results for edge metric dimensions in
planar graphs; the edge metric dimension and independent edge metric dimension of
3-cycle and 4-cycle extended kayak paddle graph has been calculated in Section 3 and
Section 4 respectively; lastly the conclusion and the future scope of study has been
presented.

2. Preliminaries

A graph G = (V, E) consists of a set of objects V' = {v1,va, ..., v,} called vertices and
E C {{vi, v} |v;,v; € V and i # j}, whose elements are called edges. Let a,b € V(G)
such that the distance d(a,b) between two vertices is the shortest path connecting a
and b. In a path graph P, on n vertices and n — 1 edges, each vertex is connected to
exactly two others, except two endpoints where they are connected to only one vertex.
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The distance between an edge e and vertex v, defined as d(v, ) = min{d(v, a),d(v,b)},
where e = ab. A vertex v distinguish two edges e; and es, if d(eq,v) # d(ea, v).

A graph G is said to be a complete graph K,, if every vertex in G is adjacent to
every other vertex present in it. If a path in which the initial and terminal vertex are
the same, that path is known as the closed path, which is also called as a cycle. It is
denoted by C,. In a graph G, the vertex set can be partitioned into two subsets U
and W, called partite sets, such that every edge in G connects a vertex of U and a
vertex of W. If every vertex of U is adjacent to every vertex of W, then G is called
a complete bipartite graph. A subset in a vertex set of a graph G is said to be an
independent set in G, if no two vertices in the subset are adjacent to each other in G.

Definition 2.1. [5] Let v be a vertex in G and let S = {s1, $2,..., sk} be an ordered
set of vertices of G. Then, the representation of a vertex v with respect to the set
S, denoted by r(v|S), is a k—tuple (d(v, s1),d(v, s2),d(v,s3) ...,d(v,si)). If distinct
vertices of G have distinct representations with respect to S, then S is called a resolv-
ing set in G. The minimum cardinality resolving set in G is called the metric basis
and the cardinality of the metric basis is called the metric dimension of G, denoted
by dim(G).

Definition 2.2. [I1] Let e € E(G) and let Sg = {x1,22,...,2,} be an ordered
set of vertices in GG. Then, the representation of an edge e with respect to the set
Se, denoted by r.(e|Sg), is the k—tuple (d(e,z1),d(e, z2),d(e, x3),...,d(e,xx)). If
distinct edges of G have distinct edge representations with respect to Sg, then Sg is
called an edge resolving set in G. An edge resolving set with minimum cardinality
is termed as an edge metric basis for (G, and its cardinality is called the edge metric
dimension of G, denoted by edim(G).

Definition 2.3. [22] A set Sg of vertices in a connected graph G is said to be
an independent edge resolving set if Sg is both an edge resolving and satisfies the
independent set property. The minimum cardinality of an independent edge resolving
set is called the independent edge metric dimension, denoted by iedim(G).

For our convenience, we can write “distance from” as “DF.” Next, regarding metric
dimension and an edge metric dimension of certain basic graph families, we have the
following result:

Proposition 2.1. [11] For K, P,, Cp, and K, , we have

(1) edim(P,) = 1 = dim(P,); ¥V n > 1.

(2) edim(G) =1 if and only if G is a path P,; ¥V n > 1.

(3) edim(K,) =n—1 =dim(K,); Vn>2.

(4) edim(Cp) =2 = dim(C,); V n>3.

(5) edim(Kp,n) =m+n—2 =dim(Kp,); Vm>1andn>1.

n-Cycle extended kayak paddle graph [23]: The n—cycle extended kayak paddle
graph KP(C™, P"~1') is a graph with n—cycles (Cy,Ca,...,C,) and (n — 1)-paths
(P, Ps,...,P,_1) as shown in Fig. 1. Graph KP(C", P"~!) has vertices of degree
2 and 3. The cycles C;, where 1 < i < n, consists of m; vertices, m; € N and
m; > 6 for each 7 and note that afL_H = al where 1 < j < n. Also the paths P;,
where 1 < j < mn — 1, consists of I; vertices; [; € N and I; > 1 for each j. Next,
the vertex set and edge set of K P(C™, P"~!) are denoted by V(K P(C™, P"~1)) and
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FIGURE 1. KP(C™, P"~1).

E(KP(C", Pn~1)), respectively. These sets are presented as follows:

(2

V(KP(Cn’Pnfl)):{aj : 1§]§n, 1§i§m]‘; ij 6}U

{plin<j<n-1 1<i<y; ;>1)
and

E(KP(C™, P" 1)) :{aj gﬂ :1<j<n,1<i<m;; where m; € {6,7,...,n}}U

K3
{png+1:1§j§n_171§i§lj§ where 1; > 1 }U
{a{p{;where 1<j<n-— 1} U {p?n—}la?}
U {p{ja?‘l;where 1<j5< n_g}’

(55)+1  when mj is even,

where f = _
f {("%21) +1 when m; is odd.

3. Edge Metric Dimension of 3-Cycle Extended Kayak Paddle Graph

A 3-cycle extended kayak paddle is a graph made up of three cycles (Cy, Ca, and Cs)
and two paths (P and P,) as shown in Fig. 2. We denote it by K P(C?, P?). It has
vertices of degree 2 and 3. The cycles Cy, Co, and C3 consist of [, m, and n vertices,
where [,m, and n are greater than or equal to 6. Also P; and P, consists of o and
p number of vertices, where o and p both are greater than or equal to 2. The vertex
set and edge set of K P(C3, P?) are denoted by V(K P(C3, P?)) and E(KP(C3, P?)),
respectively. These sets are given as follows
V(KP(C37P2)) :{a17a27' .. 7al7b17b25 .. .7bm,61,62, ceey Cpy W1, W2,y . vy, Wo,y, L1, T2,
S Tpt
and
E(KP(C? P?) ={ajais1 : 1 <i <1y U{bjbjy1:1<j<m}U{cpcrs1: 1<k <n}
Uf{wrwspr 1 1< f<o—1}U{zgrge1:1<g<p-—1}U
{arwi, bz} U {wobeyr, zper},
where A = {a;a,41: 1 <i <1}, B=A{bjbj+1:1<j<m}, C={cpcps1:1<k<n},
D={wsws1:1<f<o—-1}, F={zgry41:1<g<p—1},
G = {a1wy,b1z1}, and H = {webet1, Tpc1 }-
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Note that, aj+1 = a1, bpy1 =b1, and c¢p41 = 1. As a convention, we will label
the vertices of 7 and Cs in the counterclockwise direction and C3 in a clockwise
direction. Now, we determine its minimum edge resolving set and the respective edge
metric dimension. Therefore, we have the following result:

FIGURE 2. KP(C3, P?).

Theorem 3.1. Let KP(C3, P?) be a 3-cycle extended kayak paddle graph. Then,
2: if m is odd,

3; if m is even.

edim(KP(C?, P?)) = {

Proof. In K P(C3, P%), we consider the even-odd criteria based on the vertices present
in the cycles of KP(C?, P?). Thus, we have the following cases:

Case 1: When m is odd.
Then, we have the following subcases:

Subcase 1: When [ and n are odd.

Suppose I = 2d+ 1, m = 2e+ 1, and n = 2h + 1, where [, m,n > 6; o,p > 2; and
d,e,h > 3. Consider the set Sg = {as,c3}. Then, the representations of each edge of
KP(C3, P%) with respect to Sg are shown below from Table no. 1 to 7:

TABLE 1. Edge Metric Codes for A

re(A|SE) DF ag DF c3
i=1 1 it+o+e+p+3
2<i<3 0 i+o+e+p+3
4<i<d+1 i—3 i+o+e+p+3
d+2<i<d+3 i—3 l—i+o+e+p+4
d+4<i<l1 l—i+2|l—i+o+e+p+4

TABLE 2. Edge Metric Codes for B

re(B|SE) DF a3 DF c3
1<j<e o+e+3—73 2+p+j
e+1<j<m|o+j—e+2|3+p+m—j

From the above shown edge metric codes with respect to edge resolving set Sg, we
found that r.(a|Sg) # re(b|Sg); ¥V a,b (a # b) € E(KP(C3, P%)). Thus, Sg is a edge
resolving set for K P(C3, P?). Hence edim(KP(C?3, P%)) < 2. By using Proposition
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TABLE 3. Edge Metric Codes for C'

re(C|SE) DF ag DF c3

k=1
2<k<3
4<k<h+1
h+2<k<h+3

et+k+o+p+3

e+k+o+p+3

et+k+o+p+3
n—k+o+e+p+4

h4+4<k<n n—k+ot+e+p+4 | n—k+2

TABLE 4. Edge Metric Codes for D

re(D|SE) DF a3 DF c3
1<f<o—-1| 2+f |p+et+o—f+3

TABLE 5. Edge Metric Codes for F

Te(FlSE) DF a3 DF c3
1<g<p—1|o+e+3+g|p—g+2

TABLE 6. Edge Metric Codes for G

7<(G|SE) | DF a3 DF c3
E=aiw 2 3+pt+eto
E=bx1 |o+e+3 2+p

TABLE 7. Edge Metric Codes for H

re(H|SE) DF a3 DF c3
E = wobet1 2+o0 3+p+e
E=zxpc1 o+e+3+p 2

1, we conclude that edim(K P(C3, P?)) = 2.

Subcase 2: When [ is odd and n is even.

Suppose I = 2d+ 1, m = 2e + 1, and n = 2h, where [,m,n > 6; o,p > 2; and
d,e,h > 3. Consider the set Sg = {as,cs}. Then, the representations of each edge of
K P(C3, P?) with respect to Sg are shown below from Table no. 8 to 14:

TABLE 8. Edge Metric Codes for A

re(AlSE) DF a3 DF c3
i=1 1 i+o+e+p+3
2<:<3 0 i+o+e+p+3
4<i<d+1 1—3 i+o+e+p+3
d+2<i<d+3 1—3 l—it+o+e+p+4
d+4<:<I l—i+2|l—it+o+tet+p+4

From the above shown edge metric codes with respect to edge resolving set Sg, we
found that r.(a|Sg) # re(b|Sg); V a,b (a # b) € E(KP(C3, P?)). Thus, Sg is a edge
resolving set for KP(C3, P?). Hence edim(K P(C3, P?)) < 2. By using Proposition
1, we conclude that edim(K P(C3, P%)) = 2.
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TABLE 9. Edge Metric Codes for B

re(B|SE) DF a3 DF c3
1<j<e ot+e+3—j 2+p+y
e+1<j<m|o+j—e+2|3+p+tm—7

TABLE 10. Edge Metric Codes for C

re(C|SE) DF a3 DF c3
k=1 etk+otp+3 1
2<kE<3 e+k+o+p+3 0
4<k<h et+k+o+p+3 k—3
h+1<k<h+2 |n—k+o+e+p+4 k—3
h+3<k<n |n—-k+ote+p+4|n—k+2

TABLE 11. Edge Metric Codes for D

re(D|SE) DF a3 DF c3
1<f<o—-1| 2+f |p+et+o—f+3

TABLE 12. Edge Metric Codes for F’

re(F|SE) DF a3 DF c3
1<g<p—-1|o+e+3+g|p—g+2

TABLE 13. Edge Metric Codes for G

re(G|SE) DF a3 DF c3
E =ajwy 2 3+p+e+o
E=bxz; |o+e+3 2+p

TABLE 14. Edge Metric Codes for H

re(H|SE) DF as3 DF c3
E = wobet1 2+o0 3+p+e
E=xyc1 o+e+3+p 2

Subcase 3: When [ is even and n is odd.

Suppose | = 2d, m = 2e + 1, and n = 2h + 1, where I,m,n > 6; o,p > 2; and
d,e,h > 3. Consider the set Sg = {as,c3}. Then, the representations of each edge of
K P(C3, P?) with respect to Sg are shown below from Table no. 15 to 21:

TABLE 15. Edge Metric Codes for A

re(A|SE) DF ag DF c3
i=1 1 i+o+e+p+3
2<i<3 0 itotetp+s
4<i<d i—3 itotet+p+3
d+1<i<d+2| i-3 |l—itotet+p+4
d+3<i<l l—i4+2|l—i+o+e+p+4

From the above shown edge metric codes with respect to edge resolving set Sg, we
found that r.(a|Sg) # re(b|Sg); ¥ a,b (a # b) € E(KP(C?, P?)). Thus, Sg is a edge
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TABLE 16. Edge Metric Codes for B

re(B|SE) DF a3 DF c3
1<j<e ot+e+3—j 2+p+y
e+1<j<m|o+j—e+2|3+p+tm—7

TABLE 17. Edge Metric Codes for C
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T‘e(C|SE) DF as DF C3
k=1 e+k+o+p+3 1
2<k<3 e+k+o+p+3 0
4<k<h+1 e+k+o+p+3 k—3
h+2<k<h+3|n—k+4+o+e+p+4 k—3
h+4<k<n n—k+o+e+p+4 | n—k+2

TABLE 18. Edge Metric Codes for D

7'e(DISE)
1<f<o—1

DF a3
24+ f

DF c3
pt+teto—f+3

TABLE 19. Edge Metric Codes for F

re(F|SE)
1<g<p-1

DF a3
o+e+3+g

DF c3
p—g+2

TABLE 20. Edge Metric Codes for G

re(G|SE) DF a3 DF c3
E=aiw: 2 3+pte+to
E=bz1 |o+e+3 2+4+p

TABLE 21. Edge Metric Codes for H

re(H|SE) DF a3 DF c3
E = wobet1 240 3+p+e
E=zpcy o+e+3+p 2

resolving set for K P(C3, P?). Hence edim(KP(C3, P?)) < 2. By using Proposition
1, we conclude that edim(K P(C3, P?)) = 2.

Subcase 4: When [ and n are even.

Suppose | = 2d, m = 2e + 1 and n = 2h, where [,m,n > 6; o,p > 2; and d,e, h > 3.
Consider the set Sp = {as,c3}. Then the representations of each edge of K P(C3, P?)
with respect to Sg are shown below from Table no. 22 to 28:

From the above shown edge metric codes with respect to edge resolving set Sg, we
found that r.(a|Sg) # re(b|Sg); ¥ a,b (a # b) € E(KP(C?, P?)). Thus, Sg is a edge
resolving set for K P(C3, P?). Hence, edim(K P(C?, P?)) < 2. By using Proposition
1, we conclude that edim(K P(C3, P?)) = 2.

Case 2: When m is even.
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TABLE 22. Edge Metric Codes for A

re(A|SE) DF a3 DF c3
i=1 1 it+o+e+p+3
2<4i<3 0 i+o+e+p+3
4<i<d i —3 i+o+e+p+3
d+1<i<d+2 i—3 l—i+o+e+p+4
d+3<i<1 l—i+2|l—i+o+e+p+4

TABLE 23. Edge Metric Codes for B

re(B|SE) DF a3 DF c3
1<j<e ot+e+3—j 2+p+y
e+1<j<m|o+j—e+2|3+p+m—j

TABLE 24. Edge Metric Codes for C

re(C|SE) DF a3 DF c3
k=1 etktotp+3 1
2<k<3 e+k+o+p+3 0
4<k<h etk+otp+3 kE—3
h+1<k<h+2|n—k+o+e+p+d| k-3
h+3<k<n |n—k+ote+p+4|n—k+2

TABLE 25. Edge Metric Codes for D

re(D|SE) DF a3 DF c3
I<f<o-1]| 2+f |p+teto—f+3

TABLE 26. Edge Metric Codes for F

re(TgTg+1|SE) DF a3 DF c3
1<g<p—1 |ote+3+g|p—g+2

TABLE 27. Edge Metric Codes for G

re(G|SE) DF a3 DF c3
E =ajw1 2 3+pte+to
E=bxz1 |o+e+3 2+p

TABLE 28. Edge Metric Codes for H

re(H|SE) DF a3 DF c3
E = wobet1 240 3+p+e
E =zpcy o+e+3+p 2

Then, we have the following subcases:

Subcase 1: When [ and n are even.

Suppose | = 2d, m = 2e and n = 2h, where [,m,n > 6; o,p > 2; and d,e,h >
3. Consider the set Sp = {as,bs,c3}. Then the representations of each edge of
KP(C3, P%) with respect to Sg are shown below from Table no. 29 to 35:



ON EDGE METRIC DIMENSION OF EXTENDED KAYAK PADDLE GRAPH

TABLE 29. Edge Metric Codes for A

re(A|SE) DF as DF b3 DF c3
i=1 1 et+o+i—2 i+o+e+p+3
2<i<3 0 eto+i—2 ito+e+p+3
4<i<d i —3 et+o+i—2 i+o+e+p+3
d+1<i<d+2| i-3 |eto+l—i—1|l—ito+te+p+4
d+3<:<1 l—i+2|et+o+l—t—1|l—i+o+e+p+4
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TABLE 30. Edge Metric Codes for B

re(B|SE) DF a3 DF b3 DF c3
j=1 ote+3—j 1 24+p+y
2<5<3 ote+3—j 0 24+p+7
4<j<e ote+3—j j—3 24+p+y
e+1<j<e+2|o+j—e+2 j—3 3+p+m—j
e+3<j<m o+j—e+2 | m—j+2|3+p+tm—j

TABLE 31. Edge Metric Codes for C

7e(CISE) DF a3 DF bs DF c3
k=1 e+k+o+p+3 p+k+2 1
2<k<3 e+k+o+tp+3 pHk+2 0
4<k<h et+k+o+p+3 p+k+2 k—3
h+1<k<h+2|n—k+totetp+td|3+ptn—k| k-3
h+3<k<n n—k+o+e+p+4|3+p+n—Fk|n—-k+2

TABLE 32. Edge Metric Codes for D

re(D|SE)
1<f<o-1

DF a3
2+ f

DF b3
et+o—2—f

DF c3
pt+teto—f+3

TABLE 33. Edge Metric Codes for F

re(F1SE)
1<g<p-1

DF a3
o+e+3+g

DF b3
2+4+g

DF c3
pP—g+2

TABLE 34. Edge Metric Codes for G

re(G|SE) DF a3 DF b3 DF c3
E=ajw; 2 eto—2 | 3+p+e+to
E=bz1 | o+e+3 2 2+4+p

TABLE 35. Edge Metric Codes for H

re(H|SE) DF a3 DF b3 DF c3
E = wobey1 240 e—3 34+p+e
E =xpcy o+e+3+p| 2+0p 2

From the above shown edge metric codes, we have determined that each edge of
KP(C3, P?) has a unique metric. Thus, we conclude that edim(K P(C3, P?)) < 3.
Further, we consider the condition edim(K P(C?3, P?)) > 3.
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Suppose on the converse, edim(K P(C3, P?)) < 2. Then by Proposition 1, we know
that edim(KP(C3, P?)) # 1, as it is not a path graph. Next, we are left with
edim(KP(C3, P%)) = 2. So, we have the following observations:

S.no.| Edge resolving set Contradiction

1 Sg ={as,a;}; 1<i<h1<j<landi#j re(cnci|SE) = re(cic2|SE)
2 Sg ={w;,w;}; 1<i<o;1<j<oandi#j re(cnc1|SE) = re(cic2|SE)
3 Sp=1{bi,bj}; 1<i<m;1<j<mandi#j re(cnci|SE) = re(cic2|Sk)
4 Sg={ziz;}; 1<i<p;1<j<pandi#j re(cnci1|Sg) = re(cic2|Sg)
5 Sg={ci,c;}; 1<i<n;1<j<nandi#j re(aja1|Sg) = re(araz2|Sg)
6 Sg ={ai,ws}; 1<i<I,1<s<o re(cnci|Sg) = re(cic2|SE)
7 Sg ={a;,b;}; 1<i<L, 1<j<m re(cnci|SE) = re(cic2|SE)
8 Sg ={as,z:}; 1<i<l, 1<2<p re(cnc1|SE) = Te(c1c2|SE)
10 Sp ={ws,bj}; 1<s<o0, 1<j<m re(cnci1|Sg) = re(cic2|SE)
11 Sp ={ws,z2}; 1<s<o0,1<2z<p re(cnci1|Sg) = re(cic2|SE)
12 Sp ={ws,ck}; 1<s<o0, 1<k<n re(aja1|Sg) = re(araz2|Sg)
13 Sp ={bj,z:}; 1<j<m, 1<2<p re(cnci|SE) = re(cic2|SE)
14 Sg={bj,c}; 1<j<m, 1<k<n re(aja1|Sg) = re(aia2|Sg)
15 Sg ={zz,c}; 1<z<p, 1<k<n re(aja1|Sg) = re(ara2|Sg)
16 Sg ={ai,cr}; 1<i<l, 1<k<n re(b1b2|SE) = re(bmb1|SE)

From the above listed observations, we found that any set consisting of 2 vertices can
never be a edge resolving set for K P(C®, P?) when the middle cycle is even. There-
fore, from this, we find that K P(C?, P?) > 3, which concludes the proof.

Subcase 2: When [ is even and n is odd.

Suppose | = 2d, m = 2e and n = 2h + 1, where [,m,n > 6; o,p > 2; and d,e, h >
3. Cousider the set Sp = {as,bs,c3}. Then, the representations of each edge of
K P(C3, P?) with respect to Sg are shown below from Table no. 36 to 42:

TABLE 36. Edge Metric Codes for A

re(A|SE) DF a3 DF b3 DF c3
1=1 1 e+o+1—2 i+o+e+p+3
2<i<3 0 eto+i1—2 i+o+e+p+3
4<i<d i—3 eto+i—2 i+o+e+p+3
d4+1<i<d+2 i—3 eto+l—i—1|l—i+o+e+p+4
d+3<i<1 l—i+2|e4+o+l—i—1|l—i4+04+e+p+4

TABLE 37. Edge Metric Codes for B

re(B|SE) DF a3 DF b3 DF c3
j=1 ote+3—j 1 24+p+y
2<5<3 ote+3—j 0 24+p+g
4<j<e ote+3—j j—3 24+p+y
e+1<j<e+2|o+j—e+2 j—3 3+p+m—j
e+3<j<m o+j—e+2 | m—j+2|3+p+tm—j

From the above-shown edge metric codes, we have determined that each edge of
KP(C3, P?) has a unique metric. Thus, we conclude that edim(K P(C3, P?)) < 3.
Further, we consider edim(K P(C?, P?)) > 3.
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r¢(C|SE) DF a3 DF b3 DF c3
k=1 e+k+o+p+3 p+k+2 1
2<k<3 e+k+o+p+3 p+k+2 0
4<k<h+1 e+k+o+p+3 p+k+2 k—3
h+2<k<h+3|n—k+otet+p+4]|3+p+n—k| k-3
h4+4<k<n n—k+o+e+p+4|3+p+n—k|n—k+2
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TABLE 39. Edge Metric Codes for D

DF c3
pt+teto—f+3

T'e(D‘SE)
1<f<o—1

DF a3
24 f

DF b3
e+o—2—f

TABLE 40. Edge Metric Codes for F

DF a3
o+e+3+g

DF b3
2+g

DF c3
p—g+2

Te(F‘SE)
1<g<p-1

TABLE 41. Edge Metric Codes for G

re(G|SE) DF a3 DF b3 DF c3
E =ajw; 2 e+o—2|3+p+e+to
EF=bix1 | o+e+3 2 2+4+p

TABLE 42. Edge Metric Codes for H

re(H|SE) DF a3 DF b3 DF c3
E = webey1 240 e—3 3+p+e
E=xpc1 ot+e+3+p| 2+0p 2

By using the same process as in Subcase 1, a similar type of contradiction is obtained.
Thus, we conclude that edim(K P(C3, P?)) = 3.

Subcase 3: When [ is odd and n is even.

Suppose | = 2d + 1, m = 2e and n = 2h, where [,m,n > 6; o,p > 2; and d,e, h > 3.
Consider the set Sg = {ag, b3, c3}. Then, the representations of each edge with respect
to Sg are shown below from Table no. 43 to 49:

TABLE 43. Edge Metric Codes for A

re(AlSg) DF a3 DF b3 DF c3
i=1 1 e+o+1—2 i+o+e+p+3
2<i<3 0 e+o+i—2 i+o+e+p+3
4<i<d+1 i—3 et+o+i—2 i+o+e+p+3
d+2<i<d+3| i—-3 |e+to+l—i—1|l—i+o+e+p+4
d+4<i<l1 l—i+2|e4+o+l—i—1|l—i4+o0+e+p+4

From the above shown edge metric codes, we have determined that each edge of
KP(C3, P?) has a unique metric. Thus, we conclude that edim(K P(C3, P?)) < 3.
Further, we consider edim(K P(C?, P?)) > 3.
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TABLE 44. Edge Metric Codes for B

re(B|SE) DF ag DF bg DF c3
=1 ofets—j 1 2+p+j
2<5<3 o+e+3—7 0 24+p+yg
4<j<e ot+e+3—j Jj—3 2+p+yJ
e+l1<j<e+2|o+j—e+2 j—3 3+p+m—j
e+3<jij<m o+j—e+2 | m—j54+2|3+p+m—j

TABLE 45. Edge Metric Codes for C

re(C|SE) DF as DF b3 DF c3
k=1 etk+otp+3s prk+2 1
2<k<3 etk+o+p+3 p+k+2 0
4<k<h e+k+otp+3 p+k+2 k—3
h+1<k<h+2|n—-k+o+e+p+4|3+p+n—k k—3
h+3<k<n |n—k+ote+p+4|3+p+n—k|n—k+2

TABLE 46. Edge Metric Codes for D

re(D|SE)

DF a3 DF b3 DF c3

1<f<o-1

24+f |eto—2—f|pt+eto—f+3

TABLE 47. Edge Metric Codes for F

re(F|SE)

DF a3

DF b3 DF c3

1<g<p—1|o+e+3+g

24+g |p—g+2

TABLE 48. Edge Metric Codes for G

re(G|SE) DF a3 DF b3 DF c3
FE =aiw 2 eto—2 | 3+p+e+o
E =bix1 o+e+3 2 2+4+p

TABLE 49. Edge Metric Codes for H

re(H|SE) DF a3 DF b3 | DF c3
E = webey1 2+o0 e—3 3+p+e
E=xpc1 ot+e+3+p| 2+0p 2

By using the same process as in Subcase 1, a similar type of contradiction is obtained.
Thus, we conclude that edim(K P(C3, P?)) = 3.

Subcase 4: When [ and n is odd.
Suppose [ = 2d + 1, m = 2e and n = 2h + 1, where [,m,n > 6; o,p > 2; and
d,e,h > 3. Consider the set Sg = {ag, b3, cs}. Then the representations of each edge
of KP(C3, P?) with respect to Sg are shown below from Table no. 50 to 56:

From the -shownshown edge metric codes, we have determined that each edge of
KP(C3, P?) has a unique metric. Thus, we conclude that edim(KP(C?, P?)) < 3.
Further, we consider edim(K P(C3, P?)) > 3.
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TABLE 50. Edge Metric Codes for A
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re(A|SE) DF as DF b3 DF c3
i=1 1 et+o+i—2 i+o+e+p+3
2<i<3 0 eto+i—2 ito+e+p+3
4<i<d+1 i—3 et+o+i—2 i+o+e+p+3
d+2<i<d+3| i-3 |eto+l—i—1|l—ito+te+p+4
d+4<:<1 l—i+2|et+o+l—t—1|l—i+o+e+p+4

TABLE 51. Edge Metric Codes for B

r<(B|SE) DF a3 DF b DF c3
j=1 o+e+3—j 1 2+p+j
2<j5<3 o+e+3—j 0 24+p+7
4<j<e o+e+3—j ji—3 24 p+j

e+1<j<e+2|o0o+j—e+2 j—3 3+p+m—3j

e+3<ji<m o+j—e+2 | m—j54+2|3+p+m—j

TABLE 52. Edge Metric Codes for C

re(C|SE) DF a3 DF b3 DF c3

k=1 etk+otp+3s prk+2 1

2<k<3 etk+o+p+3 p+k+2 0
4<k<h+1 e+k+o+tp+3 p+k+2 k-3
h+2<k<h+3|n—k+ote+tp+d|3+p+tn—k| k-3
h+4<k<n |n—k+ote+p+4|3+p+n—k|n—k+2

TABLE 53. Edge Metric Codes for D

DF c3
pt+tet+o—f+3

re(D|SE)
1<f<o-1

DF as
24 f

DF b3
eto—2—f

TABLE 54. Edge Metric Codes for F

DF a3
o+e+3+4+g

DF b3
249

DF c3
p—g+t2

re(F|SE)
1<g<p-1

TABLE 55. Edge Metric Codes for G

re(G|SE) DF a3 DF b3 DF c3
E =aiw; 2 eto—2 | 3+p+e+o
E=bxz1 | o+e+3 2 2+4+p

TABLE 56. Edge Metric Codes for H

re(H|SE) DF a3 DF b3 DF c3
E = wobet1 2+o0 e—3 34+p+e
E=zpcy o+e+3+p| 2+0p 2

By using the same process as in Subcase 1, a similar type of contradiction is obtained.
Thus, we conclude that edim(K P(C3, P?)) = 3. O
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Based on the definition of an independent edge metric dimension and edge resolving
set given in Theorem 3.1, we derive the following result.

Theorem 3.2. The independent edge metric dimension of KP(C3, P?) is,

2; ifm is odd,

3; if m is even.

iedim(K P(C®, P?)) = {

4. Edge Metric Dimension of 4-Cycle Extended Kayak Paddle Graph

A 4-cycle extended kayak paddle is a graph made up of four cycles (Cy, Co, Cs, & Cy)
and three paths (P;, P, & Ps) as shown in Fig. 3. We denote it by K P(C*, P3). It
has vertices of degree 2 and 3. The cycles C1, Cy, Cs3, & Cy consist of I,m,n, & u
vertices, where [, m,n, & u are greater than or equal to 6. Also P;, Py, & P53 consists
of o, p, & r number of vertices, where o, p, and r both are greater than or equal to
2. The vertex set and edge set of K P(C*, P3) are denoted by V(K P(C*, P3)) and
E(KP(C*, P3)), respectively. These sets are given as follows:

V(KP(C*, P?) ={ai,as,...,a1,b1,ba, ... by, C1,Cor vy CryQLy Qo e e e Quy W, W,
ey Woy T, T2y e oy Ty YL, Y2s e e vy Y b
and
E(KP(l,m,n,o0,p)) ={a;ait1 : 1 <i <1}U{bjbj11:1<j<m}
U{ekck1 i 1 <k <n}U{qq41:1<t<u}
U{wswpir: 1< f<o—1}U{zgag1 1 1< g<p—1}U{ysysy1: 1 <s<r—1}
U{a1wr, wobey1} U {b1z1, 2peny1}t U{ayr, yran ts

where
A={a;a,41:1<i <1}, B=A{bjbj11:1<j<m}, C={cpcpy1:1<k<n},
I'={¢q+1:1 <t <u}, D={wswsi1:1< f<o—1},
F={zgrg41:1<g<p—-1}, J={ysys41:1<s<r—1},
G ={ajwi,b1z1, 191}, and H = {wpbet1, TnCet1,Yndr }-
Note that, aj+1 = a1, bms1 =b1, cpy1 =c1, and gur1 = ¢1. As a convention, we
will label the vertices of C, Cs, and C3 are in counter clockwise direction and Cy4 in

clockwise direction. Now, we will determine its minimum edge resolving set and the
respective edge metric dimension. Then, we have the following result:

Theorem 4.1. Let KP(C*, P3) be a 4-cycle extended kayak paddle graph. Then,

=2; m and n are odd,

=3; is odd and n i
edim(K P(C*, P%) - , m zs odd and n z§ even,
=3; m is even and n is odd,

< 4; m and n are even.
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Py 3

FIGURE 3. KP(C*4, P3?).

Proof. In K P(C*, P3), we consider the even-odd criteria based on the vertices present
in the cycles of KP(C*, P3). Thus, we have the following cases:

Case 1: When m and n are odd.
Then, we have the following subcases:

Subcase 1: When [ and u are odd.

Suppose | = 2d+1, m = 2e+1, n = 2h+1 and u = 2v+1, where [, m,n,u > 6; o,p,r >
2; and d, e, h,v > 3. Consider the set Sg = {as,q3}. Then, the representations of
each edge of KP(C*, P?) with respect to Sg are shown below from Table no. 57 to
65.

TABLE 57. Edge Metric Codes for A

re(A|SE) DF a3 DF c3
i=1 1 r+h+p+tet+o+i+4
2<i<3 0 r+h+p+etot+i+4
4<i<d+1 i—3 r+h+p+et+o+i+4
d+2<:<d+3 i—3 r+h+p+eto+l—i+5
d+4<:<1 l—i+2|r4+h+pt+e+o+l—i+5

TABLE 58. Edge Metric Codes for B

TE(B|SE) DF as DF c3
1<j<e |3tote—j| r+h+tptj+3
e+1<j<m|240+4+j—e|r+h+p+44+m—3j

TABLE 59. Edge Metric Codes for C

T‘e(C‘SE) DF a3 DF c3
1<k<h 44+o0o+e+p+h—k 24+r+k
h+1<k<n|3+o+e+p+k—h|3+r+n—k

From the above shown edge metric codes with respect to edge resolving set Sg, we
found that 7.(a|Sg) # re(b|SE); ¥ a,b(a # b) € E(KP(C*, P?)). Thus, Sg is a edge
resolving set for K P(C*, P?). Hence edim(K P(C*, P3)) < 2. By using proposition
1, we conclude that edim(K P(C*, P3)) = 2.

Subcase 2: When [ and u are odd.

By applying the proof method from Theorem 1 and subcase 1 of case 1 of Theorem
3, we obtain edim (K P(C*, P3)) = 2.
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TABLE 60. Edge Metric Codes for I

re(I|SE) DF a3 DF c3
t=1 ot+e+p+h+r+4+t 1
2<t<3 o+e+p+h+r+4+t 0
4<t<v+1 ot+e+p+h+r+4+t t—3
v+2<t<v+3|54+o0+e+p+h+r+u—t t—3
v+4<t<u 54o0o+e+p+h+r+u—t|u—t+2

TABLE 61. Edge Metric Codes for D

TS(D|SE) DF a3 DF c3
1<f<o-1 24+ f r+h+pt+eto—f+4

TABLE 62. Edge Metric Codes for F

re(F|SE) DF ag DF c3
1<g<p—-1|3+o0o+e+g|r+h+p—9g+3

TABLE 63. Edge Metric Codes for J

re(J|SE) DF a3 DF c3
1<s<r—1|44o0+e+p+h+s|r—s+2

TABLE 64. Edge Metric Codes for G

re(G|SE) DF a3 DF g3

FE =aiwi 2 r+h+p+et+o+4
E =bix o+e+3 r+h+p+3
E=cwy1 o+e+p+h+14 247

TABLE 65. Edge Metric Codes for H

re(H|SE) DF a3 DF g3

E = wobet1 240 r+h+p+e+4
E =xpcp41 o+e+3+p r+h+3
E=vyrq1 o+e+p+h+4+r 2

Subcase 3: When [ is even and u is odd.
By applying the proof method from Theorem 1 and subcase 1 of case 1 of Theorem
3, we obtain edim(K P(C*, P?)) = 2.

Subcase 4: When [ and u are even.
By applying the proof method from Theorem 1 and subcase 1 of case 1 of Theorem
3, we obtain edim (K P(C*, P3)) = 2.

Case 2: When m is odd and n is even.
By considering Sg = {as, b3, ¢3} and applying the proof method from Theorem 1 and
case 1 of Theorem 3, edim(K P(C*, P3)) = 3.
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Case 3: When m is even and n is odd

By considering Sg = {as, c3,¢3} and applying the proof method from Theorem 1 and
case 1 of Theorem 3, edim(K P(C*, P?)) = 3.

Case 4: When m and n are even.
Then, we have the following subcases:

Subcase 1: When [ and u are even.

Suppose I = 2d, m = 2e, n = 2h and u = 2v, where I, m,n,u > 6; o,p,r > 2; and
d,e,h,v > 3. Consider the set Sg = {as, b3, c3,q3}. Then, the representations of each
edge of K P(C*, P3) with respect to Sg are shown below from Table no. 156 to 173:

TABLE 66. Edge Metric Codes for A

’I”E(A‘SE) DF as DF bg DF C3 DF q3
1=1 1 e+o+1—2 h+p+ed+o+i—1 r+h+p+et+o+i+4
2<i<3 0 e+o+1—2 h+p+et+o+i—1 r+h+p+et+o+i+4
4<i<d i—3 e+o+1i—2 h+p+et+o+i—1 r+h+p+et+o+i+4
d+1<i<d+2 i—3 e+o+l—i—1| h+p+et+o+l—i | r+h+p+et+o+l—i+5
d+3<:<1 l—i+2 | et+o+l—i—1 h+p+e+o+l—i | r+h+pt+teto+l—i+5
TABLE 67. Edge Metric Codes for B
r.(B|SE) DF ag DF b3 DF c3 DF g3
j=1 3+o+e—3 1 h+p+j—2 r+h+p+j5+3
2<j<3 3+o+e—j 0 h+p+j—2 r+h+p+j+3
4<j<e 3+o+e—j ji—3 h+p+j—2 r+h+p+j+3
e+1<j<e+2|24+0+j—c¢ j—3 h+p+m—j—1|44r+h+p+m—3j
e+3<j<m 2+o0o+j—e| m—j54+2 | h+p+m—-—j—1|4+r+h+p+m—7j
TABLE 68. Edge Metric Codes for C
Te(CISE) DF as DF b3 DF C3 DF qs3
k=1 44+o0+e+p+h—k | 34+p+h—Fk 1 24+r+k
2< k<3 44+o0+e+p+h—k | 34+p+h—=Fk 0 24 r+k
4<k<h 4+o+e+p+h—k | 3+p+h—k k—3 2+r+k
h4+1<k<h+2 34o0o+e+p+k—h | 24+p+k—~h k—3 34+r+n—=%k
h+3<k<n 3+o+e+p+k—h |24p+k—h | n—k+2|34+r4+n—~k
TABLE 69. Edge Metric Codes for I
re(I|SE) DF a3 DF b3 DF c3 DF q3
t=1 ot+e+p+h+r+4+t p+h+r+3+t 24 r+t 1
2<t<3 o+e+p+h+r+4+t p+h4+r+3+t 24r+t 0
4<t<w o+e+p+h+r+4+t p+h+r+3+t 24r+t t—3
v+1<t<v+2 | 54+0+e+p+h+r+u—t|p+h+r+44+u—t | 34+r+u—t t—3
v+3<t<u 540o4+e+p+h+r+u—t | p+h+r+4+u—t | 3+r+u—t | u—=t+2
TABLE 70. Edge Metric Codes for D
[ 7(DISe) [ DF a3 ]| DF bg DF c3 DF g3

[ l
[I<Ff<o—-1[2+f |e—2+0—f[h+pteto—fFf—1[r+h+pteto—f+4]
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TABLE 71. Edge Metric Codes for F

[ 7(F[Sg) | DFa3 [ DFbs | DF c3 [ DF g3 |
[I<g<p—1|o+teftg+3| 2+g |h—2+p—g |r+th+tp—g+3 |

TABLE 72. Edge Metric Codes for J

[ re(JISE) [ DF a3 DF b3 [ DF c3 | DFgq3 |
[1§s§r—1[o+e+p+h+4+s[p+h+s+3[ 2+ s [2+r—s[
TABLE 73. Edge Metric Codes for G

re(G|SE) DF a3 DF b3 DF c3 DF g3

E =aiw; 2 e—2+4+o0 h+p+et+o—1 r+h+p+et+o+4
E =biz1 o+e+3 2 h—24+p r+h+p+3
E=ciy1 |ote+p+h+4 | p+h+3 2 247

TABLE 74. Edge Metric Codes for H

re(H|SE) DF ag DF b3 DF c3 DF g3

E = wobet 2+4+o0 e—2 h4+p+e—1 r+h+p+e+4
E =xpchir ot+e+3+p 24+p h—2 r+h+3
E=yra1 otet+tpt+h+4+r | p+h+3+7 247 2

From the above shown edge metric codes, we have determined that each edge of
KP(C*, P?) has a unique metric.
Thus, we conclude that edim(K P(C*4, P3)) < 4.

Subcase 2: When [ is even and u is odd.

Suppose | = 2d, m = 2e, n = 2h and v = 2v + 1, where [,m,n,u > 6 and o,p,r > 2.
Consider the set S = {as,bs,cs,q3}. Then, the representations of each edge of
K P(C*, P3) with respect to Sp are shown below from Table no. 174 to 182:

TABLE 75. Edge Metric Codes for A

’I”E(A‘SE) DF as DF b3 DF C3 DF qgs
1=1 1 et+o+1—2 h+p+et+o+1—1 r+h+p+teto+i+4
2<i<3 0 e+o+1—2 h+p+et+o+i—1 r+h+pt+et+o+i+4
4<i<d i—3 e+o+1—2 h4+p+et+o+i—1 r+h+pt+et+o+i+4
d+1<i<d+2 i—3 eto+l—it—1| h+p+ed+o+l—i | r+h+p+et+o+l—i+5
d+3<:<1 l—i+2 | et+o+l—i—1 h+p+e+o+l—i | r+h+pt+teto+l—i+5
TABLE 76. Edge Metric Codes for B
r.(B|SE) DF ag DF b3 DF c3 DF q3
j=1 3+o0+e—7J 1 h+p+j—2 r+h+p+35+3
2<35<3 3+o+e—3 0 h+p+j—2 r+h+p+j5+3
4<j<e 3+o+e—j j—3 h+p+j—2 r+h+p+j+3
e+l1<j<e+2|2+0+j—e j—3 h+p+m—-j—1|4d+r+h+p+tm—j
e+3<ji<m 24+o04+j—e| m—j54+2 | h+p+m—-—jj—1|4+r4+h+p+m—7j

From the above shown edge metric codes, we have determined that each edge of
K P(C*, P?) has a unique metric. Thus, we conclude that edim (K P(C*, P3)) < 4.
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TABLE 77. Edge Metric Codes for C
r<(CISE) DF as DF b3 DF cs DF g3
k=1 4+o+e+p+h—k | 34+p+h—k 1 24+r+k
2< k<3 44+o0+e+p+h—k | 34+p+h—=Fk 0 24 r+k
4<k<h 4+o+e+p+h—k | 3+p+h—k k—3 24+r+k
h+1<k<h+2 34o0o+e+p+k—h | 24+p+Ek—~h k—3 34+r+n—=%k
h+3<k<n 34o0o+e+p+k—h | 24+p+k—h | n—k+2|34+r4+n—=~k
TABLE 78. Edge Metric Codes for I
Te(IISE) DF as DF b3 DF C3 DF q3
t=1 o+e+p+h+r+4+t p+h+r+3+t 24+7r+t 1
2<t<3 o+e+p+h+r+4+t p+h+r+3+t 24+7r+t 0
4<t<v+1 ot+e+p+h+r+4+t p+h+r+3+4+t 24 r+t t—3
v+2<t<v+3 540o4+e+p+h+r+u—t | p+h+r+4+u—t | 3+r+u—t t—3
v+4<t<u 5+o+e+p+h+r+u—t | p+h+r+4d+u—t |3+r+u—t | u—t+2
TABLE 79. Edge Metric Codes for D
l re(D|SE) [DF a3[ DF b3 [ DF C3 DF qs3

[1<f<o—-1[]2+F [e-2+o—f[h+tpteto—f—-1[r+thtpteto—F+4]

TABLE 80. Edge Metric Codes for F

DF as

[ DF bs |

DF C3 [

DF q3 l

} re(FISE) |

1<g<p-1|otetg+t3| 2+g |h-2+p—g | r+thtp—g+3|

TABLE 81. Edge Metric Codes for J

[ re(JlsE) [

DF as

DF b,

[DFCg[

DF qs [

[ 1<s<r-—1 [ o+e+p+h+4+s [ p+h+s+3 [ 2+ s [ 241r—s l

TABLE 82. Edge Metric Codes for G

Te(G‘SE) DF as DF bg DF C3 DF q3

E = aiw; 2 e—24+o0o | h+p+te+o—1|r+h+p+tet+o+4
E =bix, o+e+3 2 h—24+p r+h+p+3
E=cy |ot+te+p+h+4 | p+h+3 2 247

TABLE 83. Edge Metric Codes for H

INGIED) DF a; DF b DF c3 DF ¢3

E = wobeq1 2+o0 e—2 h4+p+e—1 r+h+p+e+4
E =xpchir o+e+3+p 24+p h—2 r+h+3
E=yrq1 otet+p+th+4+r | p+h+3+7r 247 2

Subcase 3: When [ is odd and u is even.

Suppose | = 2d 4+ 1, m = 2e, n = 2h and u = 2v, where I, m,n,u > 6 and o,p,r > 2.
Consider the set Sg = {as,bs,c3,q3}. Then, the representations of each edge of
KP(C*, P?) with respect to Sg are shown below from Table no. 183 to 191:
From the above shown edge metric codes, we have determined that each edge of
K P(C*, P?) has a unique metric. Thus, we conclude that edim (K P(C*, P3)) < 4.

Subcase 4: When [ and « are odd.
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TABLE 84. Edge Metric Codes for A

To(A|SE) DF as DF bs DF c3 DF g3
1=1 1 et+o+i—2 h+p+e+o+i—1 r+h+p+et+o+i+4
2<:<3 0 et+o+1—2 h+p+et+o+i—1 r+h+pt+et+o+i+4
4<i<d+1 71— 3 e+o+1—2 h+p+ed+o+i—1 r+h+p+et+o+i+4
d+2<i<d+3 i — 3 eto+l—i—1 h+p+et+o+l—1 r+h+p+et+o+l—i+5
d+4<i<1 l—i+2 eto+1l—i—1 h+p+et+o+l—1 r+h+p+eto+l—i+5
TABLE 85. Edge Metric Codes for B
’I‘e(BISE) DF as DF b3 DF C3 DF g3
j=1 3+o+e—3j 1 h+p+j—2 r+h+p+j+3
2<j5<3 3+o+te—3j 0 h+p+j—2 r+h+p+j+3
4<j<e 3+o+e—j j—3 h+p+j—2 r+h+p+j+3
et+1<j<e+2 24+o0+4+j5—e Jj—3 h+p+m—j—1 44+r+h+p+m—j
e+3<j<m 2+o0o+j—e|m—j+2 | h+p+m—j—1|44+r+h+p+m—j
TABLE 86. Edge Metric Codes for C
’I‘e(CISE) DF as DF b3 DF C3 DF qgs
k=1 44+o0+e+p+h—k | 34+p+h—Fk 1 24+r+k
2< k<3 44+o0+e+p+h—k | 34+p+h—=Fk 0 24 r+k
4<k<h 44+o+e+p+h—k | 3+p+h—k k—3 2+r+k
h4+1<k<h+2 34o0o+e+p+k—h | 24+p+k—~h k—3 34+r+n—=%k
h+3<k<n 34o0o+e+p+k—h | 24+p+k—h | n—k+2|34+r+n—=~k
TABLE 87. Edge Metric Codes for I
TG(IISE) DF as DF b3 DF C3 DF g3
t=1 o+e+pt+h+r+4+t p+h+r+3+t 24+7r+t 1
2<t<3 o+e+p+h+r+4+t p+h+r+3+t 24+ r+t 0
4<t<w o+e+p+h+r+4+t p+h+r+3+t 24r+t t—3
v+1<t<v+2 540o4+e+p+h+r+u—t | p+h+r+4+u—t | 3+r+u—t t—3
v4+3<t<lu 540o4+e+p+h+r+u—t | p+h+r+4+u—t | 3+r+u—=t | u—=t+2
TABLE 88. Edge Metric Codes for D
l rE(D|SE) [ DF as [ DF b3 [ DF C3 [ DF qs3

l
[ 1<f<o—-1 [ 2+ f [ e—24+o0—f [ h+p+e+o—f—1 [ r+h+p+et+o—f+4 ]

TABLE 89. Edge Metric Codes for F

[ re(F|SE) [ DF ag [ DF b3 [ DF c3 [ DF qs ]
[ 1<g<p-—-1 [ o+e+g+3[ 249 [ h—24+p—g [ T+h+pfg+3]

TABLE 90. Edge Metric Codes for J

[ 7 (Se) | DF a3 [ DFb; [ DFc | DFgs |
[1§s§r—1[o+e+p+h+4+s[p+h+s+3[ 2+ s [2+r—s[

TABLE 91. Edge Metric Codes for G

TE(G‘SE) DF as DF bg DF C3 DF g3

E = aiw; 2 e—24o0o | h+p+te+o—1|r+h+p+tet+o+4
E =bix, o+e+3 2 h—24+p r+h+p+3
E=cy |ot+te+p+h+4 | p+h+3 2 2+

Suppose I = 2d+ 1, m = 2e, n = 2h and u = 2v + 1, where I[,m,n,u > 6 and
o,p,r > 2. Consider the set Sg = {as, b3, cs,q3}. Then, the representations of each
edge with respect to Sg are shown below from Table no. 192 to 200:
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TABLE 92. Edge Metric Codes for H

r(H|SE) DF a3 DF b DF c3 DF ¢

E = wobeq1 2+ o0 e—2 h+p+e—1|r+h+p+e+4
E=xpchyr o+e+3+p 24+p h—2 r+h+3
E=yrq1 o+et+p+h+4+r | p+h+3+7r 247 2

TABLE 93. Edge Metric Codes for A

To(A|SH) DF a3 DF b3 DF c3 DF ¢
1=1 1 et+o+i—2 h+p+e+o+i—1 r+h+pt+eto+i+4
2<:1<3 0 et+o+1—2 h+p+et+o+i—1 r+h+pt+tet+o+i+4
4<i<d+1 71— 3 e+o+1—2 h+p+et+o+i—1 r+h+p+et+o+i+4
d+2<i:<d+3 i — 3 eto+l—i—1 h+p+et+o+l—1 r+h+p+et+o+l—i+5
d+4<i<1 l—i+2 | et+o+l—1—1 h+p+et+o+l—1 r+h+p+eto+l—i+5

TABLE 94. Edge Metric Codes for B

’I’E(BISE) DF as DF b3 DF C3 DF qgs
j=1 3+o+e—g 1 h+p+j—2 r+h+p+j+3
2<j5j<3 3+o+e—3j 0 h+p+j—2 r+h+p+j+3
4<j<e 3+o0+e—j | j—3 h+p+j—2 r+h4p+i+3
e+1<j<e+2 |24+0+j—c¢ j—3 h+p+m—-—j—1|44+r+h+p+m-—3j
e+3<j3<m 24+04+j—e| m—j53+2| h+p+m—jj—1|44+r+h+p+m—7j
TABLE 95. Edge Metric Codes for C
re(C|SE) DF ag DF bg DF c3 DF g3
k=1 4+o+e+p+h—k | 3+p+h—k 1 24+ r+k
2< k<3 44o+e+p+h—k | 3+p+h—k 0 24 r+k
4<k<h 44+o0+e+p+h—k | 34+p+h—=Fk k—3 24 r+k
h+1<k<h+2 34+4o0o+e+p+k—h | 24+p+Ek—~h k—3 3+r+n—=k
h+3<k<n 34o0o+e+p+k—h | 24+p+k—h | n—k+2|34+r4+n—=~k
TABLE 96. Edge Metric Codes for I
re(I|SE) DF ag DF b3 DF c3 DF qs
t=1 o+e+p+h+r+4+t p+h+r+3+4+t 24r+t 1
2<t<3 o+e+p+h+r+4+t p+h+r+3+t 24 r+t 0
4<t<v+1 o+e+p+h+r+4+t p+h+r+3+t 24+7r+t t—3
v+2<t<v+3|54+o0+e+p+h+r+u—t|p+h+r+44+u—t |34+r+u—t t—3
v4+4<t<u 540o4+e+p+h+r4+u—t | p+h+r+4+u—t | 3+r+u—t u—t+2

TABLE 97. Edge Metric Codes for D

l rc(D|SE) [ DF as [ DF bg [ DF C3 [ DF qs3 l
[ 1<f<o—-1 [ 2+ f [ e—24+o0—f [ h+p+e+o—f—1 [ r+h+pt+et+o—f+4 ]

TABLE 98. Edge Metric Codes for F

l ’I‘E(F‘SE) [ DF as [ DF b3 [ DF C3 [ DF g3 l
[1<g<p—1]o+e+g+3]| 2+g [h—2+p—g|r+h+p—g+3|

From the above shown edge metric codes, we have determined that each edge of
KP(C* P?) has a unique metric. Thus, we conclude that edim(KP(C*, P?)) <
4. O
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TABLE 99. Edge Metric Codes for J

[ reUISe) |

DF as

DF b;

[ DF c3 |

DF g3 |

[1<s<r—1]ot+e+p+h+d+s|[p+h+s+3] 2+s [2+r—s |

TABLE 100. Edge Metric Codes for G

r.(G[SE) DF a3 DF b3 DF c3 DF g3

E =aiw; 2 e—2+o0 h+p+et+o—1 r+h+p+et+o+4
E =bix, o+e+3 2 h—24+0p r+h+p+3
E=ciy1 |ote+p+h+4 | p+h+3 2 247

TABLE 101. Edge Metric Codes for H

r.(H|SE) DF ag DF b3 DF c3 DF g3

E = wobet1 2+ o0 e—2 h4+p+e—1 r+h+p+e+4
E =xpchir o+e+3+p 2+4+p h—2 r+h+3
E=yrq1 otet+p+th+4+r | p+h+3+7r 2+ 2

Based on the definition of an independent edge metric dimension and edge resolving
set given in Theorem 3.2, we derive the following result.

Theorem 4.2. The independent edge metric dimension of KP(C*, P3) is,

= 2; m and n are odd,

iedim(K P(C*, P3) { =5

; m is even and n is odd,
4;

m is odd and n is even,
m and n are even.

5. Conclusion

In this paper, we have studied some resolvability parameters like edge metric dimen-
sion and independent edge metric dimension for 3-cycle and 4-cycle extended kayak
paddle graphs, and also derived that the resolvability parameter is bounded for these
planar graphs. Furthermore, we have also studied the concept of independence in the
respective minimum edge resolving set for 3-cycle and 4-cycle kayak paddle graphs.
In the future, we will continue to explore the other variants of metric dimension for
KP(C™, P"1). For further directions, we posted the following open problems:

1. What is the lower bound for the edge metric dimension of the 4-cycle extended
kayak paddle graph when the interior cycles are even.

2. What is the edge metric dimension of the n-cycle extended kayak paddle graph,
where n > 5.
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